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ABSTRACT

The sound of a gong is simulated through the vibrations
of thin elastic plates. The dynamical equations are nec-
essarily nonlinear, crashing and shimmering being typical
nonlinear effects. In this work two methods are used to
simulate the nonlinear plates: a finite difference scheme
and a modal approach. The striking force is approximated
to the first order by a raised cosine of varying amplitude
and contact duration acting on one point of the surface. It
will be seen that for linear and moderately nonlinear vibra-
tions the modal approach is particularly appealing as it al-
lows the implementation of a rich damping mechanism by
introducing a damping coefficient for each mode. In this
way, the frequency-dependent decay rates can be tuned to
get a very realistic sound. However, in many cases cymbal
vibrations are found in strongly nonlinear regimes, where
an energy cascade through lengthscales brings energy up
to high-frequency modes. Hence, the number of modes
retained in the truncation becomes a crucial parameter of
the simulation. In this sense the finite difference scheme is
usually better suited for reproducing crash and gong-like
sounds, because this scheme retains all the modes up to
(almost) Nyquist. However, the modal equations will be
shown to have useful symmetry properties that can be used
to speed up the off-line calculation process, leading to large
memory and time savings and thus giving the possibility to
simulate higher frequency ranges using modes.

1. INTRODUCTION

Thin plates are common mechanical elements found in sev-
eral contexts in physics and engineering, from fluid-structure
interaction, to aeronautics, civil engineering, wave turbu-
lence [1–3], and others. The context of musical acoustics
does not represent an exception, including linear and non-
linear examples. Plates are constitutive parts of several mu-
sical instruments: the soundboards of pianos and guitars
are thin plates vibrating usually in a linear regime. Plates
have been used in the past as reverberation units in music
performances before the advent of digital software. Large
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metallic plates were found at times in theatres as they can
reproduce quite conveniently the sound of a storm when
shaken.

When a thin plate is struck with a mallet or a hammer
at large amplitudes, it produces a gong-like sound [4, 5].
Nonlinear effects caused by the large amplitudes of vibra-
tion are responsible for the crashing and shimmering sound
similar to that of a gong [6]. These effects are reproduced
by the von Kármán equations, who have proved to be an ef-
fective model for weakly nonlinear vibrations despite the
introduction of a single second-order correction in the in-
plane strain tensor with respect to the linear plate equa-
tions [7, 8].

Here the focus is on the resolution of the von Kármán
equations in the context of sound synthesis obtained through
physical modelling. A finite difference code developed by
Bilbao [9, 10] is used as a benchmark for testing a code
based on modal projection. The finite difference scheme
is energy conserving and was used before in the analysis
of thin plates in chaotic and turbulent regimes [1]. Al-
though modal schemes have been employed several times
in physical modelling of linear instruments, examples of
their use for the production of sounds in a nonlinear con-
text are rare. This is explained by the fact that the nonlin-
ear modal equations can be quite involved, and therefore
require a lot of memory and computational time, consid-
ering that the number of modes to be kept for synthesis is
typically a few hundred.

In this work, some symmetries of the modal nonlinear
plate equations are shown to help achieve memory and
computational savings: in turn, this can help in the cre-
ation of faster synthesis algorithms. The most appealing
feature of modal synthesis is the possibility of adding a
rich damping mechanism with practically no extra effort:
it is sufficient to add a damping term to each mode. The
damping terms can be tuned at will, and they can be esti-
mated in a real experiment, at least in a first approxima-
tion. In a finite difference code, on the contrary, damping
can only be introduced in the time domain, thus limiting
the implementation of a rich mechanism.

