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Abstract

The dynamics of the local kinetic energy spectrum of an elastic plate vibrating in a wave turbulence (WT) regime is investigated
with a finite difference, energy-conserving scheme. The numerical method allows the simulation of pointwise forcing together
with realistic boundary conditions, a set-up which is close to experimental conditions. In the absence of damping, the framework
of non-stationary wave turbulence is used. Numerical simulations show the presence of a front propagating to high frequencies,
leaving a steady spectrum in its wake. Self-similar dynamics of the spectra are found with and without periodic external forcing.
For the periodic forcing, the mean injected power is found to be constant, and the frequency at the cascade front evolves linearly
with time resulting in a increase of the total energy. For the free turbulence, the energy contained in the cascade remains constant
while the frequency front increases as t1/3. These self-similar solutions are found to be in accordance with the kinetic equation
derived from the von Kármán plate equations. The effect of the pointwise forcing is observable and introduces a steeper slope at
low frequencies, as compared to the unforced case. The presence of a realistic geometric imperfection of the plate is found to have
no effect on the global properties of the spectra dynamics. The steeper slope brought by the external forcing is shown to be still
observable in a more realistic case where damping is added.

1. Introduction

Wave Turbulence (WT) describes a system of waves interact-
ing nonlinearly away from thermodynamical equilibrium [1, 2].
Although the system under study is composed of waves only,
the term ”turbulence” is used here in analogy with hydrody-
namic turbulence, where the energy of the system is transferred
through scales (referred to as a cascade) resulting in a large
bandwidth energy spectrum. A particular property is that, for
WT systems, the form of the spectrum can be derived analyt-
ically [3], and not just in terms of dimensional analysis as for
the Kolmogorov 41 theory of hydrodynamics turbulence [4].
Using the assumption of weak nonlinearity, and an appropri-
ate separation of time scales, a natural closure arises leading to
an analytical expression for the equation for the second order
moment (e.g. the kinetic energy spectrum). Solutions to this
equation lead to two physically different scenarios: the first one
represents the system at equilibrium, where the total energy of
the system is equally spread among all the Fourier components
of the system (known as the modes), and thus corresponding to
a Rayleigh-Jeans type of spectrum. The second scenario is out-
of-equilibrium and leads to the Kolmogorov-Zakharov spec-
trum, that describes a flux of energy from the injection scale,
where energy is input in the system, to the dissipation scale
such as in hydrodynamics turbulence. In the latter scenario the
modes receive and give energy to adjacent modes, thus creat-
ing a cascade of energy through scales. WT formalism has
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been applied to many systems in a variety of contexts, rang-
ing from quantum-mechanical to astrophysical systems, and in-
cludes many systems encountered in the ordinary world. An
exhaustive list may be found in [1]; here some examples are
recalled: capillary [5, 6] and surface gravity waves [7, 8, 9],
Alfvén waves [10, 11], and Kelvin waves [12, 13].
Flexural waves produced by large amplitude vibrations of

elastic plates have been studied within the framework of the
wave turbulence theory [14] applied to the von Kármán equa-
tion [15, 16] for the transverse displacement w. The analytical
Kolmogorov-Zakharov spectrum is then given by

Pv( f ) =
Ch

(1 − ν2)2/3 ε
1/3
c log1/3

�
f �c
f

�
, (1)

where εc is the constant flux of energy transferred through
scales, Pẇ refers to the power spectrum of the transverse ve-
locity v, h is the thickness of the plate, ν Poisson’s ratio of
the material, and C a constant. Because the theory is fully in-
ertial, f �c is the frequency at which energy is removed from
the system. In experiments, this is ensured by the damping of
the plate. At first order the spectrum is flat, but with a log-
correction in the inertial range of frequencies. The WT theo-
retical result has been compared to experiment [17, 18], show-
ing discrepancies regarding the shape and scaling of the spec-
trum with the energy flux. Thus, recent work has focused on
the investigation of the possible causes for such discrepancies.
Experimentally, the wave-structure and dispersion relation was
checked in [18], leading to the conclusion that the nonlinear vi-
brations of a plate are indeed due to a set of waves following
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the theoretical (linear) dispersion relation. The correct sepa-
ration of time scales, necessary assumption for the WT theory
was verified in [19]. A first discrepancy effect was observed
in [20], showing that the local forcing of the shaker is respon-
sible for a steeper slope in the supposed inertial range of the
energy spectra. More recently, damping has also been shown
to be the cause for a steeper slope of the spectrum, indicating
that the inertial range might not exist for thin plates used in
experiments, rendering then meaningless any comparison with
the WT theory [21]. From the numerical standpoint, it is worth
mentioning that all the numerical methods used so far are spec-
tral schemes [14, 22, 21, 23, 24]. Hence the forcing is in the
Fourier space, a feature that is different from a pointwise exci-
tation used in experimental conditions. All available numerical
results recover the KZ spectrum of Eq. (1) when the damping
is localized at high frequency only. However, when realistic
damping is added, see e.g. [21, 24], the same conclusions as for
the experiment are met.
Other sources of discrepancies have not been addressed yet,

such as the finite size effects or the possibility of three wave
interactions (quadratic nonlinearities) in real plates. Because of
the w→ −w symmetry of the von Kármán equation, these non-
linearities are not taken into account in [14]. Indeed, geomet-
rical imperfections are unavoidable in real plates, and they are
known to break this symmetry and to produce quadratic non-
linearities [25, 26]. In particular, it has been shown in [27, 28]
that imperfections plays an important role in the transition sce-
nario to turbulence and favours instabilities and the appearance
of quasiperiodic vibrations.
The numerical method used in this work relies on a finite

difference, time domain, energy-conserving scheme [29, 28].
The main advantages are that : (i) the time-stepping integra-
tion method conserves energy up to machine accuracy, so that
essential properties of the underlying continuous Hamiltonian
systems are preserved by the discretization [30]; (ii) the external
forcing is pointwise in space just as in the real experiments; (iii)
realistic boundary conditions can be implemented instead of us-
ing periodic boundary conditions as considered by previous nu-
merical investigations using spectral methods [14, 22, 24].
The aim of this article is to investigate numerically wave tur-

bulence produced by the von Kármán plate equations. With a
numerical scheme close to experimental conditions, unavoid-
able effects in real experiments such as pointwise forcing and
geometric imperfections can be accounted for. In order to
properly distinguish the different effects, most of the presented
results are obtained in the absence of damping, where the
framework of non-stationary wave turbulence should be used
[31, 32]. The theory predicts self-similar dynamics of the spec-
tra with a front propagating to higher frequencies. Such prop-
agation has been observed for surface gravity waves in exper-
iments [33]. On the contrary, capillary turbulence [34, 35] ex-
hibits a decay that begins from the high frequency end of the
spectral range. The discrepancy with the self-similar theory of
wave turbulence is ascribed to the presence of finite damping at
all frequencies of the wave system [34, 36].
The article is organized as follows: The governing equations

together with the numerical approach are described in section 2.

