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Abstract

We model liquid-gas flows with cavitation by a variant of thig-equation single-velocity
two-phase model with gtimechanical relaxation of Saurel-Petitpas—BedyGomput. Phys.
228 (2009), 1678-1712]. In our approach we employ phasal ttergy equations instead
of the phasic internal energy equations of the classicakgiation system. This alternative
formulation allows us to easily design a simple numericalhoé that ensures consistency with
mixture total energy conservation at the discrete level agibement of the relaxed pressure
at equilibrium with the correct mixture equation of stateemperature and Gibbs free energy
exchange terms are included in the equations as relaxatiors to model heat and mass transfer
and hence liquid-vapor transition. The algorithm uses @-hé&golution wave propagation
method for the numerical approximation of the homogeneguetbolic portion of the model.
In two dimensions a fully-discretized scheme based on aithyirL C/Roe Riemann solver is
employed. Thermo-chemical terms are handled numericayavstit relaxation solver that
forces thermodynamic equilibrium at liquid-vapor intexa under metastable conditions. We
present numerical results of sample tests in one and twaghaensions that show the ability
of the proposed model to describe cavitation mechanismeweagbration wave dynamics.

Keywords: multiphase compressible flow models, mechanical relamatiermo-chemical
relaxation, cavitation, phase transition, finite volumkesoes, wave propagation algorithms,
Riemann solvers

2000 MSC65M08, 76T10

1. Introduction

The modelling of cavitating flows is relevant in numerousaaref engineering, from naval
and submarine systems design to aerospace and nuclear jplawes technologies. Cavitating
fluids are multiphase mixtures that often involve complerlirogynamic and thermodynamic
processes: liquid-vapor phase transition, dynamicalticreaof interfaces, vapor structures
collapse, and associated shock wave formation and intena@f. [1, 2, 3]). As a further reason

*Corresponding author. Tek33 1 69 31 98 19; Fax+33 1 69 31 99 97.
Email addressesnarica.pelanti@ensta-paristech.fr (Marica Pelanti)shyue@ntu.edu.tw
(Keh-Ming Shyue)

Preprint submitted to Journal of Computational Physics December 14, 2013



of complexity, in many industrial applications these flovesur in irregular geometries and they
have a multi-dimensional character.

Extensive work has been dedicated in the past decades torthlason of cavitating flows
and liquid-vapor flows with phase change, see for instancg, @, 7, 8, 9, 10, 11, 12, 13, 14, 15]
and the references therein. Among th&atent modelling approaches, the class of hyperbolic
compressible multiphase models stemming from the origmatlel of Baer—-Nunziato [16]
has shown great capabilities in describing the complex waatterns and thermodynamic
mechanisms of cavitation. A first essential feature of theseels is that compressibility is
taken into account for all phases, vapor as well as liquidis T fundamental to correctly
capture wave propagation phenomena and acoustic perambaand it is particularly crucial
when liquid-vapor transition occurs [8]. Another impoittgamoperty is that these models can
retain temperature and Gibbs free energy non-equilibriffects, thus they are able to capture
metastable states as well as evaporation fronts, when Inglatnass transfer processes are
included in the physical description through thermal anehaical relaxation source terms.

There exist various formulations of compressible tempeeathon-equilibrium multiphase
flow models, depending on the assumptions on mechanical iaetidkphase equilibrium. In
choosing a particular model, one has to find a good comprobm$eeen the accuracy of
the description of the physical phenomena and the abilitgasfceiving robust andfiécient
numerical methods. In the present work, we are interestdti@rhyperbolic single-velocity
six-equation model proposed by Saurel-Petitpas—Ber§]ifof compressible two-phase flows,
see also Zeirt al.[17]. This model consists of an advection equation for thiewe fraction
of one phase, mass and internal energy equations for eade,phad a mixture momentum
equation. The six-equation model assumes instantanetagtyeequilibrium between the two
phases, but it retains mechanical, thermal and chemicaknailibrium dfects. In the limit of
instantaneous pressure relaxation the model reduces teathknown compressible two-phase
flow model of Kapilaet al. [18]. Nonetheless, as emphasized in [9], and as we briefiglirec
in Section 2, numerically it is more advantageous to soheedix-equation system with ffi
mechanical relaxation rather than the Kajgital.[18] pressure-equilibrium five-equation model
system.

The single-velocity six-equation two-phase model withf gtressure relaxation was em-
ployed in [9] for applications to interface problems and tradcal cavitation processes (that
is cavitation with no phase transition). It was later usedbin et al. in [17] to simulate liquid-
vapor transition in metastable liquids. Onéidulty of the numerical algorithm illustrated in the
latter work, as noted by the authors, is that it may requirergt small time step for stability for
some expansion problems with phase transition, due to tfieests of the chemical relaxation
terms. Only one-dimensional numerical results are presdoy the authors in [17].

The aim of the present paper is to conceive a new multiphasedtonputational model
on the basis of the six-equation system of [9] that could dsatiently with interfaces,
cavitation and evaporation waves, while retaining sinifyliand time-dfordability. The key
idea of our approach is to employ an alternative mathemdticaulation of the standard six-
equation model system [9] in the numerical discretizati®tather than using the two phasic
internal energy equations of the classical model, in ouorilym we employ two equations
for the phasic total energies. Mathematically, these twalehgystems are equivalent. The
present model, however, is numerically advantageous \etpect to the standard one, since
it allows us to easily design a simple numerical method thestuees important consistency
properties with mixture total energy conservation and wlith mixture thermodynamic state.
More specifically, first, we are able to automatically recoseconservative discrete form of

2



the mixture total energy equation, whereas the classigadiiation model system needs to
be augmented with an additional conservation law for thetuméx total energy to correct
the thermodynamic state [9, 17]. Secondly, as a consequeitege mixture total energy
conservation consistency property, we are able to easslyreragreement of the relaxed pressure
at equilibrium with the correct mixture equation of state foe full six-equation two-phase
model that includes mechanical and thermo-chemicHl retiaxation &ects. Relaxation terms
are thereforeféiciently handled.

To numerically solve the proposed two-phase model withqunes temperature, and Gibbs
free energy relaxation, we employ a simple fractional stppr@ach that consists of the
homogeneous hyperbolic system solution step, and a seguensteps thereafter to solve
systems of ordinary flierential equations containing the relaxation source termshigh-
resolution wave propagation method based on Riemann sofi#i.C and Roe) (cf. [19]) is
employed for the numerical solution of the homogeneous thygie system. The algorithm is
easily implemented in the framework of the CLAWPACK softwaaeckage [20]. For solving
the ordinary diferential equations with sfirelaxation sources, we have devised robust solvers
that drive the mixture to the desired equilibrium condiidm a sequence of relaxation processes
(cf.[21, 10, 8, 17, 14]). In this procedure, similar to [8] 2Bermodynamic equilibrium is forced
at liquid-vapor interfaces under metastable conditiongmirically for this task we employ an
idea similar to [14, 23] that uses the thermodynamic equilib conditions to reduce the solution
of the ODEs relaxation problem to the solution of a simpldeysof algebraic equations for the
equilibrium state variables.

This paper is organized as follows. In Section 2.1, we beginrdralling the six-
equation single-velocity model with fitmechanical relaxation of Saurel-Petitpas—Berry [9] for
compressible two-phase flows. We then propose in Sectioa\Zagiant of this model system, by
employing phasic total energy equations in the mathemdticanulation instead of the phasic
internal energy equations of the classical approach. Thended model that includes thermal
and chemical relaxation terms to model heat and mass traissfiescribed in Section 2.3. In
Section 3 we illustrate the numerical method to solve théchasdel system with mechanical
relaxation only. In this section we also discuss the mixemergy-consistency property of the
algorithm. The numerical treatment of temperature and Silobe energy relaxation source
terms is described in Section 4. Finally, in Section 5 we gmés selection of numerical
results obtained by employing the proposed method with aitidowt activation of heat and
mass transfer.

2. The six-equation single-velocity two-phase flow model

2.1. Phasic-internal-energy-based formulation
The six-equation single-velocity compressible two-phié@s model with stif mechanical
relaxation proposed by Saumial.[9] has the form

Oy +U-Vag = u(p1- p2), (1a)
0t (@1p1) + V - (a1p10) = 0, (1b)
Ot (azp2) + V - (a202U) = 0, (1c)
Ot (pl) + V- (pU®U) + V (a1p1 + a2p2) =0, (1d)
O (181) + V- (@1E10) + a1 p1V - U= —upy (P1 - P2), (1e)
Ot (@2E2) + V - (2E0) + aapaV - U= up (P — P2) - (af)
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Here ay is the volume fraction of phade k = 1,2 (a1 + a2 = 1), pk is the phasic density,
pk is the phasic pressure, ad@l = pkex is the phasic internal energy, witl denoting the
phasic specific internal energy. We have- a1p01 + azp, denoting the mixture density, and
representing the flow velocity vector. The source terms agppeg in (1a), (1e), and (1f) model
mechanical relaxation. In these terms- 0 represents the pressure relaxation parametepand
is the interface pressure, = %, wherezy = pkcﬁ is the acoustic impedance of phdse
andcy is the sound speed of phasélNe assume an infinite-rate pressure relaxation with co,
therefore mechanical equilibrium is reached instantasigou

It is known (cf. [9]) that in this instantaneous pressureaxation limit the six-equation
model above reduces to the single-velocity single-presiue-equation model of Kapilat
al. [18] (see also e.g. [24]). The five-equation model systenomposed of two phasic mass
balance equations, the mixture momentum equation, theumsixotal energy equation, and an
evolution equation for the volume fraction of one phase waiteource term that results from
the asymptotic limit of instantaneous velocity and pressaquilibrium of the non-equilibrium
compressible two-phase flow model of Baer and Nunziato [D&spite this equivalence, the
six-equation model (1)ffers significant advantages in the numerical approximatompared
to the five-equation model [18]. The main numerical issuahénsolution of the five-equation
system come from the non-conservative contribution in tierme fraction equation that depends
on the divergence of the flow velocity and on the phasic impeés. [9, 25]. The variation
of the volume fraction across acoustic waves associatetisotérm makes the construction
of approximate Riemann solvers more challenging. In paldic the presence of this non-
conservative contribution makes itfidicult to preserve volume fraction positivity, especially
when shocks and strong rarefaction waves are involved [9].