2. MODEL EQUATIONS

Consider a rectangular domain S of lengths Lx, Ly with
boundary ∂S. Cartesian coordinates x ≡ (x, y) will be
used to identify a point over S. Weakly nonlinear vibra-
tions w(x, t) of the order of the plate thickness h are de-
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scribed by the von Kármán equations. These are:

ρhẅ = −D∆∆w − 2σ0ẇ + L(w,F ) + P (x, t); (1a)

∆∆F = −Eh
2
L(w,w). (1b)

The function F (x, t) is an auxiliary function that describes
the in-plane motion; it is usually referred to as Airy’s stress
function. The symbol ∆ is the Laplacian; therefore in
Cartesian coordinates ∆∆w ≡ (w,xx + w,yy)2. D =
Eh3

12(1−ν2) is the rigidity of the plate, where E is Young’s
modulus and ν is Poisson’s ratio; ρ is the volume den-
sity. P (x, t) is a forcing term of some kind acting per-
pendicularly to the plate surface, and σ0 is a damping co-
efficient. L(·, ·) is the nonlinear coupling term known as
von Kármán operator, who reads:

L(w,F ) = w,xxF,yy + w,yyF,xx − 2w,xyF,xy. (2)

The system must be provided with boundary conditions
along ∂S. In this work, simply supported boundary condi-
tions with movable in-plane edges are chosen, i.e.

w = w,nn = 0 ∀x ∈ ∂S, (3a)

F = F,n = 0 ∀x ∈ ∂S, (3b)

where n is the direction normal to the boundary. These
conditions describe edges fixed in the transverse direction,
but free to rotate. In the in-plane direction the plate is free
of loads.

2.1 Linear Modes and Modal Projection

A solution to system (1) can be obtained by projecting the
functions w and F onto their linear modes. These are de-
fined as:

w = Sw

Nw∑
i=1

Φi(x)

‖Φi‖
qi(t); (4a)

∆∆Φi(x) =
ρh

D
ω2
iΦi(x). (4b)

F = SF

NF∑
i=1

Ψi(x)

‖Ψi‖
ηi(t); (4c)

∆∆Ψi(x) = ζ4
i Ψi(x). (4d)

(4b) and (4d) are completed, respectively, by their bound-
ary conditions (3a) and (3b). Note that Nw and NF are, in
theory, infinite. However they must be truncated to finite
numbers for obvious computational reasons. As usual for
linear problems, the modes are orthogonal with respect to
a suitable scalar product. The scalar product between two
modes Φi, Φj can be defined as

〈Φi,Φj〉S =

∫
S

dx Φi Φj , (5)

and the orthogonality condition imposes

〈Φi,Φj〉S = ‖Φi‖2δij , (6)

with δ being Kronecker’s delta. The norm of each mode is
thus imposed by the scalar product. However, the constant
Sw appearing in (4a) can be chosen so that the norm of the
mode SwΦi/‖Φi‖ becomes, precisely, Sw. The same is
true for the modes Ψi and the constant SF .

To obtain the modal equations, (4) is inserted into (1).
Then one takes inner products of (1a) and (1b) with, re-
spectively, Φs(x) and Ψk(x) to get:

q̈s + 2χsωsq̇s + ω2
sqs =

−ES
2
w

2ρ

∞∑
n,p,q,r=1

Hn
q,rE

s
p,n

ζ4
n

qpqqqr+
〈Φs, P (x, t)〉S
‖Φs‖ρhSw

. (7)

Note that the original σ0 coefficient is replaced here by
suitable χs coefficients, which are the modal damping co-
efficients. Regarding the forcing, one usually chooses a
pointwise impulsion at the point x0, therefore

P (x, t) = δ(x− x0)p(t). (8)

The form of p(t) can be chosen as a raised cosine of the
form

p(t) =

{
p0
2 (1 + cos(π(t− t0)/∆t)), |t− t0| ≤ ∆t

0 otherwise.
(9)

This creates a raised cosine of maximum amplitude p0 cen-
tered around t0 and of length ∆t. This is a first approxi-
mation to a striking impulsion on the plate. Typically, for a
timpani mallet one may choose p0 ≈ 5−35 N and ∆t ≈ 5
ms; for drum sticks p0 ≈ 17− 200 N and ∆t ≈ 0.15− 0.3
ms. Examples are given in fig. 1(a).

