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Abstract Nonlinear vibrations of thin rectangular plates are considered, using the von Kármán equations in order to take
into account the effect of geometric nonlinearities. Solutions are derived through an expansion over the linear eigenmodes
of the system for both the transverse displacement and the Airy stress function, resulting in a series of coupled oscillators
with cubic nonlinearities, where the coupling coefficients are functions of the linear eigenmodes. A general strategy for
the calculation of these coefficients is outlined, and the particular case of a simply supported plate with movable edges
is thoroughly investigated. To this extent, a numerical method based on a new series expansion is derived to compute
the Airy stress function modes, for which an analytical solution is not available. It is shown that this strategy allows the
calculation of the nonlinear coupling coefficients with arbitrary precision, and several numerical examples are provided.
Symmetry properties are derived to speed up the calculation process and to allow a substantial reduction in memory
requirements. Finally, analysis by continuation allows an investigation of the nonlinear dynamics of the first two modes
both in the free and forced regimes. Modal interactions through internal resonances are highlighted, and their activation
in the forced case is discussed, allowing to compare the nonlinear normal modes (NNMs) of the undamped system with
the observable periodic orbits of the forced and damped structure.

1 Introduction

Plates elements are commonly found in a variety of contexts in structural mechanics. An understanding of their vibra-
tional properties is crucial in many contexts, e.g. fluid-structure interaction problems, plate and panel flutter in aeronautics
[13], energy harvesting of fluttering flexible plates [18], piezoelectric and laminated plates [15,21], as well as their cou-
pling with electro-magnetic and thermal fields [22]. When the plates are thin, vibration amplitudes can easily attain the
same order of magnitude as the thickness. In this case the nonlinear geometric effects cannot be neglected, resulting in
a rich variety of dynamics [38,2]. Examples can be given ranging from weakly to strongly nonlinear cases: nonlinear
vibrations of plates with moderate nonlinearity [45,2], fluid-structure interaction problems [24], and the transition from
periodic to chaotic vibrations [37,4,50]. Aside from typical engineering problems, the chaotic dynamics exhibited by
thin plates excited at large amplitudes finds application in the field of musical acoustics, as it accounts for the bright and
shimmering sound of gongs and cymbals [28,12,7,6]. It was pointed out recently, from the theoretical, numerical and ex-
perimental viewpoints, that the complex dynamics of thin plates vibrating at large amplitudes displays the characteristics
of wave turbulence systems and thus it should be studied within this framework [20,9,34,35,49].

A widely used model in nonlinear plate modeling is due to von Kármán [54]. This model takes into account a
quadratic correction to the longitudinal strain, as compared to the classical linear plate equation by Kirchhoff [16,38,46,
33]. The type of nonlinearity introduced is thus purely geometrical. The von Kármán equations are particularly appealing
because they describe a large range of phenomena while retaining a relatively compact form, introducing a single bilinear
operator in the classic linear equations by Kirchhoff.

Pioneering analytical work in the analysis of rectangular thin plate vibrations with geometrical nonlinearities was
carried out in the 1950s by Chu and Herrmann [17], demonstrating for the first time the hardening-type nonlinearity that
has been confirmed by numerous experiments; see e.g. [27,1]. Restricting the attention to the case of rectangular plates,
the work by Yamaki [55] confirms analytically the hardening-type nonlinearity for forced plates. The case of 1:1 internal
resonance for rectangular plates (where two eigenmodes have nearly equal eigenfrequencies) has been studied by Chang
et al. [14], and by Anlas and Elbeyli [3]. Parametrically excited nearly square plates, also displaying 1:1 internal reso-
nance, have also been considered by Yang and Sethna [56]. All these works focus on the moderately nonlinear dynamics
of rectangular plates where only a few modes (typically one or two) interact together. In these cases, the von Kármán
plate equations are projected onto the linear modes and the coupling coefficients are computed with ad hoc assumptions
that appear difficult to generalize. Finite element methods have also been employed—see e.g. the work by Ribeiro et al.
[42,43,44], and Boumediene et al. [10] to investigate the nonlinear forced response in the vicinity of a eigenfrequency.

a Unité de Mecanique, ENSTA - ParisTech, 828 Boulevard des Maréchaux, Palaiseau, France · b James Clerk Maxwell Building, University of
Edinburgh, Scotland



2 Michele Ducceschi a et al.

Recently, numerical simulations of more complex dynamical solutions, involving a very large number of modes in the
permanent regime, have been conducted, in order to simulate the wave turbulence regime and to reproduce the typical
sounds of cymbals and gongs. For that, Bilbao developed an energy-conserving scheme for finite difference approxi-
mation of the von Kármán system [5], which allows the study of the transition to turbulence [49] and the simulation of
realistic sounds of percussive plates and shells [7,6]. Spectral methods with a very large number of degrees of freedom
have also been employed in [20] to compare theoretical and numerical wave turbulence spectra.

This works aims at extending the possibilities of the modal approach to simulate numerically the nonlinear regime
of rectangular plates. Instead of introducing ad-hoc assumptions, a general model is here presented; this model retains a
vast number of interacting modes, making possible the investigation of the global dynamics of the plate while making it
very precise. Within this framework the advantages of the modal approach are retained (accuracy of linear and nonlinear
coefficients, flexibility in setting modal damping terms in order to calibrate simulation with experiment, ...) and its
limitations are overcome: there is no restriction with respect to the amount of modes that one wants to keep. In this work
the possibility of simulating dynamical solutions with a large number (say a few hundred) of modes is detailed. The case
under study is that of a simply supported plate with in-plane movable edges. For this particular choice, the transverse
modes are readily obtained from a double sine series [25]; the in-plane modes, however, are not available in closed form.
Interestingly, it was shown in [46] that the problem of finding the in-plane modes for the chosen boundary conditions
corresponds mathematically to the problem of finding the modes of a fully clamped Kirchhoff plate. To this extent, a
general strategy proposed in [30] is here adapted to find the clamped plate modes. To validate the results, the resonant
response of the plate in the vicinity of the first two modes is numerically investigated, for vibration amplitudes up to three
to four times the thickness. Secondly, a thorough comparison of the modal approach with the finite difference method
developed in [5,6] is also given. Calculation of the the free response allows the study of the first two nonlinear normal
modes of the plate, and to highlight the complicated dynamics displayed at large amplitudes. Modal couplings, resonant
and non-resonant, are investigated. Finally the forced response is also computed and the link between the backbone curve
and the forced response is investigated, showing the role of internal resonance and damping.

