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NUMERICAL APPROXIMATION OF LEVEL SET POWER MEAN
CURVATURE FLOW

AXEL KRÖNER∗, EVA KRÖNER† , AND HEIKO KRÖNER‡

Abstract. In this paper we investigate the numerical approximation of a variant of the mean
curvature flow. We consider the evolution of hypersurfaces with normal speed given by Hk, k ≥ 1,
where H denotes the mean curvature. We use a level set formulation of this flow and discretize the
regularized level set equation with finite elements. In a previous paper we proved an a priori estimate
for the approximation error between the finite element solution and the solution of the original level
set equation. We obtained an upper bound for this error which is polynomial in the discretization
parameter and the reciprocal regularization parameter. The aim of the present paper is the numerical
study of the behavior of the evolution and the numerical verification of certain convergence rates.
We restrict the consideration to the case that the level set function depends on two variables, i.e.
the moving hypersurfaces are curves. Furthermore, we confirm for specific initial curves and different
values of k that the flow improves the isoperimetrical deficit.

Key words. geometric evolution equations, level set formulation, viscosity solution, finite
elements
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1. Introduction. Geometric evolution equations, especially curvature-dependent
interface motion has been studied for many years in both pure and applied mathe-
matics. One application example is the evolution of soap films and the behavior of
the boundaries of oil drops on a surface of water which evolve into disks. In mate-
rial science, for example, the evolving surfaces might be grain boundaries in alloys
which separate differing orientations of the same crystalline phase. In image pro-
cessing, for example, one wants to identify a dark shape in a light background in a
two-dimensional image. Therefore a so-called snake contour is evolved so that it wraps
around the shape. We refer to [23] for a more detailed exposition of these applications
and, e.g., [23, 15, 16, 41] and references therein for further applications.

The most famous case for such an interface motion is the mean curvature flow
of closed n-dimensional hypersurfaces in Euclidean space Rn+1 or as special case the
curve shortening flow of closed curves in the plane. Under this flow the hypersurface
moves in normal direction so that the normal speed equals the (mean) curvature and
a convex initial hypersurface shrinks to a round point in finite time, where in case of
closed, embedded plane curves this even holds if the convexity assumption is left out,
cf. [37] and [29, 31, 36].

Mean curvature flow can be formulated in parametric form, where the moving
hypersurface is given by a parametrization over a fixed hypersurface which depends
on the evolution time as variable, cf. [37]; a special case is graphical mean curvature
flow, where the hypersurface is given as the graph of a height function, cf. [26]. A third
possibility is a phase field approach to mean curvature flow, cf. [44] and references
therein, and the fourth which will be considered in the following in more detail is to
consider the PDE resulting from the level set formulation. The level set formulation is
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2 Numerical approximation of level set power mean curvature flow

powerful because it can handle topological changes of the moving hypersurface. Level
set methods were introduced by Sethian and Osher, see [46, 52, 30], and have been
applied to a wide range of problems.

In the present paper we are concerned with the level set formulation of a modified
version of the mean curvature flow. Instead of the mean curvature we prescribe the
normal speed of the evolution to be a power k ≥ 1 of the mean curvature and assume
that the initial hypersurface has positive mean curvature. In our previous paper [40]
we proved a priori error estimates for a finite element approximation of this flow. The
aim of the present paper is the numerical study of the behavior of the evolution and
the numerical verification of certain convergence rates. We restrict the consideration
to the case that the level set function depends on two variables, i.e. the moving
hypersurfaces are curves. Furthermore, we confirm for specific initial curves and
different values of k that the flow improves the ’isoperimetrical deficit’.

To specify how our flow looks like we give the following parametric formulation
of this flow. Let M be a smooth n-dimensional compact manifold without boundary
(at the moment it is sufficient to assume only k > 0) and x0 : M → Rn+1 a smooth
embedding such that M0 = x0(M) has positive mean curvature, then we consider a
solution of the following fully nonlinear parabolic initial value problem. Find T > 0
and a smooth mapping

(1.1) x : [0, T )×M → Rn

with

(1.2)
x(0, ·) = x0,

d

dt
x(t, ξ) = −Hkν.

Here, H and ν denote the mean curvature and the outer normal of x(t,M) at x(t, ξ),
respectively. We call this a power mean curvature flow (PMCF).