2.1.1. System’s closure

The closure of system (1) is obtained through the specificatf an equation of state for
each phase, which we choose to express in tern& @hdpk, px = px(Ex. ox), K = 1,2. The
phasic sound speed can be writtercas= +/xxhk + vk, Wherehy = % is the phasic specific

enthalpyx = 282 andy = W. The mixture sound speed of this model is

c= Y1C§ + YzC% (2

whereYy = 2 is the mass fraction of phaggY; + Y, = 1). Notice the monotonic character
of (2) with respect to the volume fraction in contrast to tfmmonotonic behaviour of the
Wood'’s sound speed [26] of the Kapitd al. model [18]. This feature of the 6-equation model
also represents an advantage over the 5-equation modet inuttmerical approximation. As
explained in [27], the non-monotonic behaviour of the 5aun model’s sound speed in the
numerical dffusion zone of an interface may result in the presence of twe gmints in this
region even when the flow is subsonic in the two pure fluids. ddwestruction of approximate
Riemann solvers able to handle robustly affiicently these sonic points does not appear a
simple task. In [9] the authors also explain that the sourgdmon-monotonicity mightfiect
the propagation of acoustic waves interacting with therfatgal zone, and result in a temporal
delay in the wave transmission.

Let us remark that the pressure lgw = pk(Ek, pk), by using a more rigorous terminology,
represents aimcompleteequation of state. This law ffices to determine the fluid dynamics
when thermal and chemical phenomena are neglected, asnmoitiel above. However, a caloric
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law Ty = Tk(pk, px) for each phasic temperatufgis also needed in order to completely describe
the thermodynamic state of the fluid (see e.qg. [28]). Thethdrmodynamic characterization is
required when heat and mass transfer terms are includee ifictlv model for problems with
phase change, see Section 2.3.

Here we will restrict our study to the case of species gowkhyethe stifened gas equation
of state (SG EOS):

P(Exs pi) = (vk — D)Ek — virmk — (v — Lok (3a)
Pk +
TP, 0k) = —————— 3b
k(Pk: o) Core=1) (3b)

fork = 1, 2, whereyy, nk, nx, andCyi are material-dependent parameters. The associated gntrop
s«(pk, Tk) and the Gibbs free energy (chemical potentir(px, Tx) = hk — Tk are given by

T, 7%

(P, Ti) = Cwclog P+ mt

+ s (3c)
T Yk

W + 1k (3d)

Ok(Pxs Tk) = (7kCuk — ) Tk — CukTk log

whererj is a constant. With the SG EOS assumption (3), we kave(yk—1), xk = —(yk— 1)

and the phasic sound speed can be expressgd-a yk%.

The mixture specific internal energy for the model considdrere is defined as= Y11 +
Y2e2, and, equivalently, the mixture internal energy per unluate iS€ = pe = @181 + @28,.
The latter relation, by using the isobaric assumpier= p, = pin the energy law&x(px, ok),
k = 1,2, gives the mixture equation of state, which determinediaitly the mixture pressure
law p = p(&, p1, p2, @1):

& = a181(p, p1) + @2E2(P, 2)- (4)

In the case with the SG EOS (3) we find an explicit expressiothi® mixture pressurp [29]:

QYT | QRYam2 )

& = (a1pam + aapaip) — (LR + 225
P&, p1. P2, 1) = T ®)
y1-1 " y-1

When physically relevant values of the flow state variables defined in the region of
thermodynamic stability, the single-velocity six-eqoatimodel (1) is hyperbolic, that is it has
real eigenvalues and a complete set of eigenvectors, seestance [17] and Appendix A.
Let us also recall that (1) represents the asymptotic lifnihe hyperbolic seven-equation two-
velocity two-phase flow model of Saurel and Abgrall [21] fostantaneous kinetic relaxation
(see e.g. [17, 18]). One advantage of the six-equation mwiklrespect to the two-velocity
model is that the order of the eigenvaluesigriori known, yielding an easy decomposition of
waves in computing approximate solutions to Riemann probléf. [30, 31, 32]).

2.2. Phasic-total-energy-based formulation

For numerical reasons that we will discuss in the followimge propose to consider a
mathematically equivalent formulation of the model (1)tadbed by replacing the two phasic



internal energy equations with two phasic total energy #8gos. We denote withE, =
Ex + %pkU- d the total energy of phade The alternative form of the six-equation model reads

Oray +U-Vag = u(p1— p2), (6a)
Ot (a1p1) + V - (a1010) = 0, (6b)
Ot (azp2) + V - (azp2l) = 0, (6¢)
Ot(ol) + V- (ol O) + V (a1p1 + a2p2) = 0, (6d)
Ot (@1Eq) + V- (1BE10 + aapal) + 2°(Q, V) = —upy (1 — P2)., (6e)
0t (@2B2) + V - (@2B2U + azpl) — 2(9, VA) = upy (P1 - P2)» (6f)

where the non-conservative te@appearing in the phasic total energy equations is

2(q,Va) = —U- (Y2V(a1p1) — Y1V(a2p2)) = —U- ((Y2p1 + Y1p2) Va1 + a1Y2Vp1 — a2Y1V ),
(69)

with g denoting the vector of the system unknowns, see (12). Neateuhlike the previous

model (1) with the phasic internal energy equations, heeesiimple sum of the two non-

conservative phasic total energy equations (6e) and (@Rvers the equation expressing
conservation of the mixture total energy= & + %plj- U= ai1E1 + asE3:

6(E+V~(Elj+ a'lpllj+ (tzpzl:f) =0. (7)

This feature is beneficial in the numerical approximatiothefmodel to ensure consistency with
the conservation dE, see Section 3.1.

2.3. Model with heat and mass transfer

A classical way to model thermal and chemical inter-phasenpmena mathematically
consists in introducing additional heat and mass trangfarce termsQ and m, respectively,
into the original model system (cf. [14, 33, 21, 8, 11, 17,)28]j the present work we follow in
particular the modelling approach of Saurel and co-work&rg?2], employing the six-equation
model with phasic total energy equations (6) as the basiesysThe flow model augmented
with heat and mass transfer terms takes the form:

G +0-Vay = (P =)+ (8a)
0t (a1p1) + V - (a1010) = M, (8b)
Ot (2p2) + V - (azp2ll) = —-M, (8c)
Opl) + V- (pU® U) + V (a1p1 + @2p2) = 0, (8d)
Ot (1E1) + V- (@1 E10 + a1 p1l) + 2(9, VQ) = —up (pr— p2) + Q + M, (8e)
Ot (@2B2) + V - (@2E20 + azpoll) — 2 (0, VO) = upy (PL— p2) - Q- &am, (8f)

where the term& andm can be written as
Q=06(T,—Ty), (9a)
m=v(dz2 - Ga)- (9b)
6



Hered andv are the thermal and chemical relaxation parameters, risgglgc These parameters
are assumed to be infinite at selected locations, while theysat to zero elsewhere. More
specifically, thermal transfer is activated at liquid-vajmerfaces, and thermo-chemical transfer
is activated at liquid-vapor interfaces under metastahlermodynamic conditions (liquid
temperaturd g higher than the saturation temperatilicg; at the given pressure):

B 00 fg<a1<1-g¢,

0= { 0 otherwise (102)
oo ifg<a1 <1-¢g andan > Tsat,

V= { 0 otherwise (10b)

Here the parametey identifies liquid-vapor interface locations (eq.= 10™%). See [8] for
further discussion on the choice of tolerances.

We refer the reader to [34, 35] for a rigorous and systematalyéical study of Liu's
subcharacteristic conditiofi36] for the six-equation two-phase model with the threels\of
relaxation considered here, namely, pressure relaxationyltaneous pressure and temperature
relaxation, simultaneous pressure, temperature and chepuotential relaxation. In particular,
the works [34, 35] show that the subcharacteristic condlijoharacteristic speeds of the
relaxation system at least as large as the characterigt@sf the relaxed equilibrium system)
is satisfied for all cases as long as physical fundamentatiyitys conditions on a set of
physically positive thermodynamic variables are fulfilled

Let us notice that a theoretical pressure-temperafoHE) (saturation curve can be obtained
by imposing the equilibrium condition on the Gibbs free gyay; = g, for the liquid and vapor
phases (cf. [37, 38, 8]). With the SG EOS (3a)-(3d), th€ saturation curve is defined by the
equation

B
As + ?S +CslogT + Dslog(p + 1) — log(p + 72) = 0, (11a)
with
Cyu-Cp+n,-1 — Cp-C Cy-C
A = pl p2 T 15 771’ B, = niL—1n2 ’ - p2 pl, D, = pl vl. (11b)
Cp2—Cp Cp2—Cp2 Cp2—Cw2 Cp2—Cw2

HereC, denotes the heat capacity at constant pres€lytes Cuiyk, kK = 1, 2. The parameters in
the SG EOS (3a)-(3d) can be chosen to fit the above theoretitalurve with the experimental
curve for the considered material [37]. The theoretipal curve is used in the numerical
algorithm, see Section 4.2.

Concerning the interfacial density and the interfacial specific total energythat appear in
the mass and heat transfer source terms, their expressidreabtained by imposing appropriate
thermodynamic constraints on the thermal and chemicalggs®s. For instance, in [17], Zein
et al. determine these quantities in a model similar to (8) by agsgipressure and temperature
equilibrium during the relaxation processes. Howevernkisato the assumption (10) on the
relaxation parameters and to the particular numericalélgo used for the treatment of thermal
and chemical source terms, there is no need to specify thegsipns o, ande (see Section 4).
Let us also note that, due to the symmetry of the source tarr8),i the mixture mass and total
energy equations are recovered as for the model in (6).