2 Model Description

Plates whose flexural vibrations are comparable to the thickness are most efficiently described by the von Kármán
equations [39,17,46,33]. In the course of this paper, a rectangular plate of dimensions Lx, Ly and thickness h (with
h� Lx, Ly) is considered. The plate material is homogeneous, of volume density ρ , Young’s modulus E and Poisson’s
ratio ν . Its flexural rigidity is then defined as D = Eh3/12(1−ν2). The von Kármán system then reads

D∆∆w+ρhẅ+ cẇ = L(w,F)+δ (x−x0) f cos(Ω t), (1a)

∆∆F =−Eh
2

L(w,w), (1b)

where ∆ is the Laplacian operator, w = w(x,y, t) is the transverse displacement and F = F(x,y, t) is the Airy stress
function. The equations present a viscous damping term cẇ and a sinusoidal forcing term δ (x−x0) f cos(Ω t) applied at
the point x0 on the plate. The damping will take the form of modal viscous damping once the equations are discretised
along the normal modes. The bilinear operator L(·, ·) is known as von Kármán operator [46] and, in Cartesian coordinates,
it has the form of

L(α,β ) = α,xxβ,yy +α,yyβ,xx−2α,xyβ,xy, (2)

where ,s denotes differentiation with respect to the variable s. This operator, although itself bilinear, is the source of the
nonlinear terms in the equations. All the quantities are taken in their natural units, so that Eq. (1a) and Eq. (1b) have the
dimensions, respectively, of kg m−1 s−2 and kg m−2 s−2. The term L(w,w) in eq. (1b) is quadratic in w and its derivatives,
so once the solution for F is injected into (1a), a cubic nonlinearity will appear, leading to a Duffing-type set of coupled
ordinary differential equations (ODEs).

2.1 Linear Modes

The strategy adopted here to solve the von Kármán system makes use of the linear modes for the displacement w and
Airy stress function F . This strategy is particularly useful for investigating the free and forced vibrations of the system, in
the sense that it allows for the reduction of the dynamics of the problem from an infinite number of degrees of freedom to
a finite one. The eigenmodes for the displacement w will be denoted by the symbol Φk(x,y) and thus w(x,y, t) is written
as

w(x,y, t) = Sw

Nw

∑
k=1

Φk(x,y)
‖Φk‖

qk(t), (3a)

where Φk is such that

∆∆Φk(x,y) =
ρh
D

ω
2
k Φk(x,y). (3b)
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Note that the sum in eq. (3a) is terminated at Nw in practice. The linear modes can be defined up to a constant of
normalisation that can be chosen arbitrarily. For the sake of generality, Sw here denotes the constant of normalisation of
the function Φ̄ = Sw

Φk(x,y)
‖Φk‖

. The norm is obtained from a scalar product < α,β > between two functions α(x,y) and
β (x,y), defined as

< α,β >=
∫

S
α β dS −→ ‖Φk‖2 =< Φk,Φk > . (4)

Eq. (3b) is the eigenvalue problem definition, and it is a Kirchhoff-like equation for linear plates.
The Airy stress function is expanded along an analogue series:

F(x,y, t) = SF

NF

∑
k=1

Ψk(x,y)
‖Ψk‖

ηk(t), (5a)

∆∆Ψk(x,y) = ζ
4
k Ψk(x,y). (5b)

Boundary conditions for w and F will be specified in the next subsection. The linear modes so defined are orthogonal
with respect to the scalar product, and are therefore a suitable function basis [25]. Orthogonality between two functions
Λm(x,y),Λn(x,y) is expressed as

< Λm,Λn >= δm,n‖Λm‖2, (6)

where δm,n is the Kroenecker delta.
Once the linear modal shapes are known, system (1) may then be reduced to a set of ordinary differential equations,

each referring to the k−th modal coordinate qk(t), k = 1, ...,Nw. Nw represents the order of the system of ODEs.

2.2 Reduction to a set of ODEs

The introduction of the expansion series (3a) and (5a) allows for the decomposition of the original von Kármán problem
onto a set of coupled, nonlinear ordinary differential equations (ODEs). As a starting point, eq. (5a) is substituted into
eq. (1b) to obtain

ηk =−
Eh
2ζ 4

k

S2
w

SF
∑
p,q

qpqq

∫
SΨkL(Φp,Φq)dS
‖Ψk‖‖Φp‖‖Φq‖

. (7)

Integration is performed over the area of the plate, and the orthogonality relation is used. Injecting eq. (3) and (7) into
eq. (1a) gives

ρhSw ∑
k

ω2
k Φk

‖Φk‖
qk +ρhSw ∑

k

Φk

‖Φk‖
q̈k + cSw ∑

k

Φk

‖Φk‖
q̇k

=−EhS3
w

2 ∑
n,p,q,r

1
ζ 4

n

L(Φp,Ψn)

‖Ψp‖‖Φn‖

∫
SΨnL(Φq,Φr)dS
‖Φq‖‖Φr‖‖Ψn‖

qpqqqr +δ (x−x0) f cos(Ω t). (8)

Then the equation is multiplied on both sides by Φs and integrated over the surface of the plate. The result is

q̈s +ω
2
s qs +2χsωsq̇s =−

ES2
w

2ρ

n

∑
p,q,r

Hn
q,rE

s
p,n

ζ 4
n

qpqqqr +
Φs(x0)

‖Φs‖ρhSw
f cos(Ω t), (9)

where a modal viscous damping is introduced in the equation, scaled by χs = c/(2ρhωs) (a dimensionless parameter). A
practical advantage of the modal description is that χs can be estimated experimentally for a large number of modes [11]
and so the modal approach allows the simulation of complex frequency dependent damping mechanisms with practically
no extra effort.

Two third order tensors, Hn
q,r and Es

p,n appear in eq. (9). These are defined as

Hn
p,q =

∫
SΨnL(Φp,Φq)dS
‖Ψn‖‖Φp‖‖Φq‖

, Es
r,n =

∫
S ΦsL(Φr,Ψn)dS
‖Φr‖‖Φs‖‖Ψn‖

. (10)

It is seen that the ODEs are cubic with respect to the variables qs, so a fourth order tensor Γ can conveniently be
introduced in the equations, as

Γ
s

p,q,r =
NF

∑
n=1

Hn
p,qEs

r,n

2ζ 4
n

. (11)

Once the tensor Γ is known, one is left with a set of coupled ODEs that can be integrated in the time variable using
standard integration schemes. Alternatively, continuation methods can be employed to derive a complete bifurcation
analysis of the nonlinear dynamics.
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2.3 Boundary Conditions

To recover the von Kármán equations, one may define the potential and kinetic energies of a bent plate, in the following
way:

V =
3

∑
i,k=1

h
2

∫
S

σikuikdS, (12a)

T =
ρh
2

∫
S

ẇ2dS, (12b)

U =
2

∑
i,k=1

h
2

∫
S

σ̃ikũikdS, (12c)

where V,T are the potential and kinetic energies for pure bending, and U is the potential energy for the stretching in the
in-plane direction. Note that two strain tensors (uik and ũik) and two stress tensors (σik and σ̃ik) are introduced, in order
to account for the pure bending and in-plane energies; note also that the indices of the in-plane tensors can take only two
values. Suppose that the displacement vector is u = (ux,uy,w) defined in a Cartesian set of coordinates x = (x,y,z). The
symmetric strain tensor uik is linear, and can be given in terms of the vertical displacement w as follows [23]:

uxx =−z∂
2w/∂x2; uyy =−z∂

2w/∂y2; uxy =−z∂
2w/∂x∂y; uzz =

ν

1−ν
z(∂ 2w/∂x2 +∂

2w/∂y2), (13)

and zero for all the other components. The stress-strain relationships are also linear, as the material is assumed to be, and
read

σik =
3

∑
l=1

E
1+ν

(
uik +

ν

1−2ν
ull δik

)
. (14)