Section 3 presents the data analysis tools used to study the spec-
tral dynamics. The main results are given in Section 4. Periodi-
cally forced turbulence for a perfect plate is first considered. A
self-similar propagation of a steep front towards the high fre-
quencies, leaving in its wake a steady spectrum, is observed.
The frequency of the front is found to evolve linearly with time.
The presence of realistic geometric imperfections is then taken
into account and shown to have no influence on the spectral
dynamics. In Section 4.2, the case of a free, undamped turbu-
lence, is exhibited. In that case, self-similar dynamics of the
spectra are also observed, but now the front evolves with time
as t1/3. Self-similar solutions derived from the kinetic equa-
tion are found to display the same dependences, thus validat-
ing the numerical results that gives in addition the shape of the
self-similar function. The pointwise forcing is found to influ-
ence the shape of the universal spectrum left in the wake of the
front, with a steeper slope for the forced case. Finally, the effect
of the pointwise forcing, underlined in the undamped cases, is
confirmed in Section 4.3, where a decaying turbulence with a
simple frequency-independent damping law, is addressed. Dis-
cussion and concluding remarks appear in Section 5.

2. Dynamical Equations

2.1. Continuous Time and Space Equations
The system under study is a rectangular elastic plate of thick-

ness h, dimensions Lx, Ly, volume density ρ, Poisson’s ratio
ν and Young’s modulus E. Its flexural rigidity is defined as
D = Eh3

12(1−ν2) . The dynamics of weakly nonlinear waves for
the transverse displacement w(x, t) can be described by the von
Kármán equations [15, 16]. The general case of an imperfect
plate is here considered. If w0(x) denotes the initial (static) im-
perfection, then the equations of motion read [25, 37, 26]

DΔΔw + ρhẅ = L(w + w0, F) + F (x, t) − R(x, t), (2a)

ΔΔF = −Eh
2
L(w + 2w0,w), (2b)

where Δ is the Laplacian operator, Δa(x) = a,xx+a,yy, and L(·, ·)
is the bilinear symmetric von Kármán operator, L(a(x), b(x)) =
a,xx b,yy + a,yy b,xx − 2a,xy b,xy. F(x, t) is an auxiliary func-
tion called the Airy stress function which encapsulates the be-
haviour of the plate in the in-plane direction, R(x, t) is a loss
factor of some kind which will be specified shortly and F (x, t)
is the external excitation load. In this work, the material param-
eters chosen to correspond to a steel plate; thus E = 2×1011 Pa,
ρ = 7860 kg/m3, ν = 0.3. The other geometrical and physical
parameters will be reported case by case.
The dynamics of the plate are not complete until the bound-

ary conditions are not selected. Physical boundary conditions
can be derived by conducting an energy analysis based on the
Lagrangian of the system [16, 38, 39]. For this work, the partic-
ular case of a transversely simply supported plate with movable
in-plane edges is considered. In turn, the following conditions
hold along the boundary ∂S

w = w,nn = 0 ∀x ∈ ∂S , (3a)
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F = F,n = 0 ∀x ∈ ∂S , (3b)

where n is the direction normal to the boundary. This is an
important difference with respect to previously presented nu-
merical simulations, where periodic boundary conditions were
employed.
The term R(x, t) represents losses. An artificial damping law

may be used,
R0(x, t) = 2σ0ẇ, (4)

that dissipates energy at equal rates at all scales. In the context
of time-domain simulations of damped plates, the problem of
an accurate representation of the damping law with an ad-hoc
time operator is complex, and has led numerous authors to vari-
ous laws, the implementation of which still remains a numerical
challenge, see e.g. [40]. Here the simplest time-domain oper-
ator has been chosen allowing to explore numerically its effect
on the dynamics of the cascade. The reader should however
keep in mind that it is ad-hoc and does not correspond to a real
case.
The forcing is pointwise and of the form :

F (x, t) = δ(x − xF )A(t) sin(2π fpt). (5)

The injection point has been chosen at xF = (0.42Lx, 0.57Ly)
for all the simulations. The forcing frequency fp is selected to
be close to the fourth eigenfrequency of the system, in order to
activate the cascade more easily [28]. A(t) is chosen to be:

A(t) =



A0 t/t0 for 0 ≤ t ≤ t0;
A0 for t0 ≤ t ≤ t1;
0 for t ≥ t1.

(6)

In the above definition, t0 corresponds to the ramp time: the
forcing ramps linearly from zero up to A0 in t0 seconds. Then,
the forcing remains constant at A0 for t1 − t0 seconds, where
t1 corresponds to the total length of the simulation in case of
periodic forcing.
The injected power is defined in this work as

ε(t) = F (x, t) · ẇ(xp, t)/ρS . (7)

After division by the factor ρS , where S = LxLy is the area of
the plate, the injected power has the dimension of a velocity
cubed.

2.2. Finite Difference Time Domain Scheme

In this section the numerical solution to system (2) together
with boundary conditions (3), is presented. Although numeri-
cal simulations of von Kármán plates in the context of WT have
been successfully developed in previous studies [14, 22, 24, 23],
here a time domain simulation in physical space is presented.
Time and space are discretised so that the continuous vari-
ables (x, y, t) are approximated by their discrete counterparts
(lδx,mδy, nδt), where (l,m, n) are integer indices and (δx, δy, δt)
are the steps. Boundedness of the domain implies that (l,m) ∈
[0,Nx]×[0,Ny] so that the grid size is given by (Nx+1)×(Ny+1).
The continuous variables w(x, t), F(x, t) are then approximated

by wnl,m, F
n
l,m at the discrete time n for the grid point (l,m). Time

shifting operators are introduced as

et+wnl,m = w
n+1
l,m , et−wnl,m = w

n−1
l,m . (8)

Time derivatives can then by approximated by

δt· =
1
2ht

(et+ − et−), δt+ =
1
ht
(et+ − 1),

δt− =
1
ht
(1 − et+), δtt = δt+δt−. (9)