Why is this flow interesting and how does this flow behave? This flow has been
considered in a series of papers under different aspects. In [50] it is shown that the
flow (1.2) exists on a maximal, finite time interval and that, approaching the final
time, the surfaces contract to a point. In [51] the flow is considered in the case k ≥ 1.
It is shown that if initially the ratio of the biggest and smallest principal curvature
at every point is close enough to 1, depending only on k and the dimension n of the
hypersurfaces, then this is maintained under the flow. As a consequence the authors
of [51] obtain that, when rescaling appropriately as the flow contracts to a point, the
evolving surfaces converge to the unit sphere. The paper [49] shows that for k ≥ n−1
the flow improves a certain ’isoperimetrical difference’. As singularities may develop
before the volume goes to zero, a weak level-set formulation for such flows is developed
and it is shown that the monotonicity of the isoperimetrical difference is still valid.
This proves the isoperimetrical inequality for n ≤ 7. A further reason which makes
this flow interesting is that mean curvature flow is used in denoising images, cf. [1] for
such applications, and we expect that PMCF with the possibility to choose different
values for k ≥ 1 is an interesting alternative for this purpose. We mention the remarks
in [43] which state that in the case 0 < k ≤ 1 equation (1.2) plays a key role in the
context of image processing.

As announced above we will perform our calculation for curves, so it is of interest
to give references for this case, both of theoretical and practical nature. In [6, 7] a
finite element approximation of the parametric formulation of the flow (1.2) in the
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case of curves is formulated and stability bounds are derived, see also [8]. In [42] the
evolution of plane curves driven by a nonlinear function of curvature and anisotropy
is considered with a focus on the analysis of the parametric formulation of such a flow,
see also [3, 4]. The analysis of boundaries of shapes in the context of morphological
and shape image processing leads to an equation of the form (1.2) in the case of
curves. This has been introduced in [1, 2, 48] and we mention especially the case
k = 1

3 which is the so-called affine curvature equation, cf. [5] and see also (1.8) and
the following text lines. In summary one can say that our flow (1.2) (in the case
k ≥ 1) plays an important role for applications and has received a lot attention so far
but the numerical approximation of its level set formulation has apart from our own
previous work [40] not been analyzed yet.

We introduce our notation. The Euclidean norm of Rn is denoted by | · |. For
an open subset Ω of Rn and m ∈ N∗, p ≥ 1 we denote the corresponding Sobolev
spaces by Wm,p(Ω), Wm,p

0 (Ω), Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω). The
dual spaces are denoted by W−m,p(Ω) = Wm,p

0 (Ω)∗ and the dual pairing by

(1.3) W−m,p(Ω)×Wm,p
0 (Ω) 3 (F,ϕ) 7→ 〈F,ϕ〉 = Fϕ ∈ R.

In the following we will introduce a (stationary) level set formulation for (1.2)
and start for this purpose by recalling the (time-dependent) level set formulation for
the mean curvature flow, i.e. the case k = 1 in (1.2). Let M0 ⊂ Rn+1 be a given
initial hypersurface and choose a continuous function u0 : Rn+1 → R such that

(1.4) M0 = {x ∈ Rn+1 : u0(x) = 0}.

If u : [0,∞)× Rn+1 → R is the unique viscosity solution of

(1.5)
d

dt
u =|Du|div

(
Du

|Du|

)
= H(Du,D2u)

in Rn+1 × (0,∞) with u(0, ·) = u0 in Rn+1, where

(1.6) H(p, Y ) =
∑
i,j

(
δij −

pipj
|p|2

)
Yij

for p = (pi) ∈ Rn \ {0} and Y = (Yij) ∈ Rn×n. We call the family of the

(1.7) M(t) = {x ∈ Rn+1 : u(t, x) = 0}, t > 0,

a (time dependent) level set mean curvature flow. Equation (1.5) is a quasilinear,
degenerate and possibly singular (if Du = 0) parabolic equation. Existence and
uniqueness of a solution for this equation is proved in [17, 18, 27].

If we include our nonlinearity Hk of the mean curvature in this formulation we
get instead of (1.5) the fully nonlinear, degenerate and possibly singular parabolic
equation

(1.8)
d

dt
u =|Du|

(
div

(
Du

|Du|

))k
=

∑
i,j

(
δij −

DiuDju

|Du|2

)
DiDju

k

|Du|1−k

To our knowledge an existence proof for (1.8) is only known for the case 0 < k ≤ 1,
cf. [43] and the references therein. But the case under consideration in the present
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paper is k > 1. In case k > 1 the proof presented in [43] does not work any more
because the linear growth of the elliptic part of the operator needed to apply classical
arguments is not available.

The time dependent formulation 1.8 in the k = 1
3 case, i.e. the affine curvature

equation, is used for image processing, cf. [1, 30]. In [43] equation (1.8) in case 0 <
k ≤ 1 is approximated by a family of regularized equations and rates of convergence
of the corresponding solutions are obtained.

