A. H. Nayfeh, Nonlinear interactions: analytical, computational and experimental methods , Wiley series in nonlinear science, 2000.

M. Amabili, Nonlinear vibrations and stability of shells and plates, 2008.
DOI : 10.1017/CBO9780511619694

C. Touzé, S. Bilbao, and O. Cadot, Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, issue.2, pp.412-433, 2012.
DOI : 10.1016/j.jsv.2011.09.016

G. Düring, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, issue.2, p.25503, 2006.
DOI : 10.1103/PhysRevLett.97.025503

A. Boudaoud, O. Cadot, B. Odille, and C. Touzé, Observation of Wave Turbulence in Vibrating Plates, Physical Review Letters, vol.100, issue.23, p.234504, 2008.
DOI : 10.1103/PhysRevLett.100.234504

URL : https://hal.archives-ouvertes.fr/hal-00326634

N. Mordant, Are There Waves in Elastic Wave Turbulence?, Physical Review Letters, vol.100, issue.23, p.234505, 2008.
DOI : 10.1103/PhysRevLett.100.234505

URL : https://hal.archives-ouvertes.fr/hal-00712175

P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, and N. Mordant, Space-Time Resolved Wave Turbulence in a Vibrating Plate, Physical Review Letters, vol.103, issue.20, 2009.
DOI : 10.1103/PhysRevLett.103.204301

N. H. Fletcher and T. D. Rossing, The Physics of musical instruments, 1998.

K. Legge and N. H. Fletcher, Nonlinearity, chaos, and the sound of shallow gongs, The Journal of the Acoustical Society of America, vol.86, issue.6, pp.2439-2443, 1989.
DOI : 10.1121/1.398451

A. Chaigne, C. Touzé, and O. Thomas, Nonlinear vibrations and chaos in gongs and cymbals, Acoustical Science and Technology, vol.26, issue.5, pp.403-409, 2005.
DOI : 10.1250/ast.26.403

URL : https://hal.archives-ouvertes.fr/hal-01135295

S. Bilbao, Numerical Sound synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, 2009.
DOI : 10.1002/9780470749012

S. Bilbao, Percussion Synthesis Based on Models of Nonlinear Shell Vibration, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.4, pp.872-880, 2010.
DOI : 10.1109/TASL.2009.2029710

J. Chadwick, S. An, and D. James, Harmonic shells: a practical nonlinear sound model for near-rigid thin shells, ACM Transactions on Graphics (SIGGRAPH ASIA Conference Proceedings), vol.28, issue.5, 2009.

T. Von-kármán, Festigkeitsprobleme im maschinenbau, Encyklopdie der Mathematischen Wissenschaften, vol.4, issue.4, pp.311-385, 1910.

C. Chia, Nonlinear analysis of plates, 1980.

O. Thomas and S. Bilbao, Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, Journal of Sound and Vibration, vol.315, issue.3, pp.569-590, 2008.
DOI : 10.1016/j.jsv.2008.04.014

L. Landau and E. Lifschitz, Theory of Elasticity, 1986.

P. Ciarlet and L. Gratie, From the classical to the generalized von K??rm??n and Marguerre???von K??rm??n equations, Journal of Computational and Applied Mathematics, vol.190, issue.1-2, pp.470-486, 2006.
DOI : 10.1016/j.cam.2005.04.008

P. Hagedorn and A. Dasgupta, Vibrations and Waves in Continuous Mechanical Systems, 2007.
DOI : 10.1002/9780470518434

A. Chaigne and C. Lambourg, Time-domain simulation of damped impacted plates. I. Theory and experiments, The Journal of the Acoustical Society of America, vol.109, issue.4
DOI : 10.1121/1.1354200

URL : https://hal.archives-ouvertes.fr/hal-00830699

C. Lambourg, A. Chaigne, and D. Matignon, Time-domain simulation of damped impacted plates. II. Numerical model and results, The Journal of the Acoustical Society of America, vol.109, issue.4, pp.1433-1447, 2001.
DOI : 10.1121/1.1354201

URL : https://hal.archives-ouvertes.fr/hal-00830699

S. Sridhar, D. T. Mook, and A. H. Nayfeh, Non-linear resonances in the forced responses of plates, part 1: Symmetric responses of circular plates, Journal of Sound and Vibration, vol.41, issue.3, pp.359-373, 1975.
DOI : 10.1016/S0022-460X(75)80182-9

C. Touzé, O. Thomas, and A. Chaigne, ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY, Journal of Sound and Vibration, vol.258, issue.4, pp.649-676, 2002.
DOI : 10.1006/jsvi.2002.5143

C. Touzé and O. Thomas, Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry, International Journal of Non-Linear Mechanics, vol.41, issue.5, pp.678-692, 2006.
DOI : 10.1016/j.ijnonlinmec.2005.12.004

M. Ducceschi, C. Touzé, S. Bilbao, and C. Webb, Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations, Acta Mechanica, vol.26, issue.1, pp.213-232, 2014.
DOI : 10.1007/s00707-013-0931-1

URL : https://hal.archives-ouvertes.fr/hal-01134793

M. Ducceschi, Nonlinear vibrations of thin rectangular plates. A numerical investigation with application to wave turbulence and sound synthesis, pp.ENSTA-ParisTech, 2014.
URL : https://hal.archives-ouvertes.fr/pastel-01068284

S. Bilbao, A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numerical Methods for Partial Differential Equations, vol.194, issue.1, pp.193-216, 2007.
DOI : 10.1002/num.20260

C. Touzé, M. Vidrascu, and D. Chapelle, Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models, Computational Mechanics, vol.298, issue.4???5, pp.567-580, 2014.
DOI : 10.1007/s00466-014-1006-4

T. Humbert, O. Cadot, G. Düring, S. Rica, and C. Touzé, Wave turbulence in vibrating plates: The effect of damping, EPL (Europhysics Letters), vol.102, issue.3, 2013.
DOI : 10.1209/0295-5075/102/30002

URL : https://hal.archives-ouvertes.fr/hal-01134801

M. Ducceschi, O. Cadot, C. Touzé, and S. Bilbao, Dynamics of the wave turbulence spectrum in vibrating plates: A numerical investigation using a conservative finite difference scheme, Physica D: Nonlinear Phenomena, vol.280, issue.281, pp.280-281, 2014.
DOI : 10.1016/j.physd.2014.04.008

URL : https://hal.archives-ouvertes.fr/hal-01135260

M. Amabili, Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments, Computers & Structures, vol.82, issue.31-32, pp.2587-2605, 2004.
DOI : 10.1016/j.compstruc.2004.03.077

G. Ostiguy and S. Sassi, Effects of initial geometric imperfections on dynamic behavior of rectangular plates, Nonlinear Dynamics, vol.25, issue.3, pp.165-181, 1992.
DOI : 10.1007/BF00122300

C. Camier, C. Touzé, and O. Thomas, Non-linear vibrations of imperfect free-edge circular plates and shells, European Journal of Mechanics - A/Solids, vol.28, issue.3, pp.500-515, 2009.
DOI : 10.1016/j.euromechsol.2008.11.005

URL : https://hal.archives-ouvertes.fr/hal-01089556

A. W. Leissa, Vibration of plates, 1969.