Note that, with the current choice for P (x, t) one gets

〈Φs, P (x, t)〉S = Φs(x0)p(t). (10)

Moreover, two third order tensors appear in (7). These are:

Hn
q,r =

〈Ψn, L(Φq,Φr)〉S
‖Ψn‖‖Φq‖‖Φr‖

; (11a)

Esp,n =
〈Φs, L(Φp,Ψn)〉S
‖Φp‖‖Φs‖‖Ψn‖

. (11b)

The two tensors can be combined to give

Γsp,r,q ≡
NF∑
n=1

Hn
q,rE

s
p,n

ζ4
n

; (12)

this tensor is the tensor of coupling coefficients for the
modal equations. It is fourth order because the modal equa-
tions are cubic with respect to the modal coordinates qs(t).

2.1.1 Solutions to The Eigenvalue Problems

A solution to (4b) with boundary conditions (3a) is ob-
tained immediately by considering

Φi(x) = sin

(
i1πx

Lx

)
sin

(
i2πy

Ly

)
, (13)

for integers i1, i2. This gives the following eigenfrequen-
cies of vibration:

ω2
i =

D

ρh

[(
i1π

Lx

)2

+

(
i2π

Ly

)2
]2

. (14)



On the other hand, for the Airy stress function modes there
is no analytical solution. It is worth noticing that the eigen-
value problem (4d) with boundary conditions (3b) corre-
sponds mathematically to the problem of a clamped Kirch-
hoff plate, even though it describes the physical situation
of in-plane motion free of loads at the boundary. The ques-
tion is then how to find the modes of a Kirchhoff plate with
clamped edges. A possible strategy is to construct an ap-
propriate algebraic eigenvalue problem starting from en-
ergy considerations. This is known as Galerkin’s method.
This method is based on the assumption that the generic
eigenfunction Ψk can be written as a weighted sum of cho-
sen expansion functions, hence:

Ψk(x) =

Nc∑
n=1

ankΛn(x). (15)

The rate of convergence and accuracy of such a method
relies heavily on the expansion functions used to approx-
imate the sought solution, as well as on the total number
of functions, Nc. Obviously the expansion functions must
form a complete set over the domain of interest; in addi-
tion they need to satisfy all the geometric boundary con-
ditions. The case of the clamped plate presents two such
conditions, namely zero displacement and zero slope at the
boundary. Usually one resorts to modification of Fourier
series, for which completeness follows directly from the
Fourier theorem. In addition, satisfaction of the boundary
conditions can be achieved by adding a fourth order poly-
nomial to the Fourier series, as explained in [11]. Hence
for the clamped plate problem one may use

Λn(x) = Xn1
(x)Yn2

(y), (16)

where

Xn1(x) = cos

(
n1πx

Lx

)
+

15(1 + (−1)n1)

L4
x

x4

− 4(8 + 7(−1)n1)

L3
x

x3 +
6(3 + 2(−1)n1)

L2
x

x2 − 1, (17)

and similarly for Yn2(y). The eigenvalue problem may be
written in the form

Ka = ζ4Ma; (18)

this gives the expansion coefficients ank along with the eigen-
values ζk. The stiffness and mass matrices are obtained
from energy considerations [11], and they read:

Kij = 〈∆Λi,∆Λj〉S −
∫
S

dx L(Λi,Λj), (19a)

Mij = 〈Λi,Λj〉S . (19b)

2.2 The Finite Difference Approximation

Time and space are discretised so that the continuous vari-
ables (x, y, t) are approximated by their discrete counter-
parts (lhx,mhy, nht), where (l,m, n) are integer indices
and (hx, hy, ht) are the steps. Boundedness of the domain
implies that (l,m) ∈ [0, Nx]× [0, Ny] so that the grid size

is given by (Nx+1)× (Ny +1). The continuous variables
w(x, t), F (x, t) are then approximated by wnl,m, Fnl,m at
the discrete time n for the grid point (l,m). Time shifting
operators are introduces as

et+w
n
l,m = wn+1

l,m , et−w
n
l,m = wn−1

l,m . (20)

Time derivatives can then by approximated by:

δt· =
1

2ht
(et+ − et−), δt+ =

1

ht
(et+ − 1),

δt− =
1

ht
(1− et+), δtt = δt+δt−. (21)

Time averaging operators are introduced as:

µt+ =
1

2
(et+ + 1), µt− =

1

2
(1 + et−),

µt· =
1

2
(et+ + et−), µtt = µt+µt−. (22)