In the case k = 1, of course, we have mean curvature flow, and the corresponding
equation (1.5) has been studied intensively analytically and numerically, cf., e.g.,
[14, 20, 23, 39]. We want to point out the paper [21] by Deckelnick, where the solution
uε of a regularized version of (1.5) is approximated by a finite difference scheme which
was originally proposed by Crandall and Lions [20]. In Deckelnick’s paper rates for
the convergence of the discrete solution to the solution u of the (not regularized) level
set equation are proved. The total error consists of a regularization error of the form

(1.9) ‖u− uε‖L∞(Ω) ≤ cαεα

with α ∈ (0, 1
2 ) arbitrary and cα a positive constant, see [21, Theorem 1.2] for details,

and a discretization error which is a polynomial expression in the numerical parameter
and the reciprocal regularization parameter. Furthermore, the concrete value for the
convergence order of the discretization error (and hence for the total approximation
error) is very low; the main point here is that this rate is of polynomial order.

This is not self-evident as can be seen in the paper [24]. There the viscosity
solution u of (1.5) is approximated by a solution uε of the regularized equation and
then the regularized equation is approximated by a solution uε,h of a semi discrete
problem. The regularization error is again of the form (1.9) but the error uε − uε,h
measured in a certain energy norm, cf. [23, Theorem 6.4], is only of order cεh, where,
and this is the important point, the constant cε depends exponentially on 1

ε . Numer-
ical tests as written there, however, suggest that the resulting bound overestimates
the error. In the special case of two dimensions, i.e. the moving hypersurfaces are
curves, Deckelnick and Dziuk [24] prove L∞-convergence (without rates) of the dis-
crete solution provided h = h(ε) sufficiently small, where ’sufficiently small’ is not
given by an explicit formula or polynomial dependence.

Let us now consider the case k ≥ 1 which is the relevant one in the present paper.
To circumvent the above mentioned problem with the growth in the elliptic part of
the operator if k > 1 Schulze [50] uses a stationary level set formulation at which
the nonlinearity due to the exponent k affects only lower order terms. We present
Schulze’s stationary level set formulation of the PMCF.

Let Ω ⊂ Rn+1 be open, connected and bounded having smooth boundary ∂Ω
with positive mean curvature. Here, ∂Ω plays the role of the initial hypersurface.
We call the level sets Γt = ∂{x ∈ Ω : u(x) > t}, t ≥ 0, of the continuous function
0 ≤ u ∈ C0(Ω̄) a (stationary) level set PMCF, if u is a viscosity solution of

(1.10)
div

(
Du

|Du|

)
=− 1

|Du| 1k
in Ω

u =0 on ∂Ω.

For a definition of a viscosity solution for this equation we refer to [40, Section 2].
If u is smooth in a neighborhood of x ∈ Ω with non vanishing gradient and satisfies
in this neighborhood (1.10), then the level set {u = u(x)|x ∈ Ω} moves locally at
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x according to (1.2). Using elliptic regularization of level set PMCF we obtain the
equation

(1.11)
div

(
Duε√

ε2 + |Duε|2

)
= −(ε2 + |Duε|2)−

1
2k in Ω,

uε = 0 on ∂Ω,

which has a unique smooth solution uε for sufficiently small ε > 0, cf. [50, Section 4];
moreover, there is c0 > 0 such that

(1.12) ‖uε‖C1(Ω̄) ≤ c0

uniformly in ε and (for a subsequence)

(1.13) uε → u ∈ C0,1(Ω̄)

in C0(Ω̄). We call u a weak solution of (1.10), which is unique for n ≤ 6. All the
above facts are proved in [50, Section 4] under the assumption that k ≥ 1. A weak
solution of (1.10) satisfies (1.10) in the viscosity sense, cf. Section [40, Section 2].
Furthermore Schulze’s existence result is restricted to the case k ≥ 1.

What looks as a disadvantage at first glance, namely the fact that our level set
function does not depend on the time explicitly and hence no explicit Euler method
is applicable (as for example in Deckelnick’s paper [21]), has the advantage that we
have a divergence structure for the elliptic part of the operator which would not be
the case if we would use the time dependent level set formulation (1.8) (in addition
we would lack a proof of existence of a solution).

To our knowledge our previous paper [40] is the only numerical analysis result
for Schulze’s level set formulation so far. In [40] we proved an explicit rate for the
convergence of the solution uε of (1.11) to the solution u of equation (1.10) which
depends on k, see Section 3, where we recall the result. Using the divergence structure
of the elliptic part of (1.11) we proved existence of a finite element approximation uεh
of uε and an approximation rate. Summarized we have a total approximation error

(1.14) u− uεh = (u− uε) + (uε − uεh)

which consists of the regularization error (first bracket in equation (1.14)) and the
discretization error (second bracket in equation (1.14)). We obtained a polynomial rate
in 1

ε and h for the total approximation error provided the discretization parameter is
sufficiently small compared with the regularization parameter (the coupling between
the discretization and the regularization parameter is also of polynomial order). The
order of convergence is polynomial (in contrast, e.g., to [23, Theorem 6.4], where the
authors obtain exponential order of convergence) and comparable to the one obtained
in [21]. In both cases despite from being of polynomial order the precise order is
rather of theoretical value. As in the remarks following [23, Theorem 6.4] stating
that experiments indicate that the proven approximation error overestimates the real
error, we have a similar behavior for our situation, cf. Sections 2, 3, and 4.