To end this section, for the ease of later reference, we {8jta a compact form as

g+ V- f(a) + o (0, Va) = ¥,.(a) + ¥e(a) + ¥, (0), (12a)
7



where

a1 0 a- Va/l
a1p1 a1p1U 0
_| a2 _ @zp20 _ 0
a= plj ’ f(Q) - plj® a+ (a’]_ P1+ a2 pz)H ’ 0'((], VQ) - 0 ’ (12b)
a1Eq a1 (Er+p1)d 2(9,Va)
=) a2 (E2+ p2)d -2(q,Va)
k(P p2) 0 v
0 0 v(g2 - 01)
0 0 - -
) = o | wa@=| 5 | w@=| e
—upi (1 — P2) 6(T2—Ty) v€ (92 — 01)
upr (p1— p2) —0(T2—Ty) —ve (g2 — 01)

(12¢)
with 2 as in (6g). Above we have put into evidence the conservatbréigm of the spatial
derivative contributions in the system ®s f(qg), and we have indicated the non-conservative
term asr(q, Vq). The source termg, (q), ¥(0), ¥,(g) contain mechanical, thermal and chemical
relaxation terms, respectively.

3. Numerical solution of the model system with mechanical lexation

We begin by considering the solution of the model system (@2) only mechanical
relaxation:
9 q+ V- f(a) + o (q, Va) = ¥,(a). (13)

The treatment of thermal and chemical relaxation terms keélldescribed in Section 4. To
numerically solve the system above we use a fractional s@mique, similar to [9, 17], where
we alternate between the solution of the homogeneous hgtiedystem and the solution of a
system of ordinary dierential equations that takes into account pressure taasource terms.

That is, the algorithm consists of the following steps:

1. Homogeneous hyperbolic systeriVe solve over a time intervalt the homogeneous
hyperbolic portion of (13):

0q+V-f(q) +0o(g,Vg) =0. (14)

2. Stif mechanical relaxationWe solve in the limift — oo the system of ordinary terential
equations (ODES)
0q = ¥,(0). (15)

This step drives the two-phase flow to mechanical equilibnivith an equilibrium relaxed
pressurg; = pe = p. Inthis step the partial densities, the mixture momentine pixture
total energy, and the mixture internal energy remain caristihe volume fractionyy,
the mixture pressurg, and the phasic internal energiesSy, E = Ex(p, (axox)/ax) for
k =1,2, are updated before returning to Step 1.

8



3.1. Mixture-energy-consistent discretization

Before illustrating each step of the algorithm in more dstave emphasize that in the design
of a numerical method for computing approximate solutiohthe two-phase model (12) it is
important to ensure at all times conservation of the quastithat are physically conserved,
namely the partial densitiegpk, k = 1, 2 (together with the mixture density= a101 + a202),
the mixture momenturpd, and the mixture total enerdgy = a1E; + azE,. Note in particular
that the values of the equilibrium pressure to be used at ¢éginbing of the homogeneous
system solution step must satisfy the mixture EOS (4) fouemlofE = E - %pu. d that
correspond to conservation-consistent discrete valueg, oo as to approximate correctly
the flow thermodynamic state. Godunov-type schemes canlaivety easily formulated to
preserve conservation at the discrete level of quantitiasare governed by conservation laws
(cf. [39, 19]). However, the two-phase mathematical modihér in the form (1) or (6)) does
not contain the conservation law for the total energy, batpWasic energy equations from which
the total energy is recovered. Thdfdiulty then is to discretize the phasic energy equations in
such a way that total energy conservation is fulfilled at tiseréte level, and that consistency
with the correct thermodynamic state is ensured in the saske precise hereafter.

Let us denote with superscript 0 the quantities computealwrg) the homogeneous system
in Step 1 of the algorithm above, and with superscritite quantities at mechanical equilibrium
computed in Step 2. As mentioned above (see also Sectionv@3havep; = pE, k=12,
(pl)* = (p0)°, & = &°, andE* = EO. Let us also denote witB®C discrete values of the mixture
total energy that come from a conservative approximatich@tonservation law fdE in (7).

Definition 3.1 We say that the numerical scheme based on the fractionabdgepithm above
is mixture-energy-consistent if the following two propestare satisfied

(i) Mixture total energy conservation consistency:
EC = EOC, (16a)
where E® = (CZ]_E]_)O + (Q2E2)0.

(i) Relaxed pressure consistency:

(@202)° : (0’2/02)0)’ (165)

80’C=a§81(p*, g )+a;52(p, g
a, @,

where&%C€ = EOC — (pﬂ);(gﬂ)"_

The first property (i) means that the sum of the discrete whig¢he phasic total energies
given by the solution of the homogeneous system must reatiserete values of the mixture
total energy that are consistent with a conservative diséoem of (7). The second property (ii)
means that the value of the relaxed (equilibrium) prespupredicted in the relaxation step must
be equal to the pressure as computed through the mixturdiequs statep(E°C, a3, p;. p3),
defined by (4). That is, with the SG EOS, this consistency timmdreads (cf. (5))

&)

o = &% - ((01.01)0771 + (02.02)07]2) - (—a;lyﬂl + —a;:ﬂz)

@ @,
-1 + y2-1
9
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The mathematical formulation of the two-phase model withghasic total energy equations
(6) easily allows us to satisfy both properties (i) and (iip ensure the property (i), it fices
in Step 1 to apply a standard conservative scheme to the ratige portion of the energy
equations (6e) and (6f), that & (akEx) + V - (akExU + axpil), k = 1,2, and to discretize
symmetrically the non-conservative contributibappearing there. In such a way, the sum of the
discrete non-conservative energy equations recoverssenative discrete form of the mixture
energy equation, as a consequence of the cancellation efgmservative discrete contributions.
The fulfillment of mixture total energy conservation cotsiey then easily enables us to ensure
also the property (ii), the agreement of the relaxed equilib pressure with the correct mixture
equation of state. See the simple pressure relaxation guoedor Step 2 in Section 3.3.

On the other hand, it appeardfitiult to obtain a mixture-energy-consistent scheme if we
apply an analogous fractional step algorithm to the classig-equation two-phase model (1).
Although clearly both formulations (1) and (6) mathematjceecover the conservation law for
the mixture total energy, it seems hard to discretize thesiphiaternal energies equations (1e)
and (1f) in away that recovers a conservative discrete fdiff)olndeed, numerical models such
as [9, 17] built on the formulation (1) need to augment theegjnation system with the equation
for E. The additional conservation law f&ris solved through a standard conservative scheme to
obtain consistent discrete valuESC. These values are then used to correct the thermodynamic
state predicted by the non-conservative internal energyatéans via the mixture equation of
state. Note that this approach in general does not guardrgemnsistency property (i), that is

p* = p(E°C, a3, o}, 03)-

3.2. Homogeneous hyperbolic system solution step

In Step 1 of the algorithm we employ the wave propagation oethf [19, 40] to compute
approximate solutions of the homogeneous system (14). fikihod belongs to a class of
Godunov-type finite volume schemes [41, 42, 39, 19] for sg\hyperbolic systems of partial
differential equations. We describe hereafter the basic ideas method in one dimension. The
two-dimensional scheme will be briefly recalled in Sectich 8.

3.2.1. One-dimensional wave-propagation scheme

We consider the solution of the one dimensional syséey+ o f(q) + o(9,9x0q) = 0 (as
obtained by setting = uandV = dy in (12)). We assume a uniform grid with cells of widilx,
and we denote witlQ) the approximate solution at tith cell at timet", i € Z, n € N. Setting
At = t™1 — " the second-order one-dimensional wave-propagatiomsetas the form

At _ At
Qin+l = an - (A AQi_1/2 + A AQis1y2) — X (Fih+1/2 - Fih—l/z) s (18)

whereA*4Q;,1,2 are the so-called fluctuations at interfaggs,, between cellsand {+ 1), and
Fih+l/2 are second-order correction fluxes for higher resolution.

Here the fluctuationsA*4Q;.1/2 are computed by solving local Riemann problems at cell
interfacesx, 1> for each pair of dat®!", Q' , corresponding to adjacent cells. A Riemann solver
(cf. [42, 39, 19]) must be provided to perform this task.

Let us specify the jump relations that need to be satisfiechlapproximate Riemann solver
for a Riemann problem with left and right initial dagaandq,. The Riemann solution structure
defined by the solver can be expressed in general by a 3dtwévesW' and corresponding

speedss, M E 6 . For example, see the HLLC-type solvéM (= 3) and the Roe-type solver
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(M = 6) presented below. By using the formalism introduced in},[4@ also define thé-waves
Z' = dW' 1 =1,...,M, which have the dimension of a flux. The sum of the waves must be
equal to the initial jump in the vectayof the system variables:

M
9= —q = ) W (19)
1=1

Moreover, for any variable of the model system governed bgreservative equation the initial
jump in the associated flux function must be recovered by time af the associated-wave
components. In the considered model the conserved qesntteayok, k = 1,2, andpu,
therefore in order to guarantee conservation we need:

M M
4@ = §6(q) - FO)(q,) = Z d! = ZZ'{: (20)
I=1 I=1

for ¢ = 2,3,4, wheref® is the¢th component of the flux vectdr, and'W, and Z, denote the
&th component of théth wave and of thdth f-wave,| = 1,..., M, respectively. It is clear that
conservation of the partial densities ensures consenvafithe mixture density = a101 + a202.