Similar definitions hold for the space operators. Hence, the
Laplacian ∆ and the double Laplacian ∆∆ are given by:

δ∆ = δxx + δyy, δ∆∆ = δ∆δ∆. (23)

The von Kármán operator at interior points L(w,F ) can
then be discretised as:

l(w,F ) = δxxwδyyF + δyywδxxF

− 2µx−µy−(δx+y+wδx+y+F ). (24)

Thus the discrete counterpart of (1) is:

Dδ∆∆w+ρhδttw = l(w, µt·F )−2σ0δt·w+Pnl,m; (25a)

µt−Dδ∆∆F = −Eh
2
l(w, et−w). (25b)

Such a scheme is energy conserving, where the discrete en-
ergy is positive definite and yields a stability condition, as
proved in [9, 10]. Implementation of boundary conditions
is explained thoroughly in [10]. For the sound synthesis of
a struck plate, however, the constraint of energy conserva-
tion may be relaxed: if the initial amplitude of vibration is
not too large (typically less than 10

√
LxLy), the damping

effects will make sure that the time series will not become
unstable. A faster scheme than can then be implemented,
and this is:

Dδ∆∆w + ρhδttw = l(w,F )− 2σ0δt·w + Pnl,m; (26a)

Dδ∆∆F = −Eh
2
l(w,w). (26b)

2.3 Convergence of Γ coefficients

Table 1 presents a convergence test of the Γ tensor for a
plate of aspect ratio ξ = Lx/Ly = 2/3. The convergence
in this case depends on two factors: the first is the amount
of stress function modes retained in the definition of Γ (NF
in eq. (12)); the second is the accuracy on the Airy stress
function modes and frequencies (quantified by the num-
ber Nc in eq. (15)). For clarity, in the following tables



NF

k 100 144 225
1 20.033 20.034 20.034

20 7.5605·103 9.4893·103 9.4960·103

50 1.3928·104 1.3929·104 1.3937·104

100 1.4847·104 2.7360·104 1.2413·105

400 484 625
1 20.034 20.034 20.034

20 9.4970·103 9.4975·103 9.4977·103

50 1.3937·104 1.3937·104 1.3937·104

100 1.3334·105 2.2100·105 2.2108·105

Table 1. Convergence of coupling coefficients,
Γkk,k,k(LxLy)3, ξ = 2/3.

Grid Points

k 51× 76 161× 241 280× 419
1 20.728 20.381 20.189

20 9.7935·103 9.6413·103 9.5567·103

50 1.4440·104 1.4234·104 1.4080·104

100 2.0223·105 2.0246·105 2.0286·105

Table 2. Convergence of coupling coefficients, FD
scheme, Γkk,k,k(LxLy)3, ξ = 2/3, NF = 225

NF is always the same as Nc. It is seen that a four-digit
convergence up to the Γ100

100,100,100 coefficient is obtained
when NF = 484. The same coefficients can be calculated
using the finite difference code. Results are summarised
in table 2. It is seen that the coupling coefficients can
be calculated to very high precision when using the modal
description. The major drawback of the modal approach is
the limited number of modes that one can keep for the sim-
ulations (≈ 200). On the other hand, the finite difference
scheme produces simulations including a vast number of
modes (≈ 10000), at the expense of numerical precision.
Comparing tables 1 and 2 suggests that a four-digit conver-
gence is out of reach for the finite difference scheme with
typical grid sizes. The question is then which one of the
two methods is better suited for sound synthesis.

3. EXAMPLE: A STRUCK PLATE

In this section an example is investigated to compare the
two methods. The reference plate is a steel plate of di-
mensions Lx × Ly = 0.4 × 0.6 m2, Young’s modulus
E = 2 · 1011 Pa, density ρ = 7860 kg/m3, Poisson’s
ratio ν = 0.3 and thickness h = 1 mm. The plate is
excited with a temporal raised cosine at one point, with
∆t = 0.1 ms and varying amplitude p0. The damping fac-
tor is ωsχs = 0.75 s−1, resulting in σ0 = 0.75ρh kg/m2.