Furthermore, we validate for some examples that the flow improves (i.e. decreases)
the isoperimetrical deficit

(1.15) A(t)
n+1
n − cn+1V (t),
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where A(t) denotes the n-dimensional volume of the evolving hypersurface, V (t) the
(n + 1)-dimensional volume of the enclosed subset of Rn+1 and cn+1 the Euclidean
isoperimetrical constant, cf. [50] for a proof of this property. The isoperimetrical
deficit (1.15) is nonnegative and zero if and only if the hypersurface is a sphere. Since
we restrict ourselves to the case n = 1 the evolving hypersurfaces are curves and the
variables in the isoperimetrical deficit become arc length and enclosed area. And there
holds c2 = 4π. Geometrically more interesting is the case n ≥ 2 because then one
can have non convex initial hypersurfaces with positive mean curvature which develop
topological changes under the flow. To validate our level set ansatz with respect to
its convergence behavior and numerical properties restricting ourselves to the curve
case seems to be a reasonable and legitimate technical simplification.

The paper is organized as follows. In Section 2 we prove an error estimate for the
discretization error and validate it numerically. In Section 3 we recall and calculate
in detail an error estimate for the regularization error from our previous paper [40]
and provide numerical examples. In Section 4 we provide numerical examples for the
total approximation error. In Section 5 we illustrate with an example the influence of
the exponent k on the behavior of the flow.

2. Discretization error. In this section we assume that the space dimension
n + 1 is 2 or 3 and that Ω is convex. The latter is only a restriction if n + 1 = 3
since ∂Ω has positive mean curvature by our assumptions in the introduction. We
fix ε > 0 at a small value and approximate the solution uε of equation (1.11) by a
finite element solution uεh which seems to be an appropriate method in view of the
divergence structure of the operator. The goal is to analyze the discretization error
uε − uεh.

Let (Th,Ωh) be a quasi-uniform triangulation of Ω with mesh size 0 < h < h0, h0

sufficiently small, and Vh ⊂ H1(Ωh) the finite element space given by

(2.1) Vh =
{
v ∈ C0(Ω̄h) : v|∂Ωh = 0, v|T linear ∀T ∈ Th

}
.

In view of the convexity of Ω there holds Ωh ⊂ Ω. A function uh ∈ Vh will be also
considered as a function on Ω by extending it by zero in Ω \ Ωh. Then vh ∈ H1(Ω).
Our variational formulation is given as in our previous paper [40] by

(2.2)

∫
Ωh

〈Duεh, Dvh〉√
ε2 + |Duεh|2

dx =

∫
Ωh

(ε2 + |Duεh|2)−
1
2k vhdx ∀ vh ∈ Vh.

For formal reason we might consider boundary tetrahedrons (boundary triangles in
case d = 2) to be extended to a boundary tetrahedron with one ’curved face’. There-
fore we will replace a boundary element T ∈ Th (i.e. n + 1 vertexes of T lie on ∂Ω)
by T̃ = T ∪B with

(2.3) B = {tp+ (1− t)Pp | 0 ≤ t ≤ 1, p ∈ F},

where F is the boundary face of T , i.e. n+ 1 vertexes of F lie on ∂Ω, and Pp is the
unique minimizer of dist(p, ·)|∂Ω. We denote the resulting triangulation by T̃h. This
leaves the space of finite element functions we use (namely Vh) unchanged. Note, that
the boundary strip Ω \ Ωh has measure O(h2).

A similar equation as (2.2) is the stationary level set formulation for the inverse
mean curvature flow which is used in [28]. There also a total approximation error, a
discretization error and a regularization error appears. Furthermore, a rate for the
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discretization error (O(h) for the H1-error and O(h2) for the L2-error) is proved. But
the dependence of the constants on the regularization parameter which appear in these
error estimates is not analyzed theoretically. In contrast to [40] in [28] no theoretical
estimate for the regularization error (and hence for the total approximation error) is
given, and such a rate seems to be an open problem so far, cf. [28, Remark 4]. But this
issue is addressed numerically in [28] and calculations suggest that the regularization
error is O(ε), where ε here also denotes the regularization parameter.