In addition, we must ensure conservation of the mixturel teteergy, that is the consistency
condition (i) in (16a):

M M
Afe = fe(@) - fe(a) = )| S(Wy+ WY = > Zh + Zs, (21)
1=1 1=1

wherefe = U(E + a1p1 + a2p2) is the flux function associated to the mixture total eneggy
Once the Riemann solution structL{fB/i'+1/2, §|+1/2}|:1 ,,,,, v arising at each cell edge,1,2 is

defined through a Riemann solver, the fluctuatigiz! Q;,1/» and the high-resolution correction
fluxesF,, , in (18) are computed as

M
‘ﬂiAQi"'l/z = Z §i+1/2)i(wi|+l/2’ (22)
I=1
st = max(s 0), s~ = min(s, 0), and
proo=t ; -2 wh 23
i+1/2 = 5 IZI:H+1/2| - E( |SI1+1/2| i+1/2° (23)
where‘Wih+"1/2 are a modified version ow;+l,2 obtained by applying tchl/z a limiter function
(cf. [19]).

We present in the next sections two approximate Riemanessotiiat we have developed for
the model system (12): a HLLC-type solver [44, 45, 39], simtb the solvers described in [9,
17], and a new Roe-type solver [46]. The conservation ctarsiy condition (21) (equivalently
(164a)) is easily fulfilled in both cases.

3.2.2. HLLC-type solver
To begin with, we define an approximate solver for the twosghsystem (14) by applying
the idea of the HLLC solver of Toret al. [45] (see also [39]). One fliculty in designing a
11



HLLC-type solver for the present model is related to the nonservative character of the phasic
energy equations, for which we lack a notion of weak solutiothe distributional framework
(see for instance on this subject [47, 48, 49, 50]). None#®Inote that to correctly set the initial
thermodynamic state for the solution of the homogeneougssys/e only require that the sum
of the phasic total energies computed at the previous tired falfill the consistency condition
(@1E1)° + (a2E,)° = E®C. The individual phasic energies are re-set at the begirofiSgep 1 by
using the relaxed variablgs andaj, obtained in Step 2 through a procedure that by construction
ensures that the energies’ sum recovers the correct migtueegy state (Section 3.3). The
individual phasic energies values that come from the smiutif the homogeneous system have
only a role in the initial condition for the mechanical reddion step. Aiming at designing the
simplest method that could provide reasonable mixtureggreonsistent estimates farEy)°,

our first approach consists in simply neglecting the norseorative contributiorZ'(q, 9xq) in

0:q + 9xf(Q) + 0(g,0xq) = 0. We then apply the standard HLLC method to the conservative
portion of the system plus the advection equationdfar The resulting solver consists of three
wavesW!', | = 1,2, 3, moving at speeds

st=S,, £=S*, and =5, (24)

that separate four constant statgsqg,,, 0«r andq,. Here we indicate with subscriptel, xr
quantities corresponding to the statgs andq,, adjacent (respectively on the left and on the
right) to the middle wave propagating at sp&d Following Davis [51] we define

S¢ = min(uy, — ¢, U — ;) and Sr = max( + Cg, Ur + C). (25)

The spee®&* is then determined as (see [39])

Pr — P + peUe(Se — Ug) — prur(Sr — uy) (26)
pf(Sf - Uf) _Pr(Sr - ur) )

The middle states).,, g« are defined so as to satisfy the following Rankine—Hugoniot
conditions, based on the conservative portion of the system

S* =

fO) = F9(er) = Sr(Tr — Gar), (27a)
FO(aue) = F9(a0) = Se(Oue — ), (270)
FOar) = 19 (Aer) = S* (Ger — o), (27¢)

£=2,...,6. Then, the middle states are obtained as

al,ts
(a/lpl)t SL__S*
(G',ZPZ)t S L:gi
Pu s?l:gi S* ’ (28)

(@1p1) 558 (22 + (S* - u) (S* + 58 =))

S,—u, (E2, p.
(a2p2). 555+ (pTz +(S* - u) (S* t oSw

O

t = ¢,r. The waves for this simple HLLC-type solver are

W=~y W2=0Qur —Gur, and W3 = ¢ — Gur. (29)
12



Note that the conditions (27) above for= 2, 3,4 imply the conservation conditions fefpox
andpu in (20) (with M = 3). For¢ = 5, 6, the conditions (27) imply analogous relations for the
conservative portion of the phasic energy equations:

3 3
41@ = £O(q,) - fO(q,) = Z g(W.'f = Zzlf (30)
I=1 I=1

for & = 5,6, whered R = uay(Ex + p), k = 1, 2. Sincefg(q) = f®(q) + f©(q), the above
relations clearly guarantee the consistency conditioh (@juivalently (16a)) with mixture total
energy conservation.

Let us mention that it is possible to construct more soptastid HLLC-type solvers that
take into account the non-conservative terms in the phasicgg equations. The idea is to
introduce a correctiom' to the f-wave componenigL, Z'6 corresponding to the phasic energies
to model non-conservative energy exchanggs,, = Z\,,, + (1)@, k = 1,2,1 = 1,2,3. Note
that for any choice ofp' we still guarantee the mixture total energy conservatiomsistency
condition (21), thanks to the symmetry of tliewave corrections for the two phasic energies
axEyx, k = 1,2. In fact, in the sum of the mixture total energy flux conttibos the termsp'
cancel outdfg = 4O + 410 = 33 (ZZ'+ Z2) = 22 (2L + ZL).

We have numerically investigated versions of the HLLC-tgpk/er with diferent treatment
of the non-conservative terms, and no remarkalfledince has been observed between the sets
of results. Therefore, we choose in general to adopt thelegshmethod that neglects the
terms. Extensive numerical experimentation has shownfteet&eness of this approach, based
on the results available in the literature.

3.2.3. Roe-type solver

Following the classical Roe’s approach [46] (see also [8213]), we define an approximate
Riemann solver for (14) by using the exact solution to thenRien problem for a linearized
systemd:q + A(qr, 0 )3xq = 0. The constant cdicient matrixA = A(q., q;) € R®® (Roe
matrix) is an averaged version of the mathi¢g) of the homogeneous model system written in
quasi-linear formgq + dxf(q) + (g, 0«xQ) = 9:q + A(Q)dxq = 0. Note that, in contrast with
the HLLC-type method described above, here we include thecooservative termsX(q, 9xQ)
in the discretization. The numerical scheme then impjicittfines a meaning for these non-
conservative contributions, whose suitability remainsatbeless hard to evaluate.

The choice of the Roe matri& = A(q,, g;) must guarantee conservation for the quantities
that are physically conserved, the partial densitigs, k = 1,2, the mixture momenturpu,
and the mixture total energly (conditions (20) and (21)). That is, denoting wigl) the £th
component of), and with &) the associated flux functiogth component of (g)), we require:

6
D Aa(ar - a)® = 19(q) - 19(q) (31a)
1=1
foré =2,3,4,and
6
> (Bei + Aa)(ar - )" = fe(a) - fe(@), (31b)
1=1
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Where,&ﬂ is the entry £,1) of the matrixA, and fe = U(E + a1p; + a2py) is the flux function
for the total energyE, see equation (7). The relations above are equivalent tadhditions
(20) and (21). The Riemann solution structure of the Roeesatensists oM = 6 waves and
speeds that correspond to the eigenstructure of the Roexniaé&noting withrz the (right) Roe
eigenvectors, and wichf the Roe eigenvalues, we have

WE = B and §=1, £=1---,6 (32)

Where/?g are the cofficients of the projection of the jumg — g, onto the basis of the Roe
eigenvectorsy, — g, = Z?Zlﬁgff. The definition of the Roe matrix and of the Roe eigenstractur
for the case of the gfened gas EOS is reported in Appendix B.

Numerical experiments show agreement of the results addaiith the HLLC-type solver
and the Roe-type solver [52]. Let us remark that the HLLC meéthas expected, is more
robust than the Roe method, and it is the method that we ygouafer to employ for the one-
dimensional scheme and for the computation of normal wavdise two-dimensional scheme.
The Roe eigenstructure is nonetheless useful in the twestkional wave propagation algorithm
to define transverse fluctuations [19]. This is done by ptojgehe normal fluctuations obtained
via the HLLC solver onto the basis of Roe eigenvectors aaseatito the orthogonal direction.

3.2.4. Two-dimensional wave-propagation scheme

We consider the solution of system (12) in two dimensions @adesian grid with cells of
sizedx and4y. We denote b)Qi”j the approximate solution of the system at the delf)(and at
timet". The two-dimensional high-resolution wave propagatigoathm [40, 19] has the form

At _ At _
= Qff - Ix (jrrAQi—l/Z,j +A AQi+1/2,j) ~Jy (BJ’AQL,-,M +8 AQi,j+1/2) -
At

At (33)
T (Fllaj = Fllip) - ay (G120 = Glja)-
Here A*4Q andB*4Q are the fluctuations arising from plane-wave Riemann probli thex
andy directions [40]. The ﬂuerihH/Z’j, Gi*jm/z contain contributions of transverse fluctuations
and second-order corrections terms and they are employaatdon higher accuracy.

The transverse fluctuations are computed by decomposirfyitieationsA*4Q andB*4Q
into transverse waves. In our scheme we use the eigengeuwaftthe Roe matrices of the local
plane-wave Riemann problems (see Appendix B) to perforntrémsverse splitting.

The algorithm (33) above can be generalized in a straightfod manner to logically
rectangular quadrilateral grids (curvilinear grids) tefpem computations in irregularly-shaped
domains. We refer the reader to [19, 40] for an exhaustivegm@tion of multi-dimensional
wave-propagation algorithms, and to [53, 15] for applmasi to compressible multiphase flow.

