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Summary. This paper considers the computation of nonlinear normal modes (NNMs) defined as two-dimensional manifolds in phase
space. Because existing methods use explicit manifold parameterization,NNM computation in the presence of internal resonances
requires multiple pairs of constraint coordinates. This paper investigatesan alternative method for which the manifold is computed
using successive boundary value problems.

Introduction

Pioneered in the 60s by Rosenberg, nonlinear normal modes (NNMs) provide a rigorous theoretical framework for analyz-
ing the dynamics of nonlinear systems. Initially defined as families of synchronous periodic oscillations of the autonomous
conservative system, NNMs were generalized to damped systems by Shaw and Pierre. Based on geometric arguments and
inspired by the center manifold theory, they defined an NNM asa two-dimensional invariant manifold in phase space [1].
Using a single pair of state variables for manifold parameterization (a displacement and a velocity), a set of partial differ-
ential equations (PDEs) was derived. Those PDEs globally describe the manifold’s geometry in terms of the remaining
state-space variables functionally related to the chosen master pair. The first attempt to numerically solve these PDEsand
to compute NNMs as invariant manifolds is that of Pesheck et al. [2]. PDEs were written in modal space and solved using
a Galerkin projection. In recent contributions, Touzé and co-workers [3] solved the same PDEs using finite differences
whereas Renson and Kerschen [4] used a specific finite elementmethod in configuration space.

In the presence of an internal resonance, a nonlinear coupling between two NNMs exists and the invariant manifold starts
to fold. The manifold presents a complex structure embeddedin the full phase space. The chosen parameterization
becomes inappropriate and fails to further describe the invariant surface. To circumvent this issue, Shaw and co-workers
introduced the concept of multi-modal NNMs where the invariant manifold is described by multiple pairs of master
variables [5]. While effective, this method still assumes anexplicit and global description of the NNM which does not
completely solve the intrinsic parameterization issue. Inthis paper, an alternative method for NNM calculation is explored.
Originally proposed by Doedel [7] in the general context of two-dimensional (un)stable invariant manifold calculations,
the method locally grows the manifold using successive boundary value problems (BVPs). This allows to compute the
NNM beyond any parameterization limit and therefore in the presence of nonlinear modal interactions.

Formulation of the boundary value problems

Using the general first-order form of the equation of motion,ż = g(z), a trajectory on the invariant manifold (i.e., the
NNM) is defined as

z′(t) = Tg(z(t)), (1)

z(0) = z0 + r0(cos(θ)ψ1
+ sin(θ)ψ

2
), (2)

where(.)′ denotes the first derivative with respect to the normalized time t ∈ [0, 1], r0 is a small parameter, andT is
the final time. Equations (1)-(2) parameterize usingθ a family of trajectories that start on a small ellipse aroundthe
equilibrium pointz0. If the vectorsψ

1
andψ

2
are chosen so as to define, at the equilibrium pointz0, the tangent space

of a NNM, the trajectories will describe this NNM.

The computation strategy proceeds in two steps. First, a trajectory on the manifold is grown using continuation withT
as free parameter andθ arbitrarily fixed atθ = θ0 [7]. For a stable (resp., unstable) system,T < 0 (resp.,T > 0),
and the computation of the first trajectory is similar to backward time integration. In this problem, Equations (1) and (2)
are solved forZ which groups all the points that discretize the trajectory.During the continuation process, a function
measuring the arclength of the trajectory as

L =

∫
1

0

T ‖g(z)‖ ds. (3)

is monitored by the algorithm, and the continuation is stopped when the trajectory reaches a user-defined lengthL̄. Equa-
tion (2) together with the conditionL = L̄ define a BVP that constrains the initial and final conditions of the trajectory. A
second continuation step, withθ as parameter, is then performed. All the points that discretize the trajectory are continu-
ously varied to cover the complete invariant manifold. For this last step,T is free to vary. Other stopping criteria than the
arclength of the trajectory can be employed. We refer to [7] for additional details about the original method.
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The different continuation steps are performed with the software AUTO [6] which solves BVPs using the method of
orthogonal collocation with piecewise polynomials. The recourse to the BVP approach has the advantage of being com-
patible with the subsequent continuation steps. The latterare important because trajectories can be very sensitive with
respect to the parameterθ. A continuation approach which controls the step size inθ with respect to the variation of all
the trajectory (i.e.,Z) guarantees a nice covering of the invariant surface. Moreover, stable manifolds become unstable in
backward time, and the recourse to BVP approach is thus arguably more robust than direct time integration.

The method is applied to the 2DOF system

ẍ1 + 0.3(ẋ1 − ẋ2) + (2x1 − x2) + 0.5x3

1
= 0,

ẍ2 − 0.3(ẋ1 − 2ẋ2) + (2x2 − x1) = 0. (4)

Figure 1(a) presents a three-dimensional view of the secondNNM of the system computed with the present approach.
The invariant surface is displayed in blue. It is covered with a collection of 2012 trajectories. For comparison, the
solution computed with a finite-element-based (FE) algorithm developed in [4] for solving the manifold’s governing
PDEs (obtained with an explicit manifold parameterization) is also display in orange. Around the origin, both methods
agree very well. However, for larger motion amplitudes, themaster coordinates(x1, y1) employed by the FE method
are not adequate anymore to represent the manifold. This is illustrated in Figure 1(b) which presents a projection of two
trajectories computed using the BVP approach. The trajectories are getting very close to each other in two specific regions
pointed out by arrows. The invariant surface becomes almostvertical, which limits its explicit representation using the
pair (x1, y1). Conversely, the results of the BVP approach captured the manifold without limitation.

Conclusions

In this paper, an alternative approach for damped NNM computation is investigated. This BVP approach does not assume
any explicit parameterization and provides a means to calculate invariant manifolds with complex topologies and thus,
for instance, in the presence of internal resonances. A distinctive advantage of the present approach is to provide a direct
access to the dynamics on the NNM, and, in turn, to the amplitude-frequency dependence of the NNM.
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Figure 1: Second NNM of the 2DOF system. (a) The present approach (in blue) is compared to the results of [4] in orange.
(b) top view in the master coordinates’ plane of the FEM. Solid and dashed lines are used to distinguish two trajectories
computed using the BVP formulation.
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