We remark that when we considered the discretization in our previous paper,
see [40, Section 6], the space Vh consisted of continuous functions on Ωh which are
piecewise polynomials of degree ≤ 2 (and not linear as here) and we assumed that
Ω ⊂ R2 and existence of a solution of (2.2) in this case was shown. The reason for this
is that in [40, Section 6] error bounds for the discretization error are proved which
contain the dependence of ε explicitly. Therefore an estimate for the norm of the
inverse of Lε and its dual L∗ε, where Lε is the derivative of the regularized differential
operator, see (2.8) for a definition, is calculated via the intermediate step of some
rather technical sup-norm estimates and inverse inequalities which make it necessary
to consider higher order elements. Since these ε-dependencies do not play a role for
the discretization error under consideration in this section we present the proof for
the present case in easier form and also for W 1,p-norms in Theorem 2.2 with general
p ≥ n+ 1 (contrary to [40, Section 6], where p < 4 is assumed) which is necessary to
prove an optimal L2-error estimate, cf. Theorem 2.3.

We start with a definition and properties of the linear operator Lε and its dual.
Let p > 1. We define for ε > 0 and z ∈ Rn

(2.4) |z|ε := fε(z) :=
√
|z|2 + ε2

and denote derivatives of fε with respect to zi by Dzifε. There holds

(2.5) Dzifε(z) =
zi
|z|ε

, DziDzjfε(z) =
δij
|z|ε
− zizj
|z|3ε

.

We define the operator Φε by

(2.6) Φε : W 1,p
0 (Ω)→W−1,p∗(Ω), Φε(v) = −Di

(
Div

|Dv|ε

)
− 1

|Dv|
1
k
ε

,

where 1
p + 1

p∗ = 1, so that (1.11) can be written as

(2.7) Φε(u
ε) = 0.

We denote the derivative of Φε in uε by

(2.8) Lε := DΦε(u
ε)

and have for all ϕ ∈W 1,p
0 (Ω) that

(2.9)
Lεϕ = −Di (DziDzjfε(Du

ε)Djϕ) +
1

k
fε(Du

ε)−1− 1
kDzjfε(Du

ε)Djϕ

=: −Di(a
ijDjϕ) + biDiϕ,

where we use the convention to sum over repeated indices. The coefficients aij and
bi are in C∞(Ω̄). Note, that the estimate (1.12) is not available for higher order
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derivatives of uε but since we fix ε in the present section, this does not have an effect
on the following considerations.

The linear operator

(2.10) Lε : W 1,p
0 (Ω)→W−1,p∗(Ω)

and its adjoint operator L∗ε are topological isomorphism, cf. Corollary 7.2 in the
Appendix.

We get from [13, Theorem 8.5.3] for L = Lε or L = L∗ε and F ∈ W−1,p∗(Ω) that
there is a unique solution uh ∈ Vh of

(2.11) 〈Luh, ϕh〉 = Fϕh ∀ϕh ∈ Vh,

where u ∈ H1(Ω) is the unique solution of Lu = F and there holds the estimate

(2.12) ‖uh‖W 1,p(Ω) + ‖u− uh‖W 1,p(Ω) ≤ c‖u‖W 1,p(Ω).

Furthermore, if F ∈ Lp(Ω) we have

(2.13) ‖u− uh‖W 1,p(Ω) + h‖u− uh‖Lp(Ω) ≤ ch2‖F‖Lp(Ω).

Remark 2.1. Note, that we actually used the assertion of [13, Theorem 8.5.3]
with slightly different assumptions. The difference from the assumptions we need to
the one assumed in [13, Theorem 8.5.3] are as follows.

(i) We assume a right-hand side F ∈W−1,p∗(Ω) (instead F ∈ Lp(Ω)).
(ii) We consider the equation on Ω (instead of a polygonal domain) and use as

discretization the triple (T̃h,Ω, Vh).
There holds the following theorem.
Theorem 2.2. For every p > n + 1 and small h > 0 there exists a constant

0 < c = c(‖uε‖W 2,2(Ω), p) such that (2.2) has a solution uεh ∈ Vh satisfying

(2.14) ‖uε − uεh‖W 1,p(Ω) ≤ ch.

This solution is unique in a small W 1,p-neighborhood of uε in Vh.
Proof. The proof of this lemma is adapted from [40, Section 6], where the result

is proved for p < 4 and quadratic finite elements.
We set

(2.15) B̄hρ = {vh ∈ Vh : ‖uε − vh‖W 1,p(Ω) ≤ ρ},

where we choose

(2.16) ρ = hλ

for an arbitrary and now fixed n+1
p < λ < 1.

We will obtain uh as the unique fixed point in B̄hρ of the operator T : Vh → Vh
with

(2.17) Lε(wh − Twh) = Φε(wh), wh ∈ Vh.