3.3. Stif mechanical relaxation step

In Step 2 of the algorithm the phasic pressures obtained fBoep 1 are relaxed to an
equilibrium value. We use a procedure similar to the reiaxaechniques described in [21, 9],
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in that we consider the system of ODEs (15) and we look foralgten in the limity — oo:

drar = pu(p1— p2), (34a)

0t (a1p1) = 0, (34b)
0t (a202) = 0, (34c)
Ot (pl) = 0, (34d)
Ot (@1E1) = —upi (p1— P2)» (34e)
Ot (a2E2) = pupi (p1 - p2) - (34f)

Recall that the quantities with superscript 0 are those ngnfrom the solution of the
homogeneous system in Step 1, and that the quantities wittrstript+ represent the solution
at mechanical equilibrium. As earlier anticipated, froml{Band (34c) it is easy to observe that

(@)’ = (ae)°, k=12, and p)* = (o0)°, (35)

this yielding alsg* = p® andd* = @°. Now, combining (34a), (34e), (34f), and using (35), we
find easily

O(a1E1) = di(ar1&E1) = —pidray, (36a)
O(a2E2) = di(@28E7) = pioras. (36b)

Note that the sum of these equations gi#gs = 0,& = 0, and henc&* = E° and&* = &°,
meaning that the total energy and the total internal enefgfyeotwo-phase mixture do not vary
as the phasic pressures relax toward the equilibrium vaiue

We introduce now an approximation, by assuming a lineaatian of the interface pressure
p with a;:

;- p?
po=p+ ——(e1-ad). (37)
@) —a;

With this assumption, the system (36) can be easily intedrand we obtain

0,

(@1E1)" — (@1E1)° = (2&1)" — (0161)° = - P ; il (a; - ), (38a)
0,

(@2E2) — (@2E2)° = (@28)" ~ (282 = TP (o - ). (38)

0 *
Note that the hypothesis (37) is equivalent to approxingatn in (36) asp, = @ (an
approximation also suggested in [17]).

Next, we impose mechanical equilibriup) = p; = p; = p*, which in particular amounts to
express the phasic internal energies at final tim&as 8k(p*,(akpk)°/a;) fork = 1,2. With
these relations, together with (35) and the saturation itiondx; + a»> = 1, system (38) gives
two equations for the two unknowrs and p*. For the particular case of the SG EOS (3) we
can obtain a simple quadratic equation for the relaxed pregs (which has always a physically
admissible solution) and then easily compute the relaxaawefractione;. See Appendix C.1.

Let us remark that the valugs anda; computed through this algorithm by construction
satisfy the mixture internal energy equation (4), hencerddaxed pressurg* verifies the

mixture pressure lawp* = p(ao,a’i,M,M), where we have used* = &° and

= >
@y @,
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(akok)* = (axor)®. Since the wave propagation scheme that we employ in Stepdvess
conservation-consistent discrete values of the mixtura energy from the computed phasic
energiesE® = (a1E1)° + (a2E2)° = E°C, then the computed values 8f = E° - %M
also agree with mixture total energy conservation. Basetthisrobservation we deduce that the
simple pressure relaxation procedure described here desple thermodynamically correct
value of the equilibrium pressumg. Both properties (i) and (ii) of Definition 3.1 are ensured,
and therefore the numerical scheme is mixture-energyistems.

4. Numerical solution of the extended model system with thenal and chemical relaxation

We consider now the numerical treatment of heat and massfératerms to solve the full
model (12). As in [17], we assume that the mechanical relexaharacteristic time /L is much
smaller than the characteristic time scalég, 11/v of heat and mass transfer, and that thermal
and chemical relaxation occur in conditions of pressurdliegum. Based on this, heat and
mass transfer source terms are handled after solving thensygith mechanical relaxation (15).
A third step is then added to the fractional step algorithiscdbed in Section 3. This Step 3 of
the algorithm is activated at liquid-vapor interfaces cauyl it includes two sub-steps:

3a. Thermal relaxationWe solve in the limijy — o0, § — o the system of ODEs

0 = ¢,(Q) + ¢(0)- (39)

This sub-step relaxes the phasic temperatures to an equitityalueT; = T, = T under
the constraint of mechanical equilibrium, representedieystit pressure relaxation term
¥,(g) in the system above. The updated valliep of the temperature and of the pressure
computed through this step are used to check the metastaitiditionTiiq = T > Tsafp).

If the liquid has reached a metastable state, then massdrasalso activated by applying
the next sub-step 3b. Otherwise, we update the volumedrgdtie pressure and the phasic
energies and we return to the solution of the homogeneotssyStep 1).

3b. Thermo-chemical relaxation.If the metastability condition is fulfilled, the system of
ODES
0kQ = Y. (a) + o(Q) + ¥,(9) (40)

is solved in the limiju — o0, & — o0, v — co. This step of the algorithm relaxes the phasic
temperatures and Gibbs free energies to equilibrium valyes T, = T andg; = @, at
liquid-vapor interfaces, while keeping mechanical edpilim p; = p,. Note that in this
step the mixture density, momentum, total energy and iateznergy remain constant,
whereas the partial densities vary. The solution of theesysibove gives updated values
for the volume fractiom, the mixture pressung, the partial densitiesxox, and the phasic
energiesyEx, Ex = Ek(p, (akek)/ax) before returning to Step 1.

In the section devoted to the illustration of numerical ekpents (Section 5) we will
sometimes refer to the thermo-chemical solver describeel dp-pT-pT g this nomenclature
representing the Steps 2, 3a, and 3b of the algorithm.
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4.1. Thermal relaxation step

We illustrate here the solver used for the temperature atilaxx step (Step 3a). We consider
the solution of the system of ODEs (39) in the limits oo, § — co:

Oy = p(pP1— P2), (41a)
di(aip1) = 0, (41b)
di(azp2) = 0, (41c)

oi(pl) = 0, (41d)
Ot(@1E1) = —upy (p1— p2) +0(T2 = T1), (41e)
Oi(@2E2) = upy (p1— p2) —0(T2 = T1). (41f)

The quantities at initial time are those coming form the pues relaxation step, denoted with
superscript. We indicate with superscript the quantities at final time (mechanical and thermal
equilibrium). We easily see that the partial densities,tfieture momentum, and the mixture
internal and total energy remain constant in this step. &fbeg, as in Step 2 of the algorithm,
we have

(ko)™ = (ae)®, k=1,2,  (p0)™ = (pd)°, & =&° E™=E° (42)
The mechanical and thermal equilibrium conditions to bedsgul here are

Py =Py =P, (43a)
T =Ty =T (43b)

Combining (42) and (43) gives an algebraic system for thenawkisa;*, o;*, p™, T*. For the
stiffened gas EOS this system can be reduced to the solution ofleatjgaequation to be solved
for the pressure™. See Appendix C.2.

4.2. Thermo-chemical relaxation step

We finally describe the solution technique for the tempeeatand Gibbs free energy
relaxation step (Step 3b). This step is activated if meldststates are reacheli;* > Tga(p*™).
The saturation temperatufie, is computed by solving the nonlinegrT equation in (11) by
using Newton’s iterative method. We look for the solutiontloé system of ODEs (40) in the
limit g — o0, 6 — o0, v — o0:

Oray = p(pL—p2) + V%v (44a)
dt(arp1) =v(92 - 91, (44b)
dt(azp2) = -v(92 — 01), (44c)

oi(pl) = 0, (44d)
Ot(@1E1) = —pupi (pr = P2) + 0 (T2 = T1) +ve& (g2 — G1) » (44e)
Ot(a2Ez2) = pup (p1— P2) —0(T2 — T1) —ve& (G2 — G1) - (44f)

The quantities at initial time are those coming from the namital and thermal relaxation

step, denoted with superscript. We denote with superscrigh the quantities at final time

(mechanical, thermal, and chemical equilibrium). We gasiée that the mixture density,
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momentum, internal energy and total energy remain constathis step. Therefore, by using
the relations (42):

p® =% (U)® = ()’ &% =& E¥=FE" (45)
Hence we can write the mass and mixture energy conservaiimitons:

P’ =afpf +afpy, (46a)
& =afEf +asEy. (46b)

The mechanical, thermal and chemical equilibrium condgiare

py = py = p®, (47a)
TP =Ty =T®, (47b)
oy =05 (47c)

Now the equations (46) and (47), together with the condtrainr- @, = 1 and the phasic EOS
relations&x = Ex(pw. px), give an algebraic system for the equilibrium variahiés p®, T®,

p?, p?. The system can be easily reduced to the solution of a simglati®n for one variable,
for instance the equilibrium pressup€. In general this equation is non-linear and needs to be
solved numerically, for example by Newton'’s iterative ntethSee Appendix C.3.

Note that with the solution procedure described here we do@ed to specify expressions
for the interface density, and the interface specific total enemgyn the ODEs system (44). Let
us also mention that an analogous procedure has also bedmyza].

To end this section, it is important to stress that, similartihe pressure relaxation
step described in Section 3.3, these steps of the algoridmthérmal and thermo-chemical
equilibrium ensure consistency of the equilibrium presstaluesp* and p® with the correct
mixture equation of state. Again, this comes from the faeat thy construction the relaxed
thermodynamic state satisfies the mixture energy equatipad that the discrete values of the
mixture total energife® = E** = E* = E° computed through our Godunov-type scheme for the
solution of the homogeneous system are conservationstensi

5. Numerical experiments

We present here a selection of nhumerical results in one aodpace dimensions obtained
by using the method described in the previous sections withvéithout activation of thermo-
chemical relaxation processes. For the one-dimensiostal e also illustrate some comparison
results with an alternative algorithm for heat and masssfearthat consists in skipping Step 3a
in the procedure described in Section 4.

5.1. Water cavitation tube problem

We begin by considering a water liquid-vapor expansionitatien) tube problem in one
dimension proposed by Saur al. [8]. In this test we have a shock tube of unit length filled
with liquid water of density, = 1150 kgm?® at atmospheric pressuge= 10° Pa. The liquid
is assumed to contain a uniformly distributed small amodntapor, o, = 1072 in the whole
domain. We use the $fiened gas equation of state (3) to model the thermodynamiavimeh
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of the liquid and vapor phases of water, with the parametisengn table 1. With this set of
data, from (3) we find the liquid temperature Bs= 354728 K, and hence the vapor density
pv = 0.63 kgm?®, by assuming the flow in thermal equilibriufiy = T;.