The finite difference scheme is run at 100 kHz, resulting
in a grid size of 51×76 points. Scheme (25) takes about
two hours of calculation per second of simulation, on a
machine running MATLAB equipped with Intel Core i5
CPU 650 @ 3.20GHz. However, the simpler scheme (26)
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Figure 1. (a) Raised cosine simulating the impacts of
a timpani mallet (dashed line) and a wooden drumstick
(solid line). (b) Normalised time series obtained from the
modal scheme when the plate is excited with a raised co-
sine of amplitude 15 N and ∆t = 0.1 ms, and having a
damping factor σ0 = 0.75ρh kg/m2.

is faster and requires about an hour of calculation for the
same simulation parameters.

On the other hand, for the modal approach the biggest
issue results in the calculation of the Γ tensor. However,
this calculation is performed off-line once and for all. It
is worth noticing that the same tensor can be used for all
problems sharing the same boundary conditions and aspect
ratio. The typical maximum size achievable for a fourth
order tensor of dimension N4

w is reached when Nw (the
total number of displacement modes) is about 150; in this
case the tensor occupies about 1 GB of memory. From
section 2.3 it is seen that a reasonable convergence of the
Γ tensor is obtained when NF = 484. The calculation
of Γ with NF = 484, Nw = 150 takes about 0.5 hours in
MATLAB. Once the tensor is ready, one can design a basic
Störmer-Verlet scheme for the time integration [12]. This
is achieved by replacing d2

dt2 , d
dt with their discrete coun-

terparts δtt, δt· in (7). For sound synthesis, this scheme can
be run at lower sampling rates, typically 20kHz; doing so
results in a calculation time of about 10 minutes per sec-
ond of simulation. The time series produced by the modal
scheme for p0 = 15 N is shown in fig.1(b). Although the
envelope resembles that of a decaying impulsion, the high
frequency content of the time series is really poor: this is
where the truncation to Nw = 150 modes rears its head.
Fig.2 compares the spectrograms obtained from finite dif-
ferences and modes, in the case of three forcing cases:
p0 = 15, 100, 200 N (top to bottom). As the excitation
grows, energy is passed to higher parts of the spectrum,
which bear significant perceptual information. The flow of
energy towards smaller scales should be interpreted in the
realm of wave turbulence [2]; in actual fact, wave turbu-
lence in vibrating plates is the subject of extensive stud-
ies [1,3,8]. A turbulent flow is characterised by the flow of
energy to higher frequencies up to the dissipation scales;
however the modal truncation does not allow the energy to
flow past 5000 Hz, a limit which makes the plate sound dull



Figure 2. Comparison between FD (left) and modes (right)
for p0 = 15 N (top), 100 N (middle), 200 N (bottom).
The modal truncation at Nw = 150 modes is evident in all
cases.

and colourless. The finite difference scheme, on the con-
trary, produces a much brighter and sharp sound, because
the frequency spectrum is much larger (for a sampling rate
of 100kHz, the upper limit is about 40kHz). The question
is then how to spare memory space in the calculation of
the Γ tensor, and possibly how to speed up its calculation.
This is the subject of the next section.

4. CALCULATION SHORTCUTS

4.1 Symmetry Properties

Useful symmetries can be derived for the Γ tensor. A first
obvious property is the following:

Hi
p,q = Hi

q,p. (27)

This follows directly from the definition of L(·, ·), which
is bilinear in its entries. A second, less straightforward
property is obtained when integrating by parts the tensor
E from (11b). This gives

Enp,q = Hq
p,n +

∮
n · δS Gnp,q (28)

where G is a third order tensor depending on Ψn, Φp, Φq
and their derivatives along the boundary. It was noted in
[7] that the selected boundary conditions make the integral
vanish. In this way, the tensor Γ may then be conveniently
written as

Γsp,q,r =

NF∑
n=1

Hn
p,qH

n
r,s

ζ4
n

. (29)

Basically the symmetry properties for Γ mean the follow-
ing sets of indices will produce the same numerical value:

(s, p, q, r), (r, p, q, s), (s, q, p, r), (r, q, p, s),

(q, r, s, p), (p, r, s, q), (q, s, r, p), (p, s, r, q).