The symmetric, two-dimensional strain tensor ũik is nonlinear, and given by

ũik =

[
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
+

1
2

∂w
∂xi

∂w
∂xk

]
, (15)

and the stress-strain relationships for the in-plane stretching are given as

σ̃xx =
E

1−ν2 (ũxx +ν ũyy); σ̃yy =
E

1−ν2 (ũyy +ν ũxx); σ̃xy =
E

1+ν
ũxy; (16)

and zero for all the other components. The Airy stress function F is introduced as

σ̃xx = ∂
2F/∂y2; σ̃yy = ∂

2F/∂x2; σ̃xy =−∂
2F/∂x∂y. (17)

Note that the only nonlinear term that appears in the definitions of the energies is the quadratic factor in ũik. It is possible
to make use of Hamilton’s principle, stated in the form

∫ t1

t0
δ (T −V −U)dt = 0, (18)

to recover the equations of motion (1) plus the boundary conditions. These can be categorised as follows [46] (here ,n, ,t
denote differentiation along the normal and tangent directions respectively):

– In-plane direction
– free edge: F,nt = F,tt = 0
– immovable edge (w = 0 along the boundary): F,nn−νF,tt = F,nnn +(2+ν)F,nnt = 0

– Edge rotation
– rotationally free: w,nn +νw,tt = 0
– rotationally immovable w,n = 0

– Edge vertical translation
– free: w,nnn+(2−ν)w,ntt − 1

D (F,ttw,n−F,ntwt) = 0
– immovable w = 0
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A corner condition arises as well, and it is

w,xy = 0 at corners (19)

This constraint has to be imposed as an extra condition only when the edge is transversely free. It is evident that the
boundary conditions must be fulfilled by all the linear modes Φk, Ψk that appear in the expansions (3), (5). For the
transverse function, simply supported boundary conditions are considered for the remainder of the paper. These describe
a fixed, rotationally free edge and permit a simplified analysis because a solution is readily available:

Φk = sin
(

k1πx
Lx

)
sin
(

k2πy
Ly

)
; ω

2
k =

D
ρh

[(
k1π

Lx

)2

+

(
k2π

Ly

)2
]2

. (20)

For the in-plane direction, a free edge is considered. However, a different form of the boundary conditions will be used,
i.e. F = F,n = 0. It is evident that the assumed conditions are sufficient to satisfy the proper conditions F,nt = F,tt = 0.
Note that, mathematically speaking, the assumed conditions on F turn the stress function problem into a transversely
clamped plate problem.

The selected boundary conditions are also known as simply supported with movable edges [1].

3 A solution for the clamped plate

As shown in the previous section, the eigenvalue problem for F with the chosen boundary conditions is equivalent to that
of a clamped Kirchhoff plate. To this extent, the Galerkin method is employed, as an analytical solution for the problem
is not available.

The starting point of the Galerkin method is to express the eigenfunction Ψk of eq. (5) as a series of this form

Ψk(x,y) =
Nc

∑
n=0

ak
nΛn(x,y), (21)

where Λn(x,y) are the expansion functions depending on some index n, and ak
n are the expansion coefficients: these

depend on the index n and of course on the index k. The total number of expansion functions is Nc, and obviously the
accuracy of the solution improves as this parameter is increased. The Λ ’s must be carefully selected from the set of all
comparison functions [48]; this is to say that they need to satisfy the boundary conditions associated with the problem,
that they are at least p times differentiable (where p is the order of the PDE), and they form a complete set over the
domain of the problem. Completeness is quite a rather involved property to prove; however one generally resorts to
variations of sine or cosine Fourier series, for which completeness follows directly from the Fourier theorem.

For this work, the expansion functions were selected according to a general method proposed in [30], where it is
shown how a Kirchhoff plate problem can be solved by means of a double modified Fourier cosine series, i.e.

Λn(x,y) = Xn1(x)Yn2(y) =
(

cos
(

n1πx
Lx

)
+ pn1(x)

)(
cos
(

n2πy
Ly

)
+ pn2(y)

)
, (22)

where pn1(x), pn2(y) are fourth order polynomials in the variables x and y, and depending as well on the integers n1, n2.
Note that the order of the polynomials corresponds to the order of the PDE. The role of the polynomial is to account for
possible discontinuities at the edges due to the boundary conditions. [30] is mainly concerned with a general solution
strategy, where the plate is equipped with linear and rotational springs at the edges to simulate the effect of different
boundary conditions. In [30] the polynomials of eq. (22) do not appear explicitly, as they are obtained through matrix
inversion in order to comply with the general form of the boundary conditions. In turn, these matrices present the values
of all the springs, and the general expression of the Λ ’s is rather involved. However, given that the focus here is on the
clamped plate only, the analytical limit of all the springs having infinite stiffness is taken, so that an explicit form for
(22) can indeed be recovered, and this is:

Xn1(x) = cos
(

n1πx
Lx

)
+

15(1+(−1)n1)

L4
x

x4− 4(8+7(−1)n1)

L3
x

x3 +
6(3+2(−1)n1)

L2
x

x2−1, (23)

and similarly for Yn2(y). Note that for the clamped plate, satisfaction of the boundary conditions is essential for a fast
converging solution. This is because the conditions at the edges for the clamped plate are geometrical, as they prescribe
the vanishing of the displacement and of the slope. Thus, an expansion function that does not satisfy these conditions
could lead to slow converging solutions, if not to wrong results.

It is seen that this expansion satisfies the clamped plate conditions, but not the differential equation. It is possible to
show however that one particular choice for the expansion coefficients ak

n will render the function Ψk an eigenfunction
for the problem. The Galerkin method describes how to build up stiffness and mass matrices in order to calculate the
coefficient vector ak

n and the corresponding eigenfrequency ζ 4
k . For the problem (5b), these matrices are

Ki j =
∫

S
[∆ Λi ∆ Λ j−L(Λi,Λ j)]dS, Stiffness Matrix (24a)
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Ψ1(x, y)

Ψ3(x, y)

Ψ2(x, y)

Ψ4(x, y)

x

x x

x
y y

yy

Fig. 1 First four modes for the clamped plate, ξ = 2/3.

Mi j =
∫

S
Λi Λ j dS, Mass Matrix (24b)

where L(·, ·) is the von Kármán operator. Note that the integrals can be calculated analytically, because of the simple
form of the expansion function. Explicit forms of the integrals are presented in appendix A. Then

Ka = ζ
4Ma, (25)

which is the required eigenvalue problem that leads to the expansion coefficients and the eigenvalues.