A velocity discontinuity is set ak = 0.5 m at initial time. In the first test case we set
u = -2 nys on the left andi = 2 mys on the right of the discontinuity.

For this specific test, we perform the computation with foiffedent levels of relaxation
by using the basic techniques detailed in Section 4: onlyhaeical relaxation with no heat
and mass transfer (case denotedpaeelaxation in the following and in the legend of the
figures); mechanical relaxation and thermal relaxatiomtatrfaces fT relaxation); mechanical
relaxation, thermal relaxation at interfaces and full thedynamic relaxation at interfaces under
metastable conditiongp{pT-pT g relaxation); mechanical relaxation and full thermodyrami
relaxation at interfaces under metastable conditipagT grelaxation). Phase transition is hence
activated only for the two cases pfpT-pTgand p-pTgrelaxation. The former case-{pT-
pTg corresponds to the physical model of thermodynamic teardéfined in (10) and to the
numerical algorithm illustrated in Sections 3 and 4. Theelatase f-pT g corresponds to an
alternative thermodynamic model where we consifjer= o if simultaneouslys < @; < 1-¢
andTy > Tsa Peg) for eitherk = 1 ork = 2 (see [8, 22]). Numerically, for this case we pass from
Step 2 of the fractional step algorithm (pressure equilit)i to Step 3b (full thermodynamic
equilibrium).

We use 5000 grid cells, as in [17], and we set the Courant numbe 0.5. Note that
the authors in [17] need to take ~ 0.15 in order to obtain a stable solution for this problem.
Results are displayed in Fig. 1, where we indicate with addole thep relaxation case, with a
dotteddashed line the-pT case, with a dashed line thepTgcase, and with stars the pT-
pTgcase. In all the cases we observe two rarefactions propagatiopposite directions that
produce a pressure decrease in the middle region of the Nie. that the leading edge of the
two rarefaction waves in the caseg®pT andp-pT-pT grelaxation moves at a lower speed with
respect to thg and p-pT grelaxation cases. This is a consequence of the activatitimeofal
transfer at interfaces, see (10), which causes expansmstto under thermal equilibrium. Note
however that the flow in the region of the two rarefaction veagaot under chemical equilibrium
since here the metastability condition is not met and tloeeefsibbs free energy relaxation is
not activated. Let us also notice that the lower charadierspeed predicted by our results
in conditions of simultaneous pressure and temperaturiitagqum with respect to the case of
merely pressure equilibrium agrees with the theoreticakved Flatten—Lund [34], where the
authors derive analytical expressions of the charadiegsguilibrium speeds for a hierarchy of
relaxation two-phase models. The wave structure solutitimwo phase transition is commonly
seen in one of the classical mechanical cavitation tubéde$9] and one example obtained with
the present method in [52]). When thermal and chemical psaseare activated at metastable
states (casgs-pT-pTgandp-pT g we observe in the solution two additional waves propagatin
in opposite directions at a speed lower than the speed ofithextternal expansion waves. These
additional waves are evaporation fronts. In these casésligitid-vapor transition liquid water
is expanded until the saturation pressure is reached (sga@dhof the pressure in Fig. 1). We
can notice from the plot of the vapor mass fraction that a kamabunt of vapor is generated.

Next, we perform an analogous test but with stronger ratiefaeffects by setting the initial
velocity tou = =500 nys on the left of the initial discontinuity and= 500 nys on the right. We
use 5000 grid cells ang = 0.1. Due to the sffness of the problem, taking a higher Courant
number deteriorates the accuracy of the pressure solutioarrespondence of the evaporation
fronts. Results are displayed in Fig. 2, where again we slh@wdur cases corresponding to
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different levels of relaxation. In this test with stronger exgian the two evaporation waves (one
left-going, the other right-going) are more clearly digtiishable, and the increase of the vapor
mass fraction is much more significant.

These numerical results agree qualitatively with thosééniterature [8, 17]. Moreover, our
numerical method improves significantly the computatidimak with respect to the approach
of Zein et al. [17]. Here for instance the authors need to take the Cournamioer as low as
» = 0.03 for the expansion tube test with strong rarefactions.

Table 1: Parameters for the SG EOS for liquid and vapor water

phase| y | x[Pa]| n[Jkgl | n [J/(Kg-K)] | C[J/(Kg-K)
liquid | 235 | 10° | —1167x 10° 0 1816
vapor | 1.43| O 2030x 10° -234x 10° 1040

5.2. Dodecane liquid-vapor shock tube problem

We consider here a dodecane liquid-vapor shock tube profleorproposed in [8]. This test
involves a unit length shock tube with an initial disconttguocated atx = 0.75 m that separates
a left region filled with liquid dodecane and a right regiotefil with vapor dodecane. As in [8],
for numerical reasons each fluid region contains a small atfithe phase that fills the region
on other side of the discontinuity & 10°8).

The initial condition consists of two constant states ontweesides of the discontinuity with
data

(v o1 U, P, ) = (2 kgm?, 500 kgm?®, 0, 10° Pa 10°°)

and
(ov. 1, U, P, av)g = (2 kgm?®, 500 kgm?®, 0, 10° Pa 1-10°),

where the subscripts andR denote the states on the left and on the right of the interfabe
liquid and vapor phases of dodecane are modeled throughiffemed gas equation of state (3)
with the parameters given in Table 2.

Figure 3 shows numerical results at tilne 473 us obtained by employing our humerical
model with and without mass and heat transféeas. Here we plot results for threefdrent
levels of relaxationp relaxation (solid line)p-pT-pT grelaxation (stars), ang-pT grelaxation
(dashed line). Thermo-chemical transfer at metastaliesséad therefore liquid-vapor transition
is activated only in the last two cases. From the plots we d@mewve for both cases with and
without phase transition that the breaking of the initiquid-vapor interface results in a leftward
going rarefaction wave, a rightward going contact diseuarity, and a shock wave. Moreover,
when thermal and chemicaffects are activated, liquid-vapor phase change occursraéerg
an additional evaporation wave between the rarefactiorevaad the contact discontinuity. This
evaporation front produces a liquid-vapor saturationaegit higher speed. For this test there are
not visible diferences between thepT-pTgand p-pT gcases. In particular, note that the left-
going rarefaction occurs in a region of almost pure liquid Aence only mechanical relaxation
is activated in this zone for all cases. We can observe thigeid in this zone the flow is away
from thermal equilibrium by looking at the plot of the tematerre diferencel, — T, in Fig. 3.

Our results agree qualitatively with those reported in [83 §17]. In the present test the
computation was performed by using a grid with 2000 cells.
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Figure 1: Numerical results for the water cavitation tubé weth initial velocity [u] = 2 nys at timet = 3.2 ms.
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Table 2: Parameters for the SG EOS for liquid and vapor dodecan

phase| y | n[Pa] n [J/kg] n' [3/(Kg-K)I | Gy [I/(Kg - K)]
liquid | 2.35 | 4x 10F | —775269x 10° 0 1077.7
vapor | 1.025 0 -237547x 10> | -244x 1C° 195645

5.3. Cavitating Richtmyer—Meshkov instability

Our first example in two space dimensions is the gas-watetatiang Richtmyer—Meshkov
instability test problem proposed in [9]. Mass and heatsf@nefects are neglected in this
experiment. We consider a rectangular regiogy) € [0,3m] x [0, 1 m], where at initial time
a curved interface separates a left zone filled with neartg puater ¢4 = 10°°) and a right
zone filled with nearly pure gas = 10°°), see the top row of Fig. 4 for an illustration. The
initial pressure isp = 10° Pa and the densities apg = 100 kgm?® andp, = 1000 kgm?
for gas and water, respectively. Both gas and water haveiga welocity of u = —200 m’s.
The two materials are modelled by theffghed gas equation of state with parameigrs: 4.4,
mw = 6x 10° Pa,ny = n,, = 0 Pa, for water, angly = 1.4, 7y = 0 Pa,ng = 5, = 0 Pa, for the
gas. Here, top, bottom and left boundaries are treated abswgalls, whereas the right side is
considered an outflow boundary.

Figure 4 shows the numerical results obtained by using odwhaodeat five diferent times,
t=2,31, 64 and 86 ms, employing a 300100 grid. From the plots one can observe that when
the flow impinges against the left wall a right-going shockr@raropagates through the curved
gas-water interface. This produces a Richtmyer—Meshkstalility characterized by expansion
waves and an elongating jet. The pressure decrease in taas®p zones close to the left wall
generates cavitation pockets in this region. Our resultseagrell with the ones shown in [9], by
looking at the global features of the solution structure.

5.4. Vapor bubble compression

We are next interested in simulating the piston-inducedpression of a vapor bubble in a
liquid and the associated phase transition processes. & adoroblem setup similar to the
one considered by Caret al. in [54] (see also [14]). Initially a stationary vapor bubldé
radius 02 m is situated at the center of a liquid-filled unit squaretarer with a wall-mounted
piston on the left boundary and fixed solid walls on the otlees We fix phasic pressures and
temperatures to the equilibrium valups= p, = 10° Pa, andT, = T, = 600 K, respectively.
We assume that the material inside the container is dodeaadehe parameters for the liquid
and vapor phases are taken as in Table 2. With this set of tfegyhasic densities for the
liquid and vapor phases are than= 458338 kgm?® andp, = 3.408 kgm?. Similar to previous
experiments, initially each fluid is assumed to be nearlgpwithe, = 10°° in the vapor bubble,
anday = 10°% in the surrounding liquid region, respectively. The pistefocity set at the left
wall is up, = 100 mis. See [19] for more details on the numerical treatment fisr roving
boundary.