We show that B̄hρ 6= ∅, that T is a contraction and that T (B̄hρ ) ⊂ B̄hρ .
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(i) Let Ihu
ε be the interpolation of uε, i.e. the continuous piecewise linear function

on Ωh which is equal to uε at all nodes of Ωh. We extend Ihu
ε by zero to a function

on Ω. In view of

(2.18) ‖Ihuε − uε‖W 1,p(Ω) ≤ ch

we have Ihu
ε ∈ B̄hρ for small h.

(ii) Let vh, wh ∈ B̄hρ , ξh = vh − wh then using (2.17) we conclude

(2.19)

Lε(Tvh − Twh) = Lεξh + Φε(wh)− Φε(vh)

= (Lε −DΦε(vh + Θξh))ξh

=: F

with a Θ ∈ (0, 1). In order to estimate ‖F‖W−1,p∗ (Ω) which leads to an estimate

of ‖Tvh − Twh‖W 1,p(Ω) in view of Corollary 7.2 we choose ψ ∈ W 1,p∗

0 (Ω) with
‖ψ‖W 1,p∗ (Ω) ≤ 1 and estimate 〈F,ψ〉 . To do so we use a mean value theorem for
which we need the following auxiliary estimate

(2.20)

‖Duε − (Dvh + ΘDξh)‖L∞(Ω)

≤ ‖Duε −DIhuε‖L∞(Ω) + ‖DIhuε −Dṽh‖L∞(Ω)

≤ ch+ cρh−
n+1
p ,

where ṽh = vh + Θξh ∈ B̄hρ and where we used an inverse estimate. The resulting
estimate implies

(2.21)
‖Tvh − Twh‖W 1,p(Ω) ≤c(h+ ρh−

n+1
p )‖ξh‖W 1,p(Ω)

≤1

4
‖ξh‖W 1,p(Ω)

for small h.
(iii) Let wh ∈ B̄hρ . There holds

(2.22)

‖Twh−uε‖W 1,p(Ω)

≤‖Twh − TIhuε‖W 1,p(Ω) + ‖TIhuε − Ihuε‖W 1,p(Ω)

+ ‖Ihuε − uε‖W 1,p(Ω)

≤ρ
2

+ ‖TIhuε − Ihuε‖W 1,p(Ω) + ch

It remains to estimate the norm on the right-hand side. There holds

(2.23)

‖TIhuε − Ihuε‖W 1,p(Ω) ≤c‖Φε(Ihuε)‖W−1,p∗ (Ω)

=c‖Φε(Ihuε)− Φε(u
ε)‖W−1,p∗ (Ω)

≤ch

again by a mean value theorem estimate. In view of (2.16) there holds

(2.24) T (B̄hρ ) ⊂ B̄hρ .
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In the following theorem we improve the Lp-error estimate of Theorem 2.2, there-
fore we use a duality argument as in [28].

Theorem 2.3. For p > n+ 1 there holds

(2.25) ‖uε − uεh‖Lp(Ω) ≤ ch2

with c = c(‖uε‖W 2,2(Ω), p) > 0.
Proof. From the definitions of uε and uεh we get for all ϕh ∈ Vh

(2.26)

∫
Ω

(
∇uε

|∇uε|ε
− ∇uεh
|∇uεh|ε

)
· ∇ϕhdx+

∫
Ω

(
|∇uε|

1
k
ε − |∇uεh|

1
k
ε

)
ϕhdx = 0

This equation can be written as

(2.27)

∫
Ω

(Aεh∇eεh) · ∇ϕhdx+

∫
Ω

(aεh · ∇eεh)ϕhdx = 0

with

(2.28)

Aεh =

∫ 1

0

D2fε(∇uε + t∇(uεh − uε))dt

aεh =
1

k

∫ 1

0

fε(∇uε + t∇(uεh − uε))
1
k−1Dfε(∇uε + t∇(uεh − uε))dt

eεh =uεh − uε

and for later purposes we set

(2.29)
Āεh =D2fε(∇uε)

āεh =
1

k
fε(∇uε)

1
k−1Dfε(∇uε).

We define ϕ ∈W 1,p∗

0 (Ω) by

(2.30) L∗εϕ = |eεh|p−1 sgn(eεh)

and let ϕh ∈ Vh be the finite element solution of this equation. We test (2.30) with
eεh and get in view of the symmetry of Āεh that

(2.31)

∫
Ω

|eεh|pdx =

∫
Ω

(Aεh∇eεh) · ∇ϕhdx+

∫
Ω

(aεh · ∇eεh)ϕhdx

(2.27)
=

∫
Ω

(
(Aεh − Āεh)∇eεh

)
· ∇ϕhdx+

∫
Ω

((aεh − āεh) · ∇eεh)ϕhdx

≤c
∫

Ω

|∇eεh|2|∇ϕh|dx+ c

∫
Ω

|∇eεh|2ϕhdx

≤c‖ϕh‖W 1,p∗ (Ω)‖eεh‖2W 1,2p(Ω).