Time averaging operators are introduced as

µt+ =
1
2
(et+ + 1), µt− =

1
2
(1 + et−),

µt· =
1
2
(et+ + et−), µtt = µt+µt−. (10)

Similar definitions hold for the space operators. Hence, the
Laplacian Δ and the double Laplacian ΔΔ are given by

δΔ = δxx + δyy, δΔΔ = δΔδΔ. (11)

The von Kármán operator at interior points L(w, F) can then be
discretised as

l(w, F) = δxxwδyyF + δyywδxxF

−2µx−µy−(δx+y+wδx+y+F). (12)

Thus the discrete counterpart of (2) is

DδΔΔw + ρhδttw = l(w + w0, µt·F) + Pnl,m − Rnl,m; (13a)

µt−DδΔΔF = −Eh2 l(et−(w + 2w0),w). (13b)

The damping terms are

r0(l,m, n) = 2σ0δt·wnl,m; r1(l,m, n) = −2σ1δΔwnl,m. (14)

When σ0 = 0, the scheme is energy conserving, where the dis-
crete energy is positive definite and yields a stability condition,
as proved in [29, 41]. Implementation of boundary conditions
is explained thoroughly in [41].

3. Data Analysis

The work is focused on the turbulent response at one point of
the plate chosen as (0.3Lx, 0.2Ly). The kinetic energy spectrum
is given by the velocity power spectrum which is calculated
starting from a velocity discrete-time series. For the remainder
of the paper, the symbol vn will identify the discrete velocity
at the output point, at the time t = nδt. Spectra analysis are
performed on time windows of duration τ. The discrete-time
velocity power spectrum is then defined as:

Pv( f ) =
(δt)2

τ

�������

N�

n=1

vne−i2π f n
�������

2

(15)
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where N = τ/δt is the total number of samples within the
time window. For the typical case of a thickness h = 1mm
and surface 0.4 × 0.6m2, the sampling frequency is chosen as
1/δt = 400 kHz and a time window of τ = 0.05 s is selected for
the analysis of the spectra. In order to obtain a better conver-
gence of the shape of the spectra, a mean is taken over M = 3
consecutive spectra, in other words, the symbol �Pv( f )� will
identify the mean take over 3 spectra covering a total time win-
dow T = Mτ. When the thickness of the plate changes, time
window and sampling frequency change accordingly. So, for
instance, for a thickness h = 0.1mm, the time window is mul-
tiplied by a factor 10, τ = 0.5s and the sampling frequency is
divided by a factor 10, 1/δt = 40 kHz. The number M remains
instead fixed. In the following, the brackets < ... > will denote
an averaging on T which will generally depends on the time.
The analysis for the injected power follows the same averag-

ing rules. The injected power discrete time series is denoted by
εn, from which the mean < ε > and the variance < ε2 > are
calculated. The temporal average ε̄ is defined as the mean over
the total data.
A characteristic frequency fc for the velocity power spectrum

is here introduced as

fc =

�
�Pv( f )� f d f�
�Pv( f )� d f

, (16)

with Pv( fc) also defining a characteristic spectral amplitude.
Note that fc should not be confused with the theoretical cut-off
frequency f �c defined in Eq. (1). The characteristic frequency
fc will be used in the next section in order to quantify the self-
similar dynamics of the spectra in the non-stationary cases.

4. Numerical results

This section presents the results obtained for the following
cases:

(i) R(x, t) = 0, w0(x) = 0 (perfectly flat, undamped plate);

(ii) R(x, t) = 0, w0(x) � 0 (imperfect, undamped plate);

(iii) R(x, t) � 0, w0(x) = 0 (perfectly flat, damped plate).

Simulations are conducted also by varying the dimensions S
and the thickness h of the plate for different forcing amplitudes
A0 and frequencies fp. The first part is devoted to periodically
forced turbulence and the second to free turbulence (or decay-
ing, when damping is added) after the forcing is stopped.

4.1. Periodically forced undamped turbulence
4.1.1. Perfect, undamped plates
Typical numerically obtained displacement and velocity

fields are shown in fig. 1 for illustration. The displacement
field presents low frequency patterns; taking the velocity filters
out these low frequencies resulting in a much more homoge-
neous field, meaning that velocity measurements at one point
are relevant for the turbulent property of the whole plate as al-
ready mentioned in experiments having similar forcing schemes

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

x [m]

(a)

y
[m
]

−0.4 −0.2 0 0.2 0.4
mm

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

x [m]

(b)

y
[m
]

−0.2 −0.1 0 0.1 0.2
m/s

Figure 1: (a): Displacement field in the turbulent regime for an undamped,
perfectly flat plate of thickness h = 0.1 mm and dimensions Lx × Ly = 0.4 ×
0.6m2. (b): corresponding velocity field.

[17, 18, 19]. The anisotropy effects due to the local forcing have
been evidenced and characterized experimentally by Miquel
and Mordant[19].
A case study is first examined to serve as a master example

of the type of analysis that has been conducted on all the sim-
ulations. It corresponds to the case 1 in table 1 considering a
plate of thickness h = 1mm, forced at fp = 75Hz with a forc-
ing of amplitude A0 = 10N and a ramp time t0 = 0.5s (see
Eq. (6), where t1 is the whole duration of the simulation). The
surface is Lx × Ly = 0.4 × 0.6m2 and the grid size is 102 × 153
points, corresponding to a sampling rate of 400kHz for the time
integration.
Fig. 2(a) shows the spectrogram (evolution of the frequency