3.1 Numerical Results for the Clamped Plate

In this section, the results obtained by Galerkin’s method are compared to the classical results found in Leissa’s tables
[29]. A finite difference scheme (FD) developed by Bilbao [5] is as well used as a benchmark. A useful parameter in
plate problems is the aspect ratio, here defined as Lx/Ly and denoted by the symbol ξ . Assume that two plates present
the same aspect ratio: then it is straightforward to show that the quantity ζ 2LxLy is constant for the two plates, where ζ

is defined in eq. (5b) (thus making ζ 2LxLy a nondimensional parameter). As a first step, the rate of convergence of the
eigenfrequencies is proposed in table 1. The plate has an aspect ratio of 2/3. Nc denotes the number of modes kept in the
expansion (21). Note that convergence for the first 100 eigenfrequencies is obtained up to the fifth significant digit when

Table 1 Convergence of clamped plate frequencies, ζ 2
k LxLy, ξ = 2/3

Nc

k 25 100 144 255 400 484
1 40.509 40.508 40.508 40.508 40.508 40.508
2 62.563 62.556 62.556 62.556 62.556 62.556
3 99.193 99.187 99.187 99.186 99.186 99.186
4 99.790 99.787 99.783 99.783 99.783 99.783
5 119.75 119.71 119.71 119.71 119.71 119.71
20 476.05 359.60 359.58 359.57 359.57 359.57
50 - 859.52 839.38 839.31 839.31 839.31

100 - 2439.9 1669.7 1574.3 1500.3 1500.3

Nc = 400. This corresponds to a calculation time of less than 10 seconds in MATLAB on a standard machine equipped
with an Intel Core i5 CPU 650 @ 3.20GHz, and a memory of 4GB. In table 2, the results obtained by Galerkin’s method
are compared to those found in Leissa and as well as to the outcome of the FD scheme. For this, the plate parameters
have been set as: Lx = 0.4 m, Ly = 0.6 m, ρ = 7860 kg/m3, ν = 0.3, h = 0.001 m, E = 2 · 1011 Pa. The FD scheme
employs 241× 161 discretisation points, so that ∆x∆y

S = 2.6 · 10−5. Even though Leissa’s book represents one of the
main references in the area of plate eigenmodes and frequencies, its results are somehow outdated, being about 40 years
old. Thus, discrepancies between the presented Galerkin’s method and the numbers from Leissa’s book are not at all
concerning. On the other hand, it is known that FD schemes converge at a slower rate than a pure modal approach. This
is a consequence of the fact that FD schemes rely on discrete grid meshes. Convergence for the first eigenfrequencies
for the plate using the FD scheme is presented in table 3. Note that the eigenfrequencies tend to converge to the same
values as the Galerkin’s method. However, the calculation time in MATLAB for a mesh grid of 280× 419 points is
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Table 2 Comparison of clamped plate frequencies, ζ 2
k LxLy, ξ = 2/3

Source

k Galerkin
(Nc = 400) Leissa FD (241×161)

1 40.51 40.51 40.05
2 62.56 62.58 61.93
3 99.19 98.25 98.00
10 208.0 207.9 205.5
20 359.6 - 355.32

Table 3 Convergence of clamped plate frequencies, FD scheme, ζ 2
k LxLy, ξ = 2/3

Grid Points

k 36×54 51×76 114×171 161×241 228×342 280×419
1 38.539 39.094 39.862 40.048 40.182 40.242
2 59.889 60.638 61.682 61.934 62.115 62.196
3 93.993 95.484 97.509 97.995 98.343 98.499
4 95.768 96.914 98.491 98.865 99.134 99.253

10 197.00 200.20 204.48 205.49 206.22 206.54

Table 4 Convergence of clamped plate frequencies, ζ 2
k LxLy, ξ = 1 (square plate)

Nc

k 25 100 144 255 400 484
1 35.986 35.985 35.985 35.985 35.985 35.985
2 73.398 73.394 73.394 73.394 73.394 73.394
3 73.398 73.394 73.394 73.394 73.394 73.394
4 108.24 108.22 108.22 108.22 108.22 108.22
5 131.60 131.58 131.58 131.58 131.58 131.58
20 376.42 371.37 371.35 371.35 371.34 371.34
50 - 805.89 805.42 805.35 805.34 805.34

100 - 2217.0 1588.7 1546.2 1546.1 1546.1

much slower (about 20 minutes). Table 4 presents the eigenfrequencies for the square plate, using Galerkin’s method.
It is possible to appreciate the same rate of convergence as for the previous case. Again, the results are compared with
Leissa and to the FD scheme outcome (161× 161 grid points) in table 5. Plots of some clamped plate eigenmodes are
presented in figure 1. These results show that the Galerkin method, with the carefully chosen expansion (23), is indeed

Table 5 Comparison of clamped plate frequencies, ζ 2
k LxLy, ξ = 1 (square plate)

Source

k Galerkin
(Nc = 400) Leissa FD (161×161)

1 35.98 35.99 35.54
2 73.39 73.41 72.49
3 73.39 73.41 72.49
4 108.2 108.3 106.9
20 371.3 - 366.7

a fast converging strategy for the calculation of the eigenfrequencies, as it allows for precisely computing hundreds of
modes within seconds.

4 The nonlinear coupling coefficients

4.1 Symmetry Properties

In this section symmetry properties for the coupling coefficients Γ that appear in eq. (11) are presented. First, it is obvious
that

H i
p,q = H i

q,p, (26)
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because of the symmetry of the operator L(·, ·). Secondly, integrating by parts the integral in the definition of E in eq.
(10) gives

‖Ψq‖‖Φn‖‖Φp‖En
p,q =

∮ [
ΦnΨq,yΦp,xx−2ΦnΨq,xΦp,xy−Ψq

∂

∂y
(ΦnΦp,xx)

]
y ·n dΩ+

+
∮ [

ΦnΨq,xΦp,yy +2Ψq
∂

∂y
(ΦnΦp,xy)−Ψq

∂

∂x
(ΦnΦp,yy)

]
x ·n dΩ +

∫
ΨqL(Φp,Φn)dS. (27)

It is easy to see that the selected boundary conditions make the surface integrals vanish, so that the following property
holds

En
p,q = Hq

p,n. (28)

In this way, the tensor Γ may then be conveniently written as

Γ
s

p,q,r =
NF

∑
n=1

Hn
p,qHn

r,s

2ζ 4
n

. (29)

Note that the tensor H as defined in eq. (10) is divided by the norms of the modes, so the value of Γ is independent of the
particular choice for the constants Sw, SF in eqs. (3b), (5b). Basically the symmetry properties for Γ mean the following
sets of indices will produce the same numerical value:

(s, p,q,r), (r, p,q,s), (s,q, p,r), (r,q, p,s), (q,r,s, p), (p,r,s,q), (q,s,r, p), (p,s,r,q). (30)

These symmetry properties can lead to large memory savings when the number of transverse and in-plane modes is a
few hundred.

4.2 Null Coupling Coefficients

For the sake of numerical computation, it would be interesting to know a priori which coupling coefficients are null. In
actual fact, empirical observations of the Γ tensor suggest that only a smaller fraction of coefficients is not zero. As an
example, consider table 6 where the nonzero values for the coefficients Γ 1

5,q,r for a plate with ξ = 2/3 were collected
(with p,q = 1 ...10): the table presents only 24 nonzero coefficients out of a total of 100. These coefficients measure the
amount of interaction between the different transverse modes. As a matter of fact, the modes can be classified according
to the symmetry with respect to the x and y axis where the origin is placed at the centre of the plate. Four families
exist, and these are: doubly symmetric (SS), antisymmetric-symmetric (AS and SA) and doubly antisymmetric (AA).
For instance, the first mode is a doubly-symmetric mode because it presents one maximum at the centre of the plate,
and is thus symmetric with respect to the two orthogonal directions departing from the centre of the plate in the x and
y directions, whereas mode 5 is AA. The first sixteen modes for the case under study may be classified in the following
groups:

◦ SS: 1,4,8,11,12
◦ SA: 2,7,9,14,16
◦ AS: 3,6,13,15
◦ AA: 5,10

This list will become useful when interpreting the free vibration diagrams of the next section. Remarkably, the number
of indices of the Γ coefficients (four) matches the number of modal shape sets. Table 6 presents the modal families to
which the interacting modes belong; observation of alike tables permits to state the following heuristic rule:

the indices (s, p,q,r) will give a nonzero value for Γ s
p,q,r if and only if modes s,p,q,r come all from distinct modal

shape groups or if they come from the same group two by two.