In view of Corollary 7.2 and (2.30) we get

(2.32) ‖ϕh‖W 1,p∗ (Ω) ≤c
(∫

Ω

|eεh|(p−1)p∗dx

) 1
p∗

= c‖eεh‖
p
p∗

Lp(Ω),
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so that

(2.33) ‖eεh‖Lp(Ω) ≤ ch2.

Here, we used (2.31) and Theorem 2.2 to estimate ‖eεh‖W 1,2p(Ω).
In the following we validate the convergence rates of Theorem 2.2 and Theorem 2.3

with a numerical example. Figure 1 shows the discretization error in the case of a
unit circle as initial curve and ε = 0.1 fixed. The discrete solutions for different
values of the discretization parameter h are compared with the discrete solution ũε

on a fine grid with grid size h = 0.005. We compare on Ω0.005 and extend uεh = 0,
where it is not defined. The discretization errors ‖ũε−uεh‖Ωh for ‖ · ‖Ωh = ‖ · ‖L2(Ωh),
‖ · ‖Ωh = ‖ · ‖H1(Ωh) and ‖ · ‖Ωh = ‖ · ‖L∞(Ωh) are plotted and behave as shown in
Theorem 2.3 and Theorem 2.2.
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∞
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Fig. 1: Discretization error for the unit circle as initial curve where k = 1, ε = 0.1.

In Figure 2 we see that the discretization error close to the boundary has a pattern
which results from the approximation of the smooth domain Ω by the polygonal
domain Ωh. The discrete solution uεh is zero at the polygonal boundary ∂Ωh while uε

is zero on the curved boundary ∂Ω.

3. Regularization error. We specify our a priori estimate for the regularization
error presented in [40] which depends on the choice of certain constants. Let

(3.1) γ > 1 + k

and α, s > 0 so that

(3.2) β1(α, s) > β2(α, s),

where

(3.3) β1(α, s) :=
2− s+ α(2− 1

k )

γ(2− 1
k ) + 1

k − 1
, β2(α, s) :=

α+ ks

γ − k − 1

and choose

(3.4) 0 < r <
α

γ
.



12 Numerical approximation of level set power mean curvature flow

Fig. 2: Discretization error for the unit circle as initial curve (we compare with a discrete
solution on a fine grid with size h0). The pictures show the difference uε

h0
− uε

h for ε = 0.09,
k = 1, h0 = 0.025 and a) h = 0.4, b) h = 0.2, c) h = 0.1, d) h = 0.05.

Note, that (3.2) obviously holds for sufficiently small α, s. There holds the following
theorem, cf. [40, Theorem 3.1].

Theorem 3.1. There is c = c(k,Ω) > 0 such that

(3.5) ‖uε − u‖C0(Ω̄) ≤ cεmin(r,s)

for all ε > 0.
The order of convergence stated in the previous theorem can be written more

explicitly which is content of the following lemma.
Corollary 3.2. For the evolution with normal speed Hk, k ≥ 1, the regulariza-

tion error with respect to the C0-norm is of order O(ε
1
λ ) for all λ > 2k.

Proof. We rewrite the right-hand side of the estimate in Theorem 3.1. In (3.2)
we may assume that α, s are related by s = α

γ . We multiply (3.2) by γ and get

(3.6)
2− s+ α(2− 1

k )

2− 1
k +

1
k−1

γ

>
α+ sk

1− k+1
γ

.

Now, we multiply with the denominator of the left-hand side and sort by α and s on
each side which leads to

(3.7) 2− s+ α

(
2− 1

k

)
> α

2− 1
k

1− k+1
γ

+ s

1
k − 1 + k

(
2− 1

k +
1
k−1

γ

)
1− k+1

γ

and after rearranging terms to

(3.8) 2 >s

1
k −

k+1
γ + k

(
2− 1

k +
1
k−1

γ

)
+ (2− 1

k )(k + 1)

1− k+1
γ

.

We may let γ tend to infinity without changing the value of s (by adapting α corre-
spondingly). Hence the right-hand side of (3.8) converges to 4ks as γ → ∞ and the
claim follows.
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We recall an interpolation lemma, cf [33, PDE II, Lemma 1.4.13].
Lemma 3.3. For 0 < β < α ≤ 1 and a function v : Ω→ R holds

(3.9) [v]β ≤ 21− βα [v]
β
α
α ‖v‖C0(Ω),

where these expressions might become ∞ and

(3.10) [v]α = sup
x6=y

|v(x)− v(y)|
|x− y|α

.