spectra with respect to time) of the velocity at the measure-
ment point. It reveals the activated frequencies of the turbulent
cascade as a function of time. The energy keeps flowing into
the system, creating a never ending cascade where modes of
higher frequency receive energy from the adjacent lower fre-
quency modes. Fig. 2(b) shows the velocity power spectra at
different stage of the dynamics. It is evident that for these sim-
ulations no stationary state exists: the spectra tend to occupy
larger portions of the available frequency range as time goes by.
It should be pointed out that the cascade front will develop up to
half the sampling frequency of the computation (200 kHz in this
case): when the cascade hits this limit, an artificial boundary re-
flects the energy back into the box, towards smaller frequencies.
This is a peculiar, unwanted numerical phenomenon that is not
taken into account in the analysis. The simulation is stopped
before the boundary reflection happens; in this way, the cas-
cade can be regarded as developing within an infinite frequency
domain. Fig. 3(a) shows that the evolution of the characteristic
frequency fc(t) is linear, fc = c f · t. The cascade front in fig. 2
then develops to larger frequencies with a constant cascade ve-
locity c f . The spectral amplitude at the characteristic frequency
�Pv( fc)� in fig. 3(b), is seen to be fairly constant over time. The
power velocity spectra, rescaled using both the characteristic
frequency fc and amplitude Pv( fc), are displayed in fig. 4. They
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Figure 2: (a) Spectrogram of the velocity for the perfect undamped plate of
thickness h=1mm, forcing from 0 to 10 N in 0.5s (case 1 from table 1), and
then kept constant. (b) Corresponding velocity power spectra computed every
2.5 s from 5 to 25 s.
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Figure 3: (a) Time evolution of the characteristic frequency fc, (b) correspond-
ing spectral amplitude of the spectra shown in Fig. 2(b) (case 1 in table 1). The
characteristic frequency evolves as fc = c f t with c f = 412.05 s−2 and the mean
amplitude is �Pv( fc)� = 1.11 · 10−4 m2/s2/Hz.
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Figure 4: Spectra of Fig. 2(b) but normalised using the characteristic frequency
fc and amplitude Pv( fc). Continuous red line shows a power law f −

1
4 . Con-

tinuous black lines show the log correction log1/3( f
�
c
f ) of the KZ spectrum, see

Eq. (1), with f�c = fc and f�c = 5 fc.
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Figure 5: Time evolution of the injected power for the perfect undamped plate
(case 1 in table 1). (a): Time series , < ε > and (b): εrms =

√
< ε2 >. Continu-

ous lines are best fits that give ε̄ = 9.65 · 10−5 m3/s3, and D = 1.6 · 10−6 m6/s7

(see text).

all satisfactorily superimpose, indicating that the dynamics of
the energy spectrum are self-similar. This allows to write for
the spectra

�Pv( f )� = �Pv( fc)� φP
�
f
fc

�
, (17)

where their shapes are given by the unique function φP ( f / fc)
(the subscript P stands for periodically forced turbulence).
The injected power during the self-similar dynamics is shown

in fig. 5(a): the fluctuations increase with time while the av-
erage stays constant. More precisely, fig. 5(b) shows that
< ε2 >= Dt, and < ε >= ε̄. Hence, the self-similar dynamics
originate with the injection of a stationary energy flux charac-
terised by ε̄. Meanwhile, the fluctuations of the injection flux
grow following a diffusion-type behaviour characterised by the
coefficient D.
The analysis described above is now applied to 15 different

cases, summarised in table 1. For all cases, the self-similar dy-
namics display a constant injected power ε̄, a linear growth of
the variance of injected power

�
ε2

�
, a linear increase of fc over

time and constant �Pv( fc)� has been observed. It is worth not-
ing that the forcing values cover about four decades; this results
in a large range for the mean injected power ε̄. The thickness
values cover one decade also. For each one of the cases, the
cascade velocity c f , the spectral amplitude at the characteristic
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A0 (N) h (mm) fp (Hz)
Case 1 10 1 75
Case 2 20 1 75
Case 3 30 1 75
Case 4 45 1 75
Case 5 70 1 75
Case 6 2.5 0.5 37.5
Case 7 5 0.5 37.5
Case 8 0.75 0.4 30
Case 9 1.5 0.4 30
Case 10 0.1 0.2 15
Case 11 0.02 0.1 7.5
Case 12 0.005 0.1 7.5
Case 13 1 0.5 20
Case 14 1.75 0.5 20
Case 15 2.5 0.5 20

S Grid Points
Case 1 0.4 × 0.6 102 × 153
Case 2 0.4 × 0.6 102 × 153!
Case 3 0.4 × 0.6 102 × 153
Case 4 0.4 × 0.6 102 × 153
Case 5 0.4 × 0.6 102 × 153
Case 6 0.4 × 0.6 102 × 153
Case 7 0.4 × 0.6 102 × 153
Case 8 0.4 × 0.6 102 × 153
Case 9 0.4 × 0.6 102 × 153
Case 10 0.4 × 0.6 102 × 153
Case 11 0.4 × 0.6 144 × 216
Case 12 0.4 × 0.6 102 × 153
Case 13 1 × 2 114 × 227
Case 14 1 × 2 114 × 227
Case 15 1 × 2 114 × 227

Table 1: Case Studies.

(a)
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100
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Figure 6: Results of simulations for the perfect, undamped plate with a peri-
odic forcing, for all the 15 cases reported in table 1. (a): spectral amplitude
�Pv( fc)� /h, (b): cascade velocity c f and (c): Diffusion coefficient D.

frequency �Pv( fc)�, the diffusion coefficient D are calculated.
These quantities are plotted in fig. 6 as functions of combina-
tions of ε̄ and h having the same dimensions. It can be seen
that for all cases a linear relationship is found, confirming the
consistency of the dimensional argument. The constant of pro-
portionalities are found from best linear fits:

�Pv( fc)� = 2.51h(ε̄)1/3, (18a)

c f = 0.20
(ε̄)2/3

h2
, (18b)

D = 2.07 · 104 (ε̄)
7/3

h
. (18c)

In conclusion, the main result arising from the numerical sim-
ulations of the periodically forced undamped plate is a self-
similar evolution of the power spectra. It is characterized by
the progression towards higher frequencies of a steep cascade
front, which leaves a steady self-similar spectrum in its wake.
The self-similar progression is found to be linear with time, and
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has been characterized by nondimensional numbers. The spec-
tral amplitude at fc is found to have a dependence on (ε̄)1/3 (see
Fig. 6) and the self-similar spectrum can be expressed as

Pv( f ) = 0.42h(ε̄)
1
3ΦP

�
f
fc

�
; (19)

where ε̄ is the mean injected power. In the absence of damping,
the mean injected power can be confounded with the energy
flux transfer εc through scales. The progression of the cascade

front toward higher frequencies is given by fc(t) = c f t ∝ ε̄
2
3

h2 t
(from Eq. (18b)). The function ΦP displayed in Fig. 4 increases
as frequencies decrease toward the forcing frequency fp. A
best-fit approximation of the slope of ΦP indicates that it fol-
lows a power-law for low frequencies with a small exponent
close to −1/4, see Fig. 4.
The self-similar solutions for the kinetic equation derived

from the von Kármán plate equations are given in Appendix
A. Considering a self-similar solution for the wave spectrum
n(k, t) of the form:

n(k, t) = t−q f1(kt−p) = t−q f1(ξ), (20)

one finds for the power frequency spectrum Pv(ω, t):