For example, the combinations (SS, SS, AS, SA) and (SS, SS, SS, AS) will definitely give a zero value; on the other
hand the combinations (SS, SS, SS, SS), (SS, AA, SS, AA) and (SS, AS, SA, AA) will give a nonzero value. A rigorous
mathematical proof is not carried out as it involves a rather lengthy development which is beyond the scope of the present
work. However, it has been numerically checked for a large number of Γ ’s involving a few hundred modes, providing an
exhaustive verification of this rule.

This rule, in combination with the previous remarks on symmetry, can be used to speed up the calculation of the
Γ tensor (for example by pre-allocating the zero entries when using a sparse matrix description). In some way, this
observation relates to the already noted property of von Kármán shells [47]. There, the coupling rules are actually more
involved, but they can be somehow more directly proved mathematically.
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Table 6 Nonzero Γ 1
5,q,r(LxLy)

3, ξ = 2/3, for q = 1 : 10, r = 1 : 10

value q r Modal Shape Groups value q r Modal Shape Groups
21.36 1 5 SS AA SS AA 27.55 6 2 SS AA AS SA

-21.75 1 10 SS AA SS AA 150.98 6 7 SS AA AS SA
48.46 2 3 SS AA SA AS 36.52 6 9 SS AA AS SA

7.55 2 6 SS AA SA AS -72.47 7 3 SS AA SA AS
122.11 3 2 SS AA AS SA 119.51 7 6 SS AA SA AS

-169.47 3 7 SS AA AS SA 56.36 8 5 SS AA SS AA
-69.44 3 9 SS AA AS SA -64.89 8 10 SS AA SS AA
56.71 4 5 SS AA SS AA 10.19 9 3 SS AA SA AS

9.8 4 10 SS AA SS AA 65.63 9 6 SS AA SA AS
3.1 5 1 SS AA AA SS -51.96 10 1 SS AA AA SS

144.68 5 4 SS AA AA SS 97.76 10 4 SS AA AA SS
46.47 5 8 SS AA AA SS 30.75 10 8 SS AA AA SS

4.3 A few words on the FD scheme

To validate the computational results for the Γ tensor, an FD scheme developed in [5] has been extensively used. In this
sense, the role of the discretised L operator in eq. (11) is central. For two discrete functions α , β defined over the plate
grid, the form for the discrete counterpart l(α,β ) has been selected as

l(α,β ) = δxxαδyyβ +δyyαδxxβ −2µx−µy−(δx+y+αδx+y+β ). (31)

The δ ’s are discrete derivative operators and the µ’s are averaging operators, as follows

δxx =
1
h2

x
(ex+−2+ ex−); δx+ =

1
hx

(ex+−1); µx− =
1
2
(ex−+1), (32)

where ex+ (ex−) is the positive (negative) shifting operator and hx is the step size along the x direction. Note that this
particular choice for the l operator is due to the fact that it produces an energy-conserving scheme, as explained exhaus-
tively in [5]. The eigenmodes are obtained by solving discrete counterparts of eqs. (3b) and (5b), thus a discrete double
Laplacian is needed. At interior points, it can be approximated by

δ∆�δ∆� = (δxx +δyy)(δxx +δyy) = ∆∆ +O(hxhy). (33)

Enforcing of boundary conditions (simply supported and clamped) is described in [6]. Once the modes are known, one
makes use of (31) to get the values of the coupling coefficients in eq. (11).

4.4 Numerical Results

In this subsection some numerical results are presented. It is somehow useful to note that the Γ ’s depend only on the
aspect ratio. In other words the quantity

Γ
s

p,q,r(LxLy)
3 (34)

is constant for all the plates sharing the same aspect ratio. Table 7 presents a convergence test for a plate of aspect ratio
ξ = 2/3. The convergence in this case depends on two factors: the first is the amount of stress function modes retained
in the definition of Γ (NF in eq. (11)); the second is the accuracy on the Airy stress function modes and frequencies
(quantified by the number Nc in eq. (21)). For clarity, in the following tables NF is always the same as Nc. It is seen
that a four-digit convergence up to the Γ 100

100,100,100 coefficient is obtained when NF = 484, and thus the convergence rate
for these coefficients is slower than that of the stress functions eigenfrequencies alone. For the FD scheme, convergence

Table 7 Convergence of coupling coefficients, Γ k
k,k,k(LxLy)

3, ξ = 2/3

NF

k 100 144 225 400 484 625
1 20.033 20.034 20.034 20.034 20.034 20.034
20 7.5605·103 9.4893·103 9.4960·103 9.4970·103 9.4975·103 9.4977·103

50 1.3928·104 1.3929·104 1.3937·104 1.3937·104 1.3937·104 1.3937·104

100 1.4847·104 2.7360·104 1.2413·105 1.3334·105 2.2100·105 2.2108·105

depends on the number of modes retained and also on the grid size. Thus, tables 8 and 9 present some values for NF = 100
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and NF = 200, respectively. Note that, contrary to what whappens for the eigenfrequencies, convergence for the coupling
coefficients is from above for FD and from below for the modal approach. It is also evident that a sufficiently large
number of stress modes has to be retained to calculate reasonable approximate values for the Γ ’s: failing to do so may
result in completely erroneous estimates (see for instance the last row of table 8 compared to the last row of table 9).

Table 8 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(LxLy)

3, ξ = 2/3, NF = 100

Grid Points

k 36×54 51×76 114×171 161×241 228×342 280×419
1 21.113 20.523 20.523 20.380 20.252 20.188
20 9.8904·103 9.7238·103 9.6364·103 9.5761·103 9.5218·103 9.4944·103

50 1.4542·104 1.4430·104 1.4319·104 1.4224·104 1.4124·104 1.4070·104

100 1.0864·104 8.2016·103 6.8281·103 5.9133·103 5.1224·103 4.7387·103

Table 9 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(LxLy)

3, ξ = 2/3, NF = 225

Grid Points

k 36×54 51×76 114×171 161×241 228×342 280×419
1 21.114 20.728 20.523 20.381 20.253 20.189
20 9.9634·103 9.7935·103 9.7035·103 9.6413·103 9.5851·103 9.5567·103

50 1.4552·104 1.4440·104 1.4329·104 1.4234·104 1.4134·104 1.4080·104

100 2.0268·105 2.0223·105 2.0227·105 2.0246·105 2.0271·105 2.0286·105
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5 Analysis of the periodic solutions

The nonlinear dynamics of the plate is now analysed in terms of periodic solutions. The periodic orbits of the conser-
vative system, also called the nonlinear normal modes (NNMs) [53] are first computed thanks to a pseudo arc-length
numerical continuation method implemented in the software AUTO [19]. The amplitude-frequency relationships (i.e. the
backbone curves) are exhibited for the first two modes up to 3-4 times the thickness, displaying a complicated network
of bifurcation branches generated by internal resonances and modal couplings. Secondly, the forced responses of the
damped plate are computed and their relationship with the backbone curve illustrated.

