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*Unité de Mécanique (UME), ENSTA-ParisTech, Palaiseau, €&an

Summary This paper considers the computation of nonlinear normal modes (NN&fised as two-dimensional manifolds in phase
space. Because existing methods use explicit manifold parameteriZgdiitv,computation in the presence of internal resonances
requires multiple pairs of constraint coordinates. This paper investigatedternative method for which the manifold is computed
using successive boundary value problems.

Introduction

Pioneered in the 60s by Rosenberg, nonlinear normal modésié)\provide a rigorous theoretical framework for analyz-
ing the dynamics of nonlinear systems. Initially definedsasifies of synchronous periodic oscillations of the autonas
conservative system, NNMs were generalized to dampedmgdig Shaw and Pierre. Based on geometric arguments and
inspired by the center manifold theory, they defined an NNM dgo-dimensional invariant manifold in phase space [1].
Using a single pair of state variables for manifold paramizg¢ion (a displacement and a velocity), a set of partitiédi
ential equations (PDEs) was derived. Those PDEs globafigritee the manifold’s geometry in terms of the remaining
state-space variables functionally related to the chossstenpair. The first attempt to numerically solve these P&ies

to compute NNMs as invariant manifolds is that of Pesheck §2Ja PDEs were written in modal space and solved using
a Galerkin projection. In recent contributions, Touzé aadhorkers [3] solved the same PDEs using finite differences
whereas Renson and Kerschen [4] used a specific finite elemathbd in configuration space.

In the presence of an internal resonance, a nonlinear eaupétween two NNMs exists and the invariant manifold starts
to fold. The manifold presents a complex structure embedddte full phase space. The chosen parameterization
becomes inappropriate and fails to further describe thariamt surface. To circumvent this issue, Shaw and co-wsrke
introduced the concept of multi-modal NNMs where the irmarimanifold is described by multiple pairs of master
variables [5]. While effective, this method still assumeseaplicit and global description of the NNM which does not
completely solve the intrinsic parameterization issughimpaper, an alternative method for NNM calculation islesgx.
Originally proposed by Doedel [7] in the general contextwbidimensional (un)stable invariant manifold calculap

the method locally grows the manifold using successive dannvalue problems (BVPs). This allows to compute the
NNM beyond any parameterization limit and therefore in thespnce of nonlinear modal interactions.

Formulation of the boundary value problems

Using the general first-order form of the equation of motibn: g(z), a trajectory on the invariant manifold (i.e., the
NNM) is defined as

z'(t) = Tg(a(t)), 1)

z(0) = zo + ro(cos(0)p; +sin(0)y,), 2

where(.)’ denotes the first derivative with respect to the normalizeg t € [0,1], o is a small parameter, arifl is
the final time. Equations (1)-(2) parameterize usthg family of trajectories that start on a small ellipse arotimel
equilibrium pointz,. If the vectorsyy; andt), are chosen so as to define, at the equilibrium pajnthe tangent space
of a NNM, the trajectories will describe this NNM.

The computation strategy proceeds in two steps. Firstjectay on the manifold is grown using continuation with
as free parameter arfarbitrarily fixed atf = 6, [7]. For a stable (resp., unstable) systefh< 0 (resp., 7" > 0),
and the computation of the first trajectory is similar to baakd time integration. In this problem, Equations (1) and (2
are solved forZ which groups all the points that discretize the trajectddyring the continuation process, a function
measuring the arclength of the trajectory as

1
L:/O T ||lg(z)| ds. 3)

is monitored by the algorithm, and the continuation is sempwhen the trajectory reaches a user-defined lehgiqua-
tion (2) together with the conditioh = L define a BVP that constrains the initial and final conditiofnthe trajectory. A
second continuation step, withas parameter, is then performed. All the points that diszeréhe trajectory are continu-
ously varied to cover the complete invariant manifold. Fos tast step]” is free to vary. Other stopping criteria than the
arclength of the trajectory can be employed. We refer tog7pdditional details about the original method.
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The different continuation steps are performed with thevearfe AUTO [6] which solves BVPs using the method of
orthogonal collocation with piecewise polynomials. Theawrse to the BVP approach has the advantage of being com-
patible with the subsequent continuation steps. The latieimportant because trajectories can be very sensititre wi
respect to the parametér A continuation approach which controls the step sizé with respect to the variation of all

the trajectory (i.e.Z) guarantees a nice covering of the invariant surface. M@aeastable manifolds become unstable in
backward time, and the recourse to BVP approach is thus lalsgoere robust than direct time integration.

The method is applied to the 2DOF system

#1 4+ 0.3(2y — d2) + (221 —22) + 0525 = 0,
To — 03(.’131 — 2:62) + (2132 — 171) = 0. (4)

Figure 1(a) presents a three-dimensional view of the sebbiidl of the system computed with the present approach.
The invariant surface is displayed in blue. It is coverechvétcollection of 2012 trajectories. For comparison, the
solution computed with a finite-element-based (FE) alparitdeveloped in [4] for solving the manifold’s governing
PDEs (obtained with an explicit manifold parameterizatisnalso display in orange. Around the origin, both methods
agree very well. However, for larger motion amplitudes, ithester coordinatege,, y;) employed by the FE method
are not adequate anymore to represent the manifold. THigssrated in Figure 1(b) which presents a projection of two
trajectories computed using the BVP approach. The trajiestare getting very close to each other in two specific regio
pointed out by arrows. The invariant surface becomes alrasical, which limits its explicit representation usirfgt
pair (x1,y1). Conversely, the results of the BVP approach captured thefabé without limitation.

Conclusions

In this paper, an alternative approach for damped NNM coatjuut is investigated. This BVP approach does not assume
any explicit parameterization and provides a means to kkinvariant manifolds with complex topologies and thus,
for instance, in the presence of internal resonances. Mdiste advantage of the present approach is to provideezdir
access to the dynamics on the NNM, and, in turn, to the anga@ifvequency dependence of the NNM.
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Figure 1: Second NNM of the 2DOF system. (a) The present agprfin blue) is compared to the results of [4] in orange.
(b) top view in the master coordinates’ plane of the FEM. &Galid dashed lines are used to distinguish two trajectories
computed using the BVP formulation.
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