Pv(ω, t) ∼ f1

� �
ω

t

�
= g1

�
ω

t

�
. (21)

This relationship clearly evidenced that the frequency of the
front must evolve linearly with time, which is retrieved by the
numerical simulation. The function g1 can be identified with
the function ΦP found numerically.
Let us now compare the self-similar spectrum with the KZ

solution. As the theoretical cut-off frequency f �c cannot be re-
lated to a given physical quantity in our numerical framework,
the KZ spectrum is built from Eq. (1) by selecting f �c = fc and
f �c = 5 fc, and reported in Fig. 4. As one is interested in the
power-law behaviour in the low-frequency range, one can ob-
serve that selecting f �c = fc or f �c = 5 fc has little influence
on the slope comparison. It appears that even though the log-
correction of the KZ spectrum cannot be discarded, the slope of
the self-similar numerical solution appears to be a bit steeper.
The injected power fluctuation is found to increase as a dif-

fusive law during the self-similar dynamics. A comprehensive
interpretation of this behavior may be given by the model of in-
jected power proposed in [42, 43] for this system. In this work,
the velocity ẇ(xF , t) at the forcing point is assumed to result
from a turbulent feedback v described by the velocity spectrum,
and a linear response of the deterministic forcing F (x, t), say:

ẇ(xF , t) = v +LF , (22)

with L a linear operator. The feedback turbulent velocity is
assumed to be statistically independent of the forcing. Thus,
using Eq. (22) and the periodic forcing in Eq. (5) with A(t) =
A0, the mean of the squared injected power becomes:

< (F ẇ)2 >= A20
2
< v2 > + < (LF )2F 2 > (23)

After a sufficiently long time, the stationary forcing term will be
negligible compared with the quadratic term that keeps increas-
ing with time as the cascade propagates. Using the Parseval’s
identity :

< v2 >=
� ∞

0
Pv( f )d f . (24)

and the expression of the self-similar time-dependent spectrum
in Eq. (19), Eq. (23) becomes:

< (F ẇ)2 >∼ A20
2
< v2 >∝ A20

ε̄t
h
, (25)

then
< ε2 >∝ A20

ε̄t
h(ρS )2

(26)

which gives the expected diffusive behavior. Hence, the
injected power fluctuation is the consequence of a direct
feedback of the propagation of the kinetic energy spectrum
during the self-similar dynamics.

4.1.2. Imperfect, undamped plates
The effect of the presence of a plate imperfection on the tur-

bulent dynamics is now investigated. Results are presented fol-
lowing the same procedure as for the perfect plate.
The static deformation w0(x) appearing in Eq. (2) is chosen

in the form of a raised cosine

w0(x) =
Z
2

1 + cos

π

�
(x − x0)2 + (y − y0)2

L


 , (27)

when (x − x0)2 + (y − y0)2 ≤ L2, and zero otherwise. Here Z
is the static (vertical) deflection, L is the width and x0 is the
center of the deformation. The plate area is 0.4 × 0.6 m2 and
the width is here selected to be 0.2m, and x0 is the center of
the plate, see Fig. 7. Z is then a free parameter that changes
case by case. This form of imperfection has been selected as
it is close to what can be observed in experiments, where large
plates are generally affected by a pattern of large wavelength.
Our goal is thus to quantify the effect of a selected realistic ge-
ometric imperfection in order to assess its potential effect on
the turbulence spectra. For the perfect plate with w0(x) = 0,
the internal restoring force is symmetric so that only cubic non-
linearities are present in the von Kármán equations. However
when an imperfection is considered, quadratic nonlinearity ap-
pears in the model equations and so three-wave processes are
present in the dynamics.
A case study (case 11 in table 2) is first examined. It corre-

sponds to a plate with a thickness h = 1mm, and a deformation
Z = 5mm as defined in Eq. (27). As the eigenfrequencies in-
crease with the imperfection (see e.g. [28, 26]), the excitation
frequency is now shifted so as to remain in the vicinity of the
fourth eigenfrequency, so that now fp = 103Hz, and the forcing
amplitude is selected as A0 = 90N.
During the dynamics, it is observed that the velocity power

spectra evolve almost identically to the case of the perfect plate,
so that the spectrogram and power spectra of the imperfect

9



0 0.3 0.6
0

1

2
x 10−3

0 0.2 0.4
0

1

2
x 10−3

0
0.2

0.4 0
0.3

0.6

0

1

2

x 10−3

(a)

(b) (c)

w0

w0
w0

x y

y
x

Z Z

Z

Figure 7: Plate of dimensions 0.4 × 0.6m2 with imperfection in the form of a
raised cosine. (a): 3D view, (b) and (c): x and y axes views.
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Figure 8: Imperfect, undamped plate, case 11 of table 2. (a) Time evolution
of the characteristic frequency, (b) corresponding spectral amplitude. Contin-
uous lines are best fit fc = c f t with c f = 226s−2 (a), and the mean amplitude
�Pv( fc)� = 2.66 · 10−4 m2/s2/Hz.

plate are similar to those shown in Fig. 2. The characteristic
frequency increases linearly with time while the characteris-
tic amplitude remains fairly constant as shown in Fig. 8. The
normalized spectra in Fig. 9 are superimposes according to a
curve φP( f / fc) = �Pv( f )� / �Pv( fc)� indicating self-similar dy-
namics. The self-similar dynamics are also produced during a
mean constant injection flux with diffusive-type fluctuations, as
seen in fig. 10.
A total of 12 simulations are considered for imperfect plates.

The parameters are listed in table 2. Note that the magnitude
of the imperfection considered is large (Z ≥ h), and of the or-
der of what can be expected in real experiments. In particular,
it has been shown in [44, 26, 45] that an imperfection of the
order of the thickness h is able to change the type of non linear-
ity of the low frequency modes. For each one of the cases, the
cascade velocity c f , the spectral amplitude at the characteristic
frequency Pv( fc) and the coefficient D are plotted as functions
of combinations of ε̄ and h. It can be seen that for all cases a
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10−8

10−3

102

f / fc

φ
(f
/
f c
)

Figure 9: Normalised velocity spectra using the characteristic frequency fc and
amplitude Pv( fc) (case 11 in table 2). Continuous black line shows the log
correction log1/3( f

�
c
f ) of the KZ spectrum, see Eq. (1), with f�c = fc. Dashed

red line shows a power law f −
1
4 .
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Figure 10: Time evolution of the injected power for the imperfect undamped
plate (case 11 in table 2). (a) Time series, (b) < ε > and εrms =

√
< ε2 >.