Numerical results obtained with the full model with thercioemical transfer are shown in
Fig. 5. Here we display pseudo-color plots for the vapor nfi@gion and contour plots for the
mixture pressure at threeftirent timest = 0.4, 0.8, and 12 ms, using a 20& 200 grid. Due
to the piston motion and consequent bubble compressiomitia circular shape of the vapor
bubble is deformed to a kidney shape, as it is clearly viditdm the vapor mass fraction plots.
Let us note that no spurious pressure oscillations at exted are observed at the various stages
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Figure 4: Numerical results for the cavitating Richtmyer—Nles instability experiment. Pseudo-color plots of the gas
volume fraction, and contours of the mixture pressure are slaivive diferent timest = 0, 2, 3.1, 6.4 and 86 ms using
a 300x 100 grid. The black solid line displayed in the pressuresilodicates the approximate location of the gas-water

interface.
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of the bubble compression, this indicating thfeaéency of both the wave propagation scheme
and the thermodynamic relaxation procedure describeddtidses.

5.5. High-velocity underwater projectile

To show the capabilities of our two-dimensional computaianethod with mapped grids
for irregularly-shaped domains, we begin by considerirghigh-velocity underwater projectile
numerical experiment presented in [8] (see also [10]). imphoblem liquid water flows at speed
u = 600 nys from left to right over an immersed obstacle with hexagmeation. Initially the
liquid is at atmospheric pressurp,= 10° Pa, and it has densityy = 1500 kgm®. A small
amount of vapor, = 1073 is present in the liquid at the initial time. The parametefrshe
SG equation of state for the liquid and vapor phases of wageth@ same as those used for the
one-dimensional cavitation tube experiment in Sectiongeg Table 1.

Due to the symmetry of the problem, we perform the computatinly on the portion
of the physical domain above the symmetry axis, set at 0, imposing a line-of-symmetry
boundary condition at this axis. We use a uniform grid witld &200 cells over the rectangular
computational domain [@.5 m]x[0, 0.5 m], which is mapped to a curvilinear grid in the physical
domain, see Fig. 6.

We compute the solution with and without heat and mass tean$h both cases the flow
interaction with the edges of the obstacle generates stamefaction waves, which determine a
pressure decrease and consequently a cavitation regider sfime sticiently large the flow
reaches a steady configuration with a stationary cavitatmre. In the case with no thermo-
chemical &ects only mechanical cavitation is observed, that is thevtir@f a gas pocket due
to the pressure decrease. Figure 7 shows steady-statésrastimet = 10 ms. Here we
display pseudo-color plots of the vapor volume fractiorporamass fraction, mixture density,
and mixture pressure obtained by our method with and withotitation of the thermo-chemical
solver. By looking at the results with heat and mass trarisfére left column of the figure, one
can observe the variation of the vapor mass fraction, windltates the formation of evaporation
fronts. The phasic mass fractions remain instead condtantphase transition is modeled, and
in this case only the volume fractions vary, as shown in tisailts in the right column of the
figure. All these results are in agreement with those preseint [8]. Moreover, as in [8],
we observe a dierent pressure field in correspondence of the cavitatiorewakile for the
case with no thermo-chemicaffects the pressure continues decreasing reaching smadisvalu
of the order of 10° bar, for the case with thermo-chemical transfer the presdecreases until
saturation conditions, corresponding approximately talaesof 05 bar. This is analogous to the
behaviour of the pressure observed for the one-dimenstanéhtion test in Section 5.1 (Fig. 1).

5.6. High-pressure fuel injector

To end this section, we perform the high-pressure fuel tojeexperiment proposed in [8].
Here we consider a nozzle where liquid fuel (dodecane) ectef from a high-pressure tank
to a chamber at atmospheric pressure. The nozzle has the shayn in Fig. 6, and it has a
length of 10 cm and a height of 4 cm. The height of the throatd<n, and the outer inclination
angles of the converging and diverging chambers with réspahe horizontal direction are 45
and 10, respectively. We set an initial discontinuity xat="0.8 cm between a region of liquid
dodecane at a pressure of 1000 bar and at a temperature of @48 gorresponding density is
570 Kg/m®) and a region of dodecane vapor at atmospheric conditiobar(l A small amount
of vapore, = 107* is present in the liquid at the initial time. The parametdrthe SG equation
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Figure 5: Numerical results for the vapor-bubble compres&stwith thermo-chemical relaxatioffects. Pseudo-color
plots of the vapor mass fraction (left) and contour plots efghessure (right) are shown at threffefient timest = 0.4,
0.8, and 12 ms, using a 20& 200 grid. In each plot, the dashed line indicates the initiehtion of the liquid-vapor

interface, and the solid line indicates the location of titeriface at the displayed time.
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Figure 6: Types of quadrilateral grid used for the high-spbemderwater projectile experiment (on the left), and for the
high-pressure injector experiment (on the right).

of state for the liquid and vapor dodecane phases are the garni®se used in the previous
one-dimensional dodecane liquid-vapor shock tube probée Table 2.

Numerical results obtained by our method with and withouithend mass transfer over
a 400x 160 grid are shown in Fig. 8. Here we display pseudo-colotspdd the vapor volume
fraction, vapor mass fraction, mixture density, vapor teragure and mixture pressure at titne
600 us, corresponding to a fully-developed stage on the fueAsbbserved in [8], there are not
large diferences in the size of the cavitation pockets between tleeveidts phase transition (left
column) and the case without phase transition (right coljms one can notice from the plots
of the volume fraction and of the density. Significarffeliences can be nonetheless observed in
the vapor mass fraction and vapor temperature plots. Lebtgsin particular the sharp variation
of the vapor temperature across the interfacial zonesiifrtbechemical &ects are not activated.

6. Conclusions

We have developed a new numerical model for two-phase casipte flows with cavitation
and liquid-vapor transition based on the single-velochgggiation two-phase flow model with
stiff pressure relaxation of Sauret al.[9]. The model includes thermal and chemical potential
relaxation terms to account for heat and mass transfer ggese The key idea of our method
is to employ in the numerical discretization a phasic-tetaérgy-based formulation of the
basic hyperbolic model system rather than the phasicratenergy-based formulation used
previously in the literature [9, 17]. Our approach easilgpwas us to design a numerical scheme
that guarantees consistency with conservation of the mextatal energy with no need of
augmenting the 6-equation system with an extra consenvédiw for the mixture energy, as
instead done for the classical model [9, 17]. A fully-diszed two-dimensional high-resolution
scheme has been developed for the model equations, whidoysygwave propagation method
for the approximation of the homogeneous hyperbolic portibthe system. Thermo-chemical
source terms are handled througfiicient stif relaxation solvers that drive the two-phase
mixture to thermodynamic equilibrium conditions via thdwion of simple algebraic systems
of equations. Thanks to the conservation consistency popéthe method, these numerical
relaxation procedures ensure also consistency of theeglpressure at equilibrium with the
correct mixture equation state. Numerical experimentsn@ and two space dimensions show
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volume fraction, vapor mass fraction, mixture density, and anexpressure obtained with (left column) and without
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Figure 8: Numerical results for the high-pressure fuel itgeexperiment. Pseudo-color plots of the vapor volume
fraction, vapor mass fraction, mixture density, vapor temipeea and mixture pressure are shown at time 600 us
using a 400« 160 grid. The results with heat and mass transfer are dispiaythe left column, while the results without
heat and mass transfer are displayed in the right column.
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the ability of the proposed numerical model to simulate tzsiein pockets dynamics and liquid-
vapor transition processes.

Although the six-equation numerical model of Sawgehl. [9] with stiff pressure relaxation
has proven to be veryfiective, our phasic-total-energy-based approach provédssmpler
scheme. Moreover, we think that the mixture-energy-coeiscy property of our method is a key
factor for the #iciency and robustness of the sequence of relaxation stepsechanical and
thermo-chemical equilibrium that follows the solution béthomogeneous 6-equation system.
In particular, at least for some of the numerical tests wihitation that we have reported, our
method improves remarkably the computational time of theg@ation two-phase model with
liquid-vapor transition of Zeiret al. [17], proving to be stable for higher Courant numbers. Let
us mention that only one-dimensional numerical experisiemre presented in [17].

Due to its simplicity and robustness the proposed numerigadel appears to be suited
for extensions to related multiphase problems, such as yhamics of powder compaction
[55], and to more complex flow regimes. One challenging tdpicfuture developments is
the study of low-Mach numerical strategies for the currevd-phase model. Indeed the well
known dificulties encountered by compressible flow solvers for low Maamber regimes
(cf. [56, 57, 58, 59, 23]) represent a critical issue for liygas flows with cavitation and
evaporation. This is due to the large and rapid variatiohegicoustic impedance in the medium,
where highly compressible fluid regions (vapor) and nearbpimpressible zones (liquid) co-
exist and interact.
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Appendix A. Model system eigenstructure

For completeness of the illustration of the proposed apprate Riemann solvers, we report
here the eigenstructure of the one-dimensional (homogm)&sequation modekq + dxf(q) +
(g, 9xq) = 0. The eigenvalues are

Ad1=U—-C, Ar=A3=A3=As5=U, Adg=U+C, (Al)

whereu is the velocity in thex direction, andc the mixture sound speed in (2). The matrix
R=[ry,...,re] of the corresponding right eigenvectaisk = 1,...,6 can be taken as

0 0 0 0 1 0
Y1 0 0 1 0 Y1
Y, 0 1 0 0 Y,
R(@) = u-c 0 u u 0 u+c ’ (A-2)
YiHi-u9 -2 2H,- S Hy-9 Lk yy(H; 4 ug)
Yo(Hy —ud) 1 0 0 0 Ya(Hy + uo)

30



where we have denoted withy = hy + “—22 the specific total enthalpy of phakeand where we
have definedZi = —pic2 + (1 + &), with ki = G o= 1 2,

Appendix B. Roe matrix and eigenstructure

By imposing the conservation conditions (31) a Roe matrixtie 6-equation model closed
with the SG EOS can be determinedfas A(0, Y1, uYs, YiHz, YoH3),