5.1 Mode 1
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Fig. 2 Backbone curve (principal branch) convergence for mode 1: Nw = 6 (black), Nw = 8 (red), Nw = 10 (grey), Nw = 14 (green), Nw = 16
(blue), Nw = 18 (purple).

5.1.1 Free Vibrations

Fig. 2 is an illustration of the backbone convergence, for mode 1. The backbone is the curve obtained by plotting
the maxima of the periodic solutions, in the case of undamped, unforced vibrations, which can be stable (continuous
lines) or unstable (dashed lines). Note that only the principal branch is represented, thus the figure does not take into
account the secondary branches departing from the bifurcation points. The figure presents the six backbones obtained
when Nw = 6,8,10,14,16,18. It is evident that the period of the vibration decreases as the amplitude increases, thus
the curves bend to the right in the diagram; this behaviour is known in the literature as hardening-type nonlinearity.
The backbone curves obtained for Nw = 14,16,18 are almost exactly superimposed showing the convergence of the
main solution branch for vibration amplitudes up to 4h. Note also that the cases Nw = 8,10 are exactly superimposed
because modes 9 and 10 do not belong to SS (the family of mode 1); hence the shape of the backbone does not change,
although the stability intervals do not coincide. No stable solutions are detected by AUTO for vibrations larger than
4h: this result is consistent with numerous experimental and numerical simulations of large amplitude vibrations of
plates; higher vibration amplitudes give way to unstable solutions, in quasiperiodic or turbulent regimes [49,50]. The
range of convergence of the backbone decreases when less modes Nw are considered; particularly for the case of Nw = 6
the backbone displays significant differences from the converged solution. In addition unstable solutions in this case
set in much earlier, leading to the conclusion that when Nw = 6 the backbone curve depicts an unrealistic scenario for
amplitudes larger than 1.8h. The principal branch for the cases Nw = 14, Nw = 16, Nw = 18 undergo an internal resonance
around ω/ω1 ≈ 1.27. This is a resonance between mode 1 and mode 11, and will be commented later. It is seen that
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the cases Nw = 16, Nw = 18 are perfectly superimposed, thus a total number of Nw = 16 modes is sufficient for full
convergence; hence this is the number of modes that will be considered in the remainder of the paper. Fig. 3 shows the
complete resonance scenario for mode 1, in other words it presents the backbone and the bifurcated branches. Fig. 3 is
basically a representation of the first NNM as a function of the frequency of vibration for the first mode. For clarity, only
the most significant modal coordinates are represented. Branches are denoted by the symbol Bi

k where the index i refers to
the branch number and k is the coordinate involved. Thus B1 is the main (backbone) branch, and B2, B3, ... are secondary
branches featuring a sudden loss of energy of q1 in favour of other nonlinearly resonant modes. The appearance of
internal resonance tongues due to the exchange of energy between modes at nonlinear frequencies of vibration has been
previously observed for systems involving a few degrees of freedom, or for continuous systems with local nonlinearities
[8,32,26,41]; in turn, these works show that NNM branches may fold in the presence of internal resonances. In this paper
internal resonance foldings in the NNM branches are reported for a continuous structure with distributed geometric
nonlinearity. The bifurcated branches are composed mainly by unstable states along intricate paths, and are difficult
to compute numerically when using continuation. Note however that the free NNM is a physical abstraction: when
damping and forcing are introduced in the system, most of the complicated details disappear, as it will be shown in the
next subsection.

Observing B1 before the first bifurcation point, it is easily seen that modes 4 (B1
4, green), 8 (B1

8, light green), 11
(B1

11, magenta) and 12 (not shown) bear a relatively important contribution. Here a typical nonresonant coupling is at
hand. As it can be deduced from section 4.2, the only non-vanishing coefficients Γ

p
1,1,1 with p = 1, ...,16 are obtained

for p = 1,4,8,11,12. These coefficients are of prime importance as they give rise to a term of the form Γ
p

1,1,1q3
1 in the

equation for qp. Thus when q1 is large, modes 4,8,11,12 acquire nonnegligible energy through the nonresonant coupling
terms Γ

p
1,1,1 which act on the modal equations as forcing terms. These coefficients have been referred to as invariant-

breaking terms because they have the property of breaking the invariance of the linear normal modes through modal
coupling [51,52]. The coupling in these cases is nonresonant because no commensurability relationship exists between
the frequencies of vibration.
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Fig. 3 (a): Free vibration diagram for mode 1, Nw = 16. (b), (c), (d): Bifurcated branches and internal resonances.

The first bifurcated branch is B2 and develops along a very narrow frequency interval between 1.2435 < ω/ω1 <
1.248. It is a very small branch and it is visible in fig.3(b) (B2

1) and fig.3(d) (B2
2). The modes involved in this bifurcation

are 1 and 2. It is evident that mode 2, so far quiescent, is activated by an internal resonance with mode 1. The order of
the internal resonance can be obtained from a temporal simulation of the system comprising Nw = 16 modes, fed at the
input by the maximum displacements and velocities for all the modal coordinates along B2. In this work, a fourth-order
Runge-Kutta scheme is used for the time integration, giving at the output the oscillation in time for all the modes in
the periodic regime. Fig. 4(a) represents modes 1 and 2 in the time domain on the point at ω/ω1 = 1.246 along the
branch B2. The figure shows that the period of vibration for mode 2 is exactly half the period of mode 1, resulting in
a 1:2 internal resonance. Note that starting the simulation on any other point of the same branch will lead to the same
resonance ratio.

In the next section it will be seen that the bifurcation giving rise to B2 is key to the dynamics of the driven damped
oscillations: this branch tends to occupy larger portions of the phase space as the forcing and damping terms increase,
modifying the local structure of the invariant NNM manifold.

Following the principal branch in fig. 3(b) one encounters a second bifurcation giving rise to B3. This is an interesting
branch where again quiescent modes are activated by internal resonances. Fig. 3(d) reveals that these are modes 2 (B3

2,
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Fig. 4 (a): Modes 1 (blue) and 2 (red) along B2 displaying 1:2 internal resonance. (b): Modes 1 (blue) and 2 (red) along B3 displaying 1:2
internal resonance. (c): Modes 1 (blue), 14 (grey) and 16 (black) along B3 displaying 1:10 internal resonance.

red), 14 (B3
14, grey) and 16 (B3

16, black). Note that the branch B3 emerges at ω/ω1 = 1.285 and first develops to the left
towards decreasing frequencies. The branch is characterised at first by a strong coupling between modes 1 and 2 (visible
in fig. 3(d)) and then by a coupling amongst modes 1,14 and 16. The order of the resonance can again be extrapolated
from a Runge-Kutta time-domain scheme fed with the AUTO output. This gives fig. 4(b) and (c) where it is seen that
modes 1 and 2 undergo a second 1:2 internal resonance, whereas modes 1-14 and 1-16 display a 1:10 internal resonance.
Thus the dynamics of this branch is again dominated by even-order internal resonances. The last branch is B4. This is
an improper labelling because this branch is actually the principal branch undergoing an internal resonance with mode
11 (B4

11, magenta). This branch is almost entirely unstable and the Runge-Kutta time domain simulation does not return
stable periodic solutions. There is no doubt however that the branch is activated by internal resonance between modes 1
and 11, given the rapid growth of the latter in the bifurcation diagram at the expense of mode 1.