Continuous lines are best fits : ε̄ = 1.15 · 10−5 m3/s3, and D = 0.0015 m6/s7

(see text).

A0 (N) h (mm) fp (Hz) Z (mm)
Case 1 7 0.5 8.5 1
Case 2 3 0.5 8.5 1
Case 3 0.02 0.1 10.5 0.5
Case 4 0.01 0.1 10.5 0.5
Case 5 0.03 0.1 13 1
Case 6 0.02 0.1 8.5 0.1
Case 7 0.02 0.1 13 1
Case 8 0.01 0.1 8.5 0.1
Case 9 100 1 127 10
Case 10 70 1 127 10
Case 11 90 1 103 5
Case 12 60 1 103 5

Table 2: Case studies for the imperfect plate.
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Figure 11: Results of simulations for the imperfect, undamped plate with a
periodic forcing, for the 12 cases reported in table 2. (a): spectral amplitude
�Pv( fc)� /h, (b): cascade velocity c f and (c): coefficient D.

linear relationship is found (Fig. 11):

�Pv( fc)� = 2.30hε̄1/3 (28a)

c f = 0.19
ε̄2/3

h2
(28b)

D = 1.86 · 104 ε̄
7/3

h
(28c)

The scaling laws are identical to the perfect case, although the
data are a bit more scattered in Fig. 11 than in Fig. 6. The
obtained values for the proportional constants are also very
close. The quadratic non-linearity introduced by an imperfec-
tion is then hardly discernable in the turbulent cascade dynam-
ics which indicates that the vibration amplitudes are sufficiently
important so that the cubic term dominates the quadratic one,
hence only the cubic nonlinearity seems to drive the main char-
acteristics. In conclusion, the geometric imperfection retained

in this study, and which has been selected as it provides insight
into realistic imperfections one may encounter in experimental
situations, has no effect on the main characteristics of the tur-
bulent spectra. Hence it appears that plate imperfections should
not be considered as a potential cause for explaining the dis-
crepancies observed between theory derived for perfect plates
and real experiments with unavoidable imperfections.
In the remainder of the paper, the plate imperfections are no

longer considered. The next section is devoted to the study of
free (unforced) turbulence in order to highlight the effect of the
pointwise forcing.

4.2. Free undamped turbulence
We now consider the case where the perfect, undamped

plate, given an initial turbulent spectrum energy, is left free to
vibrate in the absence of forcing and develops a cascade. The
plate dimensions are Lx × Ly = 0.4 × 0.6 m2, the thickness
is selected as h = 0.1mm. The sampling rate is chosen as
40kHz resulting in a grid size of 102 × 153 points. The
excitation frequency is in the vicinity of the fourth eigenmode
at 7.5 Hz. The forcing amplitude reaches A0 = 0.1 N linearly
after a duration t0 = 0.1s and is then abruptly stopped. The
response of the system is shown over a long time duration in
the spectrogram of Fig. 12(a). Even after stopping the external
excitation, the number of excited modes keeps increasing
slowly. Because of the slowness of this dynamics, the data
analysis has been exceptionally changed with respect to the
standard procedure explained is sec. 3. Here the time window
is τ = 0.1s and the number of spectra over which the average is
taken is M = 100, resulting in a time T = Mτ = 10s.

The velocity power spectra of the free decaying turbulence
are shown at different stages of the dynamics in Fig. 12(b).
The shape of the spectra changes abruptly just after the forc-
ing is stopped. There is an evidence of a flattening in the low-
frequency part of the spectra, indicating once again the effect
of the external forcing has on the power-law slope. On the
other hand, the cascade front still progresses toward high fre-
quencies even without forcing. The corresponding characteris-
tic frequency evolution is shown in Fig. 13(a) which follows a
clear 1/3 power law, significantly different from the linear de-
pendence found for the case with external forcing. The energy
conservation during the dynamics justifies the −1/3 power law
best fit for the spectra amplitude in Fig. 13(b). More precisely,
the characteristic frequency is found to behave as fc = at1/3

with a = 331.5 s−
4
3 , whereas the spectral amplitude reads

Pv( fc) = bt−1/3 with b = 1.1 · 10−7 m2s−
2
3 . In order to express

these dependencies with nondimensional numbers, one can in-
troduce the conserved quantities of the system, i.e. the total
energy ξ = h

2

�
Pv( f )d f of the turbulent fluctuations –once the

forcing stopped the system is conservative– and the plate thick-
ness h. The energy ξ may locally fluctuate since it is actually
the energy of the whole plate that is conserved. However, for
the point considered, it is found to keep reasonably constant at
ξ ≈ 2 · 10−8m3/s2 during the self-similar dynamics, as shown
in Fig. 14. Using the relationships derived from the best fits ob-
tained in Fig. 13 together with a dimensional analysis, one can
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Figure 12: (a): Spectrogram of the velocity of the perfect, undamped plate for
which the forcing is stopped after 0.1s. The plate is of thickness h=0.1 mm and
the sampling rate 40kHz. (b) : Corresponding velocity power spectra averaged
over 10s, displayed for time intervals of 30s. The first one (red) is computed
from 0.1s (i.e. the end of the forcing) to 10.1s. Straight red line corresponds to
the power law f −1/4.

reexpress the dependencies as

fc(t) = 0.45
ξ

2
3

h2
t
1
3 Pv( fc) = 0.41hξ

1
3 t−

1
3 . (29)

The two constants now appearing in Eq.(29) should be univer-
sal, as are the nondimensional numbers derived from the analy-
ses in previous sections.
The normalized spectra using both the characteristic fre-

quency and corresponding spectra amplitude are shown in
Fig. 15 for times larger than 10s (i.e. after the low frequency
spectra flattening). They all superimpose showing that the dy-
namics becomes self-similar with a spectrum universal shape
ΦF such that Pv( f ) = Pv( fc)ΦF

�
f
fc

�
.