Q 0 0 0 0 0
0 aY, -0y Y1 0 0

. 0 oY, oYy \?2 0 0

A= I + 11, A42 A43 20— (Kl UY1 + K2 UY2) K1 K2 ’

(—H]_ + Hz) lm A~52 A53 Y]_H]_ - UY]_ (Kl UY1 + K2 UYZ) a0+ K1 UYJ_ WIKZ
(—H]_ + Hz) l]‘Y; Aﬁg Aeg Y2H2 - UY2 (Kl UY]_ + K2 UYZ) UYZ K1 0+ K2 l]‘Y;

(B.1a)
where here (SG EOS)k = y«nk, and where
~ 0 — —
Auy = —0% + y1 — kg O(k UY: + k2 UY2), (B.1b)
~ 02 — —
Ayz = —02 + X2 — KZE + G(Kl uyY: + ko uYs ), (B.lC)
—— —— A2 — — —

Asy = —Y]_H]_G + uY; (Xl - K]_UE) +Q uyY, (Kl uY: + k2 UYs ), (Bld)
A5 = —YlH]_U + UY]_ (Xz - KZE) +0 UY]_ (Kl UY1 + Ko UYQ) (Ble)
Ago = —Y2H2G + uYs (Xl - KlE) +Uu Y2 (Kl UYl + K2 UY2) (Blf)
~ —— . —_— l:|2
Asz = —YoH2U + uY, ( X2 — K2§) Y2 (Kl UY]_ + K2 UYz) (Blg)

The averaged quantities Y., Yo, UY1,UYz, Y1H1, Y2H2 in the matrix above are defined as

Ug or + Ur
= L VPET NPT (B.2a)
VPe + \Pr
~  Yeepe + Yer
¥, = ke VPt kr Pr’ 12 (B.Zb)
Vpe + pr
—  (uV, + (uY,
qu=( ke Vioe + (UYi)r \/pr’ k=12 (B.2¢)
VP P
Tn:%(o\?ﬁﬁﬁ), k=12 (B.2d)
—  (WH + (YxH
Y = (YxH)e vioe + (YieHir \/Pr’ k=12 (B.2¢)
VPe + e
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Note that¥; + Y, = 1 anduY; + uY, = (. Moreover the corresponding average sound speed is

E= Y Vic2 + Vo2, (B.2f)

Where\’(;gﬁ = Kk (Y/kH\k - a—;?k) +)(ka.
The Roe eigenvalues are given by

A1=0-8, l=Az=As=A5=0, Ag=0+&, (B.3)
and the corresponding matrix of the Roe right eigenvecfes|[f,, ..., e], is
0 0 0 0 1 0
Y1 0 0 1 0 Y1
~ Y> 0 1 0 0 Y
R=l a-t 0 y 0 0 (+¢ (B4)
YoH, — uY, € 1 0 0 0 YoH, + uY> €

The strengthgif, & = 1,...6 of the Roe waves in (32) are obtained through the eigen-
decompositiory, — g, = Zf lﬁgl’g, and they are given by

. 4 N
Buo = (1p1 + a2 I;z) F Cyoeprau (B.5a)
G2
B, = My o+ —A(a/zpz)+l1(04282) (B.5b)
= Haapa) - ZM (B.5¢)
= Haspr) - ¥ M (B.50)
Bs = day, (B.5¢)

where(:) = (-)r = (-)e-

The definition of the Roe’s matrix reported above is easilgeded to the two-dimensional
case G = (u,Vv)). In this case we need the Roe eigenstructure of the sysiem flane-wave
Riemann problem in theandy directions. We use the same averages as in (B.2), excepidivat
in all the formulas kinetic energy terms must take into actake contribution of the tangential
velocity v (e.g. £ *"2 is used instead og—) For instance, the Roe elgenstructl{mg p Je=1..7
corresponding to the matri&*(g) € R™7 of the system of the plane-wave Riemann problem in

the x direction is found as

B=0-8 B=B=X=X=X=0, B=0+¢, (B.6)
0 0 0 0 1 0 0
\4 0 0 1 0 0 4
Y, 0 1 0 0 O Y,
BX — a-¢ 0 a Q 0 0 G+¢
% 0 0 0 0 1 v
ViH - uie -2 -2gegogl uggogl Mol UoyiH) 4 oove
YoH, — UY2& 1 0 0 0 0 YoH,+ uYse@
(B.7)
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where

V, +V
V= M7 (B.8a)
Ve + ~pr
— (VY + (VYL
vaz( Ke Ve + k)”/p_r, k=12 (B.8b)
Ve + Npr
W= 3 0%+ ), k=12 (880
o V2 4 Vo2, Vi T 0 o PP
&= YY1 + Vo2, W@ = wic(VieHe = K Vi) + Ve, K = B (B.8d)
\7 = Kl\,/‘Yil +K2\,/‘Y12. (B.8e)

Appendix C. Mathematical expression of the relaxed variable

We report here the mathematical formulas used to computegbiéibrium variables in the
stiff relaxation procedures of Sections 3.3, 4.1, and 4.2 for éinécpilar case of the $fened gas
equation of state.

Appendix C.1. Mechanical relaxation

The following quadratic equation can be obtained for thexed pressure* at mechanical
equilibrium (see Section 3.3):
a(p)?+bp +d=0,

with the codficientsa, b, andd defined by

a=1+ ’)/20’8 + ylag,
b = C1a3 + Czad — (L +¥2)aipd - (1 + y1)apd,

d = ~(Czap{ + Cra3p).
together withCy = 2y1m1 + (y1 — 1)p® andC; = 2y,m; + (y2 — 1)pP. This gives the solution

L Vb2 — 4ad

o (C.1)

where we have retained the root corresponding to a phygicahaningful positive value of the
pressure (note th&t, C, > 0,a > 0,d < 0 andb? — 4ad > 0). The values of the volume fraction
a; at equilibrium are then found as

. (n—l)p*+2p$+clao €2
(r1+1)p+C, v '
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Appendix C.2. Thermal relaxation

From the invariance conditions (42) and the equilibriumdittons (43) we can derive a
single quadratic equation to be solved for the presptirat mechanical and thermal equilibrium:

a(p)?+bp*+d =0 (C.3)
with the codficientsa’, b, andd’ defined by

a = Cyy(@1p1)° + Cua(@2p2)’,
b = mCu(rr — D((@101)°)? + 12Cr2(y2 — 1)((@202)°)* + (@1p1)°Cua(yams + m2)+
(@202)°Cra(yamz + m1) + (@101) A202)°(MCu2(y2 — 1) + n2Cua(y1 — 1))~
E%Culy1 - Dlawp1)® + Ca(y2 — 1)(@202)°).
d' = n1Cu(y1 — Dma((@101)%)? + 12Cu2(y2 — Dmi((@202)°)? + ((@201)°Cuaya+
(@202)°Cuay2)mams + (a101)*(@202)°(mCra(y2 — 1)m1 + 12Cu(y1 — m2)-
E%Cu(y1 — Dma(a1p1)° + Cralyz — Dma(a202)”).

Having obtained™ from the above equation, the equilibrium volume fractiothisn

(I** — Cvl()’l - l)(p** + RZ)(alpl)o (C 4)
b Culyr - D(p™ + m2)(@1p1)° + Cua(y2 — 1)(p™* + m1)(a202)° '

and the equilibrium temperature is

o (PTHm)al (P +m)(1-an)” ©.5)
(y1 = 1Cula11)® (2 - 1)Cra(a2p2)° '

Appendix C.3. Thermo-chemical relaxation

By using the conservation conditions (46) and the equiliibriconditions (47), together
with the relationsSx = &Ex(pk, o), we can first obtain a quadratic equation for the equilitoriu
temperature as a function of the equlibrium presstife= T®(p®). We have:

ap(p®) (T)? + bp(p®) T® + dy(p®) = 0, (C.6)
where the cofficientsay(p®), by(p®), anddy(p®) are
ap(p®) = p°CuCua((y2 — D(P® +y1m1) — (2 — (P + y2r2)),
bp(p®) = E%(y1 — 1)Cu(p® + m2) — (v2 — 1)Cu2(p® + m1))+
P°((v2— DCw2n1(p® +m1) — (y1 — D)Cu n2(p® + m2))+

C2(p® + m1)(p® + y2m2) — Cua(p® + m2)(p® + yam),
dp(P®) = (2 — 11)(p® + 71)(p® + ).

This gives:

—bp(p®) + y(bp(p®))? — 4ap(p®)dp(p®)
2ap(p®) '
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T9(p%) =



By introducing this relation in the Gibbs free energy eduiilim condition (47c) (see also (11))
we finally obtain a single equation for the presspfe at mechanical and thermo-chemical
equilibrium:

Bs ®(n® ® ® _
AS+W+CSI09T (p®) + Dslog(p® + m1) — log(p® + m2) = 0, (C.8)

with A, Bs, Cs, andCs as in (11b). Once we compup€, the equilibrium temperatug® can be
obtained from (C.7), and the values of the equilibrium diésiand volume fractions are given
by the following relations:

¥ _ @
a®:p Py

. (C.9)
Py = p3

As a final remark, note that the solution of the system (48)-($T gequilibrium solution) for
full thermodynamic equilibrium may not be physically adsilide. In such a case we consider
that the mixture is composed nearly of the spekitisat has the highest entrogy, by using an
idea similar to [14]. Therefore, we fix the value @f = a = 1 - € (for instancee = 10°8).
Then, we obtain an algebraic system for the unknopx??l,sﬂ@,pg’B,pga by using the conservation
conditions (46) and the pressure and temperature equilibconditions (47a) and (47b). Again,
for the SG EOS, this system can be reduced to a single quaéguiation forp® (or for T®).
We select the physically admissible solution of this quadmrequation that maximizes the total
entropys® = YPs? + Y5's?.
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