These symmetry properties can lead to large memory sav-
ings when the number of transverse and in-plane modes is
a few hundred.

4.2 Null Coupling Coefficients

For the sake of numerical computation, it would be in-
teresting to know a priori which coupling coefficients are
null. In actual fact, empirical observations of the Γ tensor
suggest that only a smaller fraction of coefficients is not
zero. As an example, consider fig.3. In this figure some
of the coefficients Γnp,q,r are plotted for given n, p and for
q = r = 1 : 10. A black slot corresponds to a value
of zero. It is clear that more than half of the coefficients
is vanishing. Thus, an a priori knowledge of their occur-
rences could lead to huge memory and computational sav-
ings. Referring to fig.3, one may notice that the patterns
depicted in the diagrams of the left column are repeated
exactly by the adjacent diagrams in the right column. This
suggests that the modes can be grouped in families whose
members share the same coupling rules with respect to
members of another family. A straightforward way to di-
vide the modes on the plate is to consider the symmetry of
their shape with respect to a coordinate system with origin
at the centre of the plate. Four families exist, and these are:
doubly symmetric (SS), antisymmetric-symmetric (AS and
SA) and doubly antisymmetric (AA). For instance, the first
mode is a doubly-symmetric mode because it presents one
maximum at the centre of the plate, and is thus symmet-
ric with respect to the two orthogonal directions departing
from the centre of the plate in the x and y directions. The
first few modes for the case under study may be classified
in the following groups:

◦ SS: 1,4,8,11,12,20,...

◦ SA: 2,7,9,14,16,...

◦ AS: 3,6,13,15,19,...

◦ AA: 5,10,17,18,...

Observing the black slots of fig.3 permits to state the fol-
lowing heuristic rule:

the indices (s, p, q, r) will give a nonzero value
for Γsp,q,r if and only if modes s,p,q,r come
all from distinct modal shape groups or if they
come from the same group two by two.

For example, the combinations (SS, SS, AS, SA) and (SS,
SS, SS, AS) will definitely give a zero value; on the other
hand the combinations (SS, SS, SS, SS), (SS, AA, SS, AA)
and (SS, AS, SA, AA) will give a nonzero value. A rigor-
ous mathematical proof is not carried out as it involves a
rather lengthy development which is beyond the scope of
the present work. For the sake of generality, it should be
mentioned that similar symmetries hold for other boundary
conditions in rectangular and circular geometries [7, 13].
Thanks to this interpretation it is easy to see why the left
column diagrams are reproduced symmetrically in the right
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Figure 3. The null coupling coefficients (black squares)
are placed in the slots predicted by the heuristic rule.

column: the modes chosen for the two columns come from
the same families, hence they give rise to the same zero
coefficients. This rule, in combination with the previous
remarks on symmetry, can be used to speed up the calcula-
tion of the Γ tensor (for example by pre-allocating the zero
entries when using a sparse matrix description). Ideally,
a tensor comprising 400 - 500 modes should be used for
sound synthesis, in order to be able to simulate frequen-
cies up to 10kHz.

5. CONCLUSIONS

This work presented a comparison between a finite differ-
ence and a modal scheme for the reproduction of the non-
linear vibrations of a thin, metallic plate, aiming at simu-
lating the sound emitted by a gong struck by an impulsive
force (like a mallet). The two methods were shown to yield
the same results, within the bounds imposed by numerical
approximation. The problems induced by modal truncation
were highlighted and their influence on the sound produced
described. It was seen that symmetry and coupling rules
are desirable to the extent of reducing the burden deriv-
ing from the calculation of the coupling coefficient tensor.
These properties were shown, leading to an a priori knowl-
edge of the null coupling coefficients. These coefficients
constitute more than a half of the total coefficients. This
work opens the possibility to construct a very effective and
precise modal scheme for nonlinear vibrations: the cou-
pling coefficients can be calculated to very high precision,
and a fine damping mechanism can be implemented in the
modal equations. Sound samples from the finite difference
and modal schemes will be played at the conference, for

both rectangular and circular geometries.
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