The progression of the cascade front toward higher frequen-
cies must be accomplished by the presence of an energy flux εc.
It can be estimated from the energy dξc of the activated modes
between fc and fc + d fc as the cascade propagates during the
time interval dt, εc =

dξc
dt =

h
2Pv( fc)

d fc
dt . Using both evolutions

in Eq. (29), the estimation gives :

εc = 0.03ξt−1. (30)

The spectrum in the self-similar dynamics of free turbulence
can thus be expressed as :

Pv( f ) = 13.34hε
1
3
c ΦF

�
f
fc

�
, (31)

As for the first case with periodic forcing, the dependence
of the frequency front in t1/3 can be derived from the theoreti-
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Figure 13: Undamped free turbulence. (a): Time evolution of the characteristic
frequency fc and (b) corresponding spectral amplitude. Continuous lines are
best fits fc = at1/3 with a = 331.5 s−

4
3 (a), and Pv( fc) = bt−1/3 with b =

1.1 · 10−7 m2s−
2
3 (b).
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Figure 14: Time evolution of the kinetic energy ξ = h
2
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Pv( f )d f for the free

undamped turbulence.
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Figure 15: Free undamped turbulence. Normalised velocity power spectra of
fig. 12(b) for t > 10s during the self-similar dynamics. Black line shows the
log correction log1/3( f

�
c
f ) of the KZ spectrum, Eq. (1), with f�c = fc.
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cal kinetic equation governing the dynamics of the wave spec-
trum for vibrating plates. Following the calculations presented
in Appendix A, and considering now that, for the self-similar
solution of the form given by Eq. (20), the total energy of the
system is conserved, one finds that the power frequency spec-
trum should fulfill the relationship:

Pv(ω, t) ∼ t−1/3 f2
� �
ω

t1/3

�
= t−1/3g2

�
ω

t1/3

�
, (32)

This theoretical results clearly exhibits the fact that the fre-
quency front should evolve as t1/3 while the total energy as t−1/3.
In this case of free turbulence, the function g2 can now be di-
rectly identified from the numerical solution ΦF .
Let us now compare the self-similar solution with the theo-

retical KZ spectrum for vibrating plates. Because of the spec-
tral flattening highlighted in Fig. 12(b), one can observe that
the function ΦF is now very close to the log-correction of the
theoretical KZ spectrum for vibrating plates, as displayed in
Fig. 15, and shown here for f �c = fc. The similarity between
the self-similar spectrum of decaying turbulence with the sta-
tionary KZ spectrum has already been mentioned for surface
gravity waves [33] and capillary waves [34, 36, 35]. The com-
parison between the self-similar spectra of periodically forced
turbulence (Fig. 4) and free turbulence (Fig. 15) shows a steeper
slope when forcing is present. This result should be retrieved
in a more realistic case where damping is also considered, and
should corroborate the experimental results shown in [20]. The
aim of the last section is thus to verify this numerically in the
case of a decaying turbulence.

4.3. Damped turbulence

The effect of the forcing is now studied in a damped case.
The plate dimensions are Lx × Ly = 0.4 × 0.6 m2, the grid size
is 102 × 153 and h = 1mm. The damping introduced in Eq. (4)
is selected as σ0 = 0.5s−1. The forcing frequency is fp = 75Hz,
with a forcing amplitude of A0 = 140N and a ramp time t0 =
0.5s. The forcing remains periodic from 0.5s to 3.5s (t1 = 4s in
Eq. (6)) and then abruptly stopped at t = 4s.
The response of the damped system is shown over 20s of du-

ration in the spectrogram of Fig. 16(a). The spectra reach a
nearly steady state just before t = 4s that corresponds to the
time at which the forcing is stopped. Meanwhile, the injected
power remains fairly constant in Fig. 17, �ε� (t) � ε̄, and the
characteristic frequency grows, just as for the undamped case
studied in section 4.1. The main difference is that the character-
istic frequency (Fig. 18) will saturate to a constant value once
the statistical steady state of turbulent energy will be reached.
In other words, the cascade velocity front decreases toward zero
when approaching the steady-state.
As the cascade progresses to higher frequencies, more and

more modes are activated, which results in an increase of the
dissipation flux εd since each mode has a linear energy loss pa-
rameterized by σ0 that should be compensated by the incoming
flux. Hence, less and less energy flux εc is available to propa-
gate the cascade front velocity, since �εc� (t) = ε̄−�εd� (t). Once
the forcing is stopped at t = 4s, the characteristic frequency

0 5 10 15 20
0

0.5

1

1.5

2
·105

t [s]

(a)

f
[H
z]

102 103 104 105
10−14

10−8

10−2

f [Hz]

(b)

�P
v(
f)
�[
m
2 /
s2
/H

z]

Figure 16: (a): Spectrogram of the velocity for the perfect damped plate. (b):
Corresponding velocity power spectra averaged over T = 0.15s computed every
5s from 5 to 20 s).

overshoots as shown in Fig. 18 and then sharply saturates. The
drastic increase of the characteristic frequency is provoked by
the flattening of the spectral shape at low frequencies as ob-
served in Fig. 16(b).
The effect of the pointwise forcing evidenced in previous sec-

tions is here retrieved for the damped dynamics. The numeri-
cal experiment shown here shares similarities with the exper-
imental result of [20], where the spectral flattening was also
observed in the decaying turbulence regime. Once the forcing
stopped, the spectrum simply decreases exponentially as e−2σ0t

as expected by a pure damping linear dynamics, see Fig. 18(b).
Actually one can observe that the nonlinear dynamics are still
present but very weak since the nonlinear propagation depends
on the vanishing turbulent energy ξ(t). Note that selecting other
damping laws should lead to different behaviors in the decay-
ing regime, resulting from the competition between the non-
linear propagation effect with the energy losses, both of which
having different frequency-dependencies associated to different
timescales. Here the damping law is frequency independent so
that the results lend themselves to an easy physical interpreta-
tion.

5. Discussion and concluding remarks

The nonlinear dynamics of turbulent vibrating plates has
been studied numerically with a finite-difference, energy-
conserving scheme including a pointwise forcing together with
realistic boundary conditions. The most important results have
been obtained in the absence of damping, in the framework of
non-stationary wave turbulence. Self-similar solutions for the
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for the decaying turbulence experiment shown if Fig. 16.