The analysis of the first NNM revealed some important aspects of the nonlinear system: in particular it was shown
that the bifurcated branches are generated by even-order internal resonances which, in turn, break the symmetry of
the cubic nonlinearity possessed by the system. This symmetry-breaking bifurcation has already been observed for the
simple Duffing equation [31,40], as well as in systems with material nonlinearity [36]. Physically speaking, the most
important properties returned by the analysis of the free NNM are: (i) the loss of stability of the periodic solutions for
amplitudes above 3h; (ii) the pitchfork bifurcation giving rise to B2 presenting a strong coupling between modes 1 and
2. The next subsection will treat in some detail a few examples of forced-damped vibrations and it will be seen how the
shape of the NNM gets modified by the damping and forcing terms.

5.1.2 Forced-Damped Vibrations

In this section forced-damped vibrations are considered. The plate is forced with a sinusoid of maximum amplitude f
and frequency Ω (see eq. (9)) varied around the eigenfrequency of the first mode, ω1. In turn, damping and forcing
terms modify the shape of the invariant manifold corresponding to the NNM of the previous section. Internal resonances
change too: some are basically unseen by the modified NNM, whereas others play a major role.

The first case under study presents a forcing amplitude of f = 0.17 N, and a damping coefficient χi = 0.001 (same
for all modes). The result is pictured in fig. 5. In the figure, the forced branches are represented with the usual colouring
scheme (blue for mode 1 and red for mode 2) whereas the black lines are the branches from the Hamiltonian dynam-
ics. The point labelled G in fig. 5 corresponds to a pitchfork symmetry-breaking bifurcation, driven by the underlying
Hamiltonian dynamics and by the existence of the 1:2 internal resonance. The main branch becomes unstable in favour
of stable periodic orbits where both modes 1 and 2 are activated in a 1:2 internal resonance. Hence branch B2 reveals its
importance as it has a major effect in the damped-driven case. One can also notice that, for this small amount of damping,
the turning point J is located just before the resonant tongue along the original backbone curve.

In order to understand more deeply the role of the branch B2, two more cases of interest are portrayed in fig. 6 and
fig. 7. Here f = 1.36 N for both cases, and χi = 0.005 for fig. 6 and 0.001 for fig. 7. The first important remark is the
location of the pitchfork bifurcation along the main branch: q1/h = 1.899 for fig. 6 and q1/h = 1.824 for fig. 7. It is
seen that the invariant manifold of the Hamiltonian dynamics is largely affected by the damping and forcing terms: the
bifurcation G is located at very different points in the phase space when comparing free and forced-damped vibrations.
The 1:2 internal resonance giving rise to B2 becomes in the latter case a dominant part of the dynamics, taking up a large
portion of the phase space composed mainly of stable solutions. As a consequence, stable solutions are found on B2 at
amplitudes larger then 3h. In addition, there is no trace of the other bifurcations giving rise to B3, B4 in the Hamiltonian
dynamics. This observation leads to the conclusion that the free and forced-damped analyses are complementary: on one
hand, it is not straightforward to understand which bifurcations are key to the forced-damped vibrations when looking
solely at the Hamiltonian dynamics; on the other hand, the forced-damped system is more easily interpreted by making
use of the free vibrations diagrams. Hence, a complete scenario for the forced-damped vibrations cannot be obtained if a
preliminary analysis of free vibrations is disregarded.
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Mode 1: blue, Mode 2: red.

5.2 Mode 2

5.2.1 Free Vibrations

Fig. 8 shows the second NNM for Nw = 16. Convergence in this case is not shown for the sake of brevity; note however
that the convergence study gave results comparable to those of mode 1. Thus the same model including Nw=16 modes
is kept for the remainder of the study. Once again, one can notice that no stable solutions are found beyond a certain
amplitude limit, which is numerically found at 1.5h for mode 2. Actually, the principal branch loses its stability at the
appearance of the coupled branch. As for mode 1, some modes are activated by nonresonant coupling, and these are the
modes belonging to the same family as mode 2 (SA): the figure shows for clarity only modes 7 (B1

7, pink) and 9 (B1
9, dark

blue). The most salient feature of the dynamics is the internal resonance between modes 2 and 5: a time integration was
performed on B2 at ω/ω1 = 2.0515, leading to the solution visible in the inset of fig. 8 showing a 1:2 internal resonance.
Interestingly, this branch is almost entirely unstable, except on the interval 2.051 ≤ ω/ω1 ≤ 2.052. As for mode 1, the
Hamiltonian manifold will be modified when damping and forcing are introduced in the system.
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Fig. 7 Forced response for mode 1 with f = 1.36 N, χ = 0.001. G: pitchfork bifurcation point leading to the coupled solution; J turning point.
Mode 1: blue, Mode 2: red.
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Fig. 8 Backbone for mode 2 obtained when Nw = 16. Modes 7 (pink) and 9 (dark blue) are activated by the nonresonant coupling within the
SA family; mode 5 (brown) from the AA family is activated by 1:2 internal resonance (see inset).

5.2.2 Forced-Damped Vibrations

Examples of forced-damped solution are presented in fig. 9. The cases (a) and (b) present the same damping coefficient,
χi = 0.001, and the forcing values are, respectively, f = 1.2 N, f = 2.0 N. Both forcing values are sufficient to reach
amplitudes high enough to detect the internal resonance with mode 5. For case (a) the bifurcated branch remains almost
completely unstable, as for the Hamiltonian dynamics. When the forcing is high enough, however, stable solutions appear
along the interval 2.2 ≤ ω/ω1 ≤ 2.3. As a consequence, mode 2 possesses a secondary branch of stable periodic orbits
of amplitude greater than 1.5h, which was seen to be the limit of stability for the Hamiltonian manifold. As for mode 1,
it is seen that the introduction of forcing and damping may lead to extended stable solutions on the coupled branches.
Another case of interest is portrayed in fig.9(c). Here the maximum forcing is f = 3.2 N and the damping coefficient
is χi = 0.01. In this case the damping effects are so evident that the turning point is located away from the backbone.
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Fig. 9 Examples of forced-damped vibrations around the NNM for mode 2. (a): f = 1.2 N, χ = 0.001; (b): f = 2.0 N, χ = 0.001; (c): f = 3.2
N, χ = 0.01. Mode 2: red, Mode 5: brown.

Distortion is a typical effect of damping: the forced response does not fit tightly along the backbone and the turning point
moves away from it.

In turn, the analysis of the forced responses for mode 1 and 2 revealed some interesting aspects of the global dy-
namics: (i) symmetry breaking resonances are common and key to the dynamics of the dynamical response; (ii) stable
solutions on the coupled branches may reach higher amplitudes than the Hamiltonian manifold, for particular combina-
tions of damping and forcing factors.

6 Conclusions

The nonlinear dynamics of rectangular plates has been investigated. A robust numerical method has been developed to
obtain accurate modal solutions for a very large number of modes. In this sense, a fast converging solution strategy has
been derived for the calculation of the eigenmodes of a fully clamped plate (needed here to solve for the Airy stress
function of a plate in a nonlinear regime). Formal symmetry properties and coupling rules have been illustrated to allow
large computational and memory savings when calculating the coupling coefficients Γ ’s. Reference values for some of
these coefficients, previously unavailable in the case of a rectangular geometry, have been presented.

Free and forced vibrations have then been taken under consideration for the first two modes. For the first time, the
NNM branches of solution (conservative case) have been drawn out to very large amplitudes, showing the existence
of internal resonance branches. An important feature, the nonexistence of periodic solutions beyond some vibration
amplitude (4h for mode 1, 1.8h for mode 2) has been found. A thorough comparison of the Hamiltonian dynamics
with the forced-damped (observable) dynamics has been derived, in order to highlight: (i) the necessity of a preliminary
analysis of the free vibrations, (ii) the main differences one can expect between the NNMs of the conservative systems
and the observable periodic orbits of the forced-damped system. Simple features such as the shift of the turning point
from the backbone for large values of the damping, have been found. More interestingly, the importance of certain
internal resonance tongues (those with the simpler ratio) has been underlined, whereas other are mostly undetected in
the forced case. Finally it has been found that some coupled branches may override the amplitude limit of existence of
periodic solutions predicted by the backbone curve.

Even though the results presented here involve at most 16 modes, the numerical scheme developed is able to consider
a few hundred of them interacting together. The results shown here have been necessary to validate the model, which
will be used to undertake further study of more involved dynamical problems (i.e. wave turbulence or sound synthesis of
damped impacted plates for the reproduction of gong-like sounds).



Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations 17

References

1. M. Amabili. Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments. Computers and
Structures, 82(31-32):2587–2605, 2004.

2. M. Amabili. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, 2008.
3. G. Anlas and O. Elbeyli. Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation

in the presence of a one-to-one internal resonance. Nonlinear Dynamics, 30(1):1–28, 2002.
4. J. Awrejcewicz, V. A. Krysko, and A. V. Krysko. Spatio-temporal chaos and solitons exhibited by von Kármán model. I. J. Bifurcation
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41. M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J.-C. Golinval. Nonlinear normal modes, part II: Toward a practical computation

using numerical continuation techniques. Mechanical Systems and Signal Processing, 23(1):195 – 216, 2009.
42. P. Ribeiro. Nonlinear vibrations of simply-supported plates by the p-version finite element method. Finite Elements in Analysis and

Design, 41(9-10):911–924, 2005.
43. P. Ribeiro and M. Petyt. Geometrical non-linear, steady-state, forced, periodic vibration of plate, part I: model and convergence study.

Journal of Sound and Vibration, 226(5):955–983, 1999.
44. P. Ribeiro and M. Petyt. Geometrical non-linear, steady-state, forced, periodic vibration of plate, part II: stability study and analysis of

multimodal response. Journal of Sound and Vibration, 226(5):985–1010, 1999.



18 Michele Ducceschi a et al.

45. M. Sathyamoorthy. Nonlinear vibrations of plates: An update of recent research developments. Applied Mechanics Reviews, 49(10S):S55–
S62, 1996.

46. O. Thomas and S. Bilbao. Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry prop-
erties. Journal of Sound and Vibration, 315(3):569–590, 2008.
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49. C. Touzé, S. Bilbao, and O. Cadot. Transition scenario to turbulence in thin vibrating plates. Journal of Sound and Vibration, 331(2):412–

433, 2011.
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51. C. Touzé, O. Thomas, and A. Chaigne. Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear

normal modes. Journal of Sound and Vibration, 273(1-2):77 – 101, 2004.
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A Matrices for the Clamped Plate Problem

To set up the eigenvalue problem, eq. (25), one may proceed as follows. First, it is necessary to define the size of the square matrices Ki j , Mi j .
Suppose this size is A2×A2 (where A is an integer). Then, the indices n1, n2 for the expansion function (22) range from 0 to A−1. In this way,
the total number of eigenvalues calculated will be A2. Note that all the quantities that appear in the definition of the matrices are quadratic, so
one needs really four indices to define the i j entry in each matrix. Suppose these indices are (m,n) and (p,q). Then

K(i, j) =K(mn, pq) =
∫ Lx

0
X ′′m(x)X

′′
p (x)dx

∫ Ly

0
Yn(y)Yq(y)dy+

∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Y ′′n (y)Y

′′
q (y)dy+2

∫ Lx

0
X ′m(x)X

′
p(x)dx

∫ Ly

0
Y ′n(y)Y

′
q(y)dy

M(i, j) = M(mn, pq) =
∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Yn(y)Yq(y)dy

The integrals are

∫ Lx

0
X ′′m(x)X

′′
p (x)dx =


720/L3

x ; if m = p = 0
(π4m4−672(−1)m−768)/(2L3

x); if m = p 6= 0
0 if m or p = 0 and m 6= p
−24(7(−1)m +7(−1)p +8(−1)m(−1)p +8)/L3

x ; otherwise

∫ Lx

0
Xm(x)Xp(x)dx =



10Lx/7; if m = p = 0
67Lx/70− (−1)mLx/35−768Lx/(π

4m4)−672(−1)mLx/(π
4m4); if m = p 6= 0

3Lx((−1)p +1)(π4 p4−1680))/(14π4 p4); if m = 0 and p 6= 0
3Lx((−1)m +1)(π4m4−1680))/(14π4m4); if p = 0 and m 6= 0
−(Lx(11760(−1)m +11760(−1)p−16π4m4 +13440(−1)m(−1)p+
(−1)mπ4m4 +(−1)pπ4m4−16(−1)m(−1)pπ4m4 +13440))/(70π4m4)
−(Lx(13440m4 +11760(−1)mm4 +11760(−1)pm4 +13440(−1)m(−1)pm4))/(70π4m4 p4); otherwise

∫ Lx

0
X ′m(x)X

′
p(x)dx =



120/(7Lx); if m = p = 0
(768π2m2−47040(−1)m +35π4m4 +432(−1)mπ2m2−53760)/(70Lxπ2m2); if m = p 6= 0
(60((−1)p +1)(π2 p2−42))/(7Lxπ2 p2); if m = 0 and p 6= 0
(60((−1)m +1)(π2m2−42))/(7Lxπ2m2); if p = 0 and m 6= 0
192/(35Lx)(1+(−1)m(−1)p)−192/(m2 p2Lxπ2)((p2 +m2)(1+(−1)m(−1)p))
−168/(m2 p2Lxπ2)((p2 +m2)((−1)m +(−1)p))+108/(35Lx)((−1)m +(−1)p); otherwise

and similarly for the integrals involving the functions Y .
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