Since uε is uniformly bounded in the C1-norm, cf. (1.12), we can use Lemma 3.3 to
get

(3.11) ‖u− uε‖C0,β(Ω) ≤ c(β)ελ(1−β)

for every 0 < β < 1 and 0 < λ < 1
2k .

In the case k = 1 which means mean curvature flow we can realize in Corollary 3.2
every power of ε which lies in (0, 1

2 ). This is in accordance with the corresponding rate
for the case of the time dependent level set regularization as considered in Deckelnick’s
paper [21, Theorem 1.2] and Mitake’s paper [43, Theorem 1].

The following numerical examples indicate that the regularization error is even
smaller than stated in Corollary 3.2. As a first example we calculate the regularization
error in the case of the evolution of a unit circle as initial curve for which the exact
solution of equation (1.10) is known. Let ∂Br0(0) ⊂ R2, i.e. a circle with radius
r0 > 0, be the initial curve then the exact solution u is given as

(3.12) u(r) =
rk+1
0 − rk+1

k + 1
,

where r denotes the radius variable in polar coordinates in R2 with center in 0. As
special case we choose k = 1, r0 = 1, i.e.

(3.13) u(r) =
1

2
− r2

2
.

In Figure 3 the error ‖uε − u‖ is plotted in this special case (and for k = 1.5 and
k = 2), where ‖·‖ stands for ‖·‖ = ‖·‖L2(Ωh), ‖·‖ = ‖·‖H1(Ωh) and ‖·‖ = ‖·‖L∞(Ωh).
We remark that our theoretical estimate in Corollary 3.2 does not provide information
about an estimate with respect to ‖·‖H1(Ωh). The functions uε are calculated by using
linear finite elements on a fine grid with mesh size h = 0.0125. The L2-error converges
a little bit faster and the H1-error a little bit slower than of quadratic order to zero.

In Figure 4 the scenario is the same as in Figure 3 apart from the fact that we
now choose an ellipse (half axes lengths 1 and 2) as initial curve. Furthermore since
we do not have an exact solution u for this case we use instead a solution uεh with
ε = 0.1 and small h = 0.0125. In Figure 5 we plot a section (along the long and short
half axes of the initial curve) of the solution uε in the case of the circle and in Figure
6 in the case of an ellipse as initial curve for different values of ε.

In accordance with our a priori estimate in Corollary 3.2 the regularization error in
Figure 3 seems to become larger for increasing k. This can be also seen from Figure 5.
There we also observe that the approximation quality around the singularity of the
flow deteriorates for k = 2 when changing ε from 0.5 to 0.17.
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Fig. 3: Regularization error in case of a circle as initial curve for k = 1, 1.5, 2.

Figure 7 shows level sets of u0.1 for the case of the ellipse as initial curve and
different values of k. We remark that our theory covers only the case k ≥ 1 but in the
special case of convex curves we also have a level set solution for general k > 1

3 which
follows from the classification of the behavior of the evolution of curves by powers
of the curvatures presented in Section 1 of [4]. Our observations are as follows. For
k = 0.5 we see for ε = 0.1 a quite good approximation of the phenomenon of shrinking
to a ’round point’ and further lessening of ε does not show significant improvements.
For all k the inner level line for ε = 0.1 seems to be already ’round’ while for k = 2
this seems to be far from a ’point’.

4. Total approximation error. In the inequalities (2.14) and (2.25) appear
constants c on the right-hand sides which depend on the solution uε of the regularized
equation. To get an estimate for u − uεh in terms of ε and h one has to make this
dependence explicit. In our paper [40] we showed that there is a γ > 0 such that
if we couple h and ε by h = εγ and use finite elements of order 2 (and quadratic
boundary approximations), then there holds that the error u − uεh converges to zero
with a polynomial rate in h with respect to the sup-norm. To estimate with respect
to the sup-norm is natural since u is (only, in general,) a C0-limit of uε and (as
viscosity solution) Lipschitz continuous. A value for γ and the convergence rate can
be obtained by adapting it at each stage of the proofs in [40] as described there which
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Fig. 4: Regularization error in case of an ellipse as initial curve for k = 1, 1.5, 2.

leads to a rather technical large value of no practical interest. The main point is that
we have a polynomial rate and not an exponential rate. As said before and explained
by comparing the situation with [23, Theorem 6.4], where the authors proved even
only an exponential estimate, this is non-trivial. We let us furthermore inspire from
the scenario of [23, Theorem 6.4] which overestimates the error rate as practical
results indicate, cf. [23]. Therefore we start our calculations with the from practical
point of view comfortable setting of continuous and piecewise linear finite elements, a
polygonal boundary approximation and a coupling between ε and h by setting ε = h
which already lead to convergence.

Figure 8 shows the total approximation