0 5 10 15
0

0.5

1

1.5
·104

t [s]

(a)

f c
[H
z]

0 5 10 15

10−7

10−5

10−3

t [s]

(b)

P
v(
f c
)[
m
2 /
s2
/H
z]

Figure 18: (a): Time evolution of the characteristic frequency fc and (b): cor-
responding spectral amplitude decreasing as < Pv( fc) >= 0.012e−2σ0t of the
spectra shown in Fig. 16, with σ0 = 0.5s−1 (blue thick line).

energy spectrum have been exhibited for a wide range of pa-
rameter variations. The simulations display the presence of a
front propagating to high frequencies. With pointwise forcing,
this propagation is linear with time, whereas for ‘free turbu-
lence the dependence is in t1/3. These self-similar behaviours
can be directly retrieved from the kinetic equation by analyz-
ing the admissible self-similar solutions. From the numerical
solutions, one is thus able to get a numerical value for the self-
similar functions in non-stationary wave turbulence for plates,
for the two cases studied in this paper, with and without exter-
nal forcing. Comparing the shape of these numerically obtained
functions, one observes that they share similarities with the the-
oretical KZ spectrum computed by [14], albeit exhibiting inter-
esting differences. In the case of a pointwise forcing, a steeper
slope is observed as compared to the free undamped turbulence.
Note also that the power 1/3 dependence on the energy flux is
numerically retrieved.
This observation is robust to adding the damping in the sim-

ulations, and thus recovers experimental results shown in [20].
It can thus be concluded that the local pointwise forcing has a
measurable effect on the slope in the low-frequency range. This
effect has been related in [20] to an anisotropy induced the pres-
ence of the shaker. A direct extension of the results presented
herein should thus to compute spatial spectra in order to verify
numerically that the same argument holds.
For the first time, our numerical set-up allows for an in-

vestigation of the effect of a geometrical imperfection on the
turbulent dynamics. The results, obtained in a non-stationary

framework, clearly indicates that perfect and imperfect plates
presents identical characteristics in the WT regime. This em-
phasizes the fact that in this regime the cubic nonlinear terms
dominate the quadratic ones, which thus have no measurable ef-
fect on the spectral characteristics of theWT. Note however that
this is not true for the regimes of transition to turbulence that in-
volve weaker excitation amplitudes [27, 28]. Note also that only
a simple, low-frequency pattern, has been introduced as a geo-
metric imperfection, in order to present numerical results close
to what can be expected in real-life situations. The conclusions,
based on numerical experiments, are only valid for those cases.
Extensions of the present work could consider more complex
geometric imperfections, with smaller wavelengths, in order to
continue the quantification of the transition between perfect and
imperfect plates turbulent dynamics.
Finally, dimensional arguments have been used in order to

properly quantify the results in non-stationary cases. As no the-
oretical prediction for the non-stationary evolution of systems
with log-corrected spectra exist at the present time, we believe
the results shown here could be used so as to ascertain a theo-
retical development that may predict the observations reported
in this contribution.

Appendix A. Self-similar solutions for non-stationary
wave turbulence in plates

This appendix is devoted to the derivation of self-similar so-
lutions from the kinetic equation describing the wave turbu-
lence in the von Kármán plate equations. Following the the-
oretical calculations reported by Düring et al. [14], the 4-waves
kinetic equation has the general expression given by Zakharov
et al. [2], and reads

∂n(k, t)
∂t

= I(k), (A.1)

with n(k, t) ≡ nk the wave spectrum and I(k) the collision inte-
gral, the expression of which can be found in [14]:

I(k) = 12π
�
|Jk123|2 fk123δ(k + s1k1 + s2k2 + s3k3)
× δ(ωk + s1ω1 + s2ω2 + s3ω3)dk1dk2dk3,

(A.2)

where Jk123 stands for the interaction term and fk123 is such that

fk123 =
�

s1,s2,s3

nknk1nk2nk3

�
1
nk
+

s1
nk1
+

s2
nk2
+

s3
nk3

�
. (A.3)

Following [2], let us introduce a self-similar solution for the
non-stationary evolution, depending only on the wavevector
modulus, as

n(k, t) = t−q f (kt−p) = t−q f (η). (A.4)

Plugging this ansatz in the kinetic equation (A.1), and taking
into account the expression of |Jk123|2 found in [14], one gets

−t−q−1 �
q f (η) + pη f �(η)

�
= I(η)t−3q+2p, (A.5)
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so that a solution of the form (A.4) is possible only if the con-
dition −q − 1 = −3q + 2p, is satisfied. It can be rewritten as

2(q − p) = 1. (A.6)

Let us introduce the total energy of the distribution

ξ =

�
ω nk dk, (A.7)

and consider the two cases numerically studied:

Case 1 : The plate is forced by a sinusoidal pointwise forc-
ing of constant amplitude and excitation frequency. In this
case the total energy increases linearly with time so that
ξ ∼ t.

Case 2 : The plate is left free to vibrate, given an amount of
energy as initial condition. In this case the total energy is
constant so that ξ ∼ t0.

Substituting (A.4) into (A.7) one obtains a second relationship
between p and q, which reads, depending on the case consid-
ered

4p − q =
�
1 for case 1
0 for case 2 (A.8)

Solving for (p, q) in both cases give

case 1 : p = 1/2, q = 1, (A.9)
case 2 : p = 1/6, q = 2/3. (A.10)

The last step consists in expressing the self-similar solution for
Pv(ω) the power spectrum of the transverse velocity v = ẇ
used in the analysis, which is related to the power spectrum
of the displacement Pw(ω) by a proportionality relationship
Pv(ω) ∝ ω2Pw(ω). Using the space-frequency relationship
Pw(ω)dω ∝ Pw(k)kdk, together with the dispersion relation, one
finds Pw(ω) ∝ Pw(k), such that Pv(ω) ∝ k4Pw(k). Finally, us-
ing the relationship Pw(k) ∝ nk

ω
given in [14], one obtains finally

Pv(ω, t) ∝ k2n(k, t), so that the self-similar solutions for Pv(ω, t)
finally reads for the general case with nk given by Eq. (A.4):

Pv(ω, t) ∼ t2p−q f (ω1/2t−p). (A.11)

Specifying now the solutions for (p, q) found for the two cases
under study, one obtains for case 1:

Pv(ω, t) ∼ f1

� �
ω

t

�
= g1

�
ω

t

�
, (A.12)

and for case 2:

Pv(ω, t) ∼ t−1/3 f2
� �
ω

t1/3

�
= t−1/3g2

�
ω

t1/3

�
, (A.13)

where g1,2 (or f1,2) have been indexed with respect to case 1 and
case 2, and are functions to be defined.
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[39] M. Ducceschi, C. Touzé, S. Bilbao, C. Webb, Nonlinear dynamics of
rectangular plates: investigation of modal interaction in free and forced
vibrations, Acta Mechanica 225 (2014) 213–232.

[40] A. Chaigne, C. Lambourg, Time-domain simulation of damped impacted
plates. I: Theory and experiments, Journal of the Acoustical Society of
America 109 (2001) 1422–1432.

[41] S. Bilbao, Numerical Sound Synthesis: Finite Difference Schemes and
Simulation in Musical Acoustics, Wiley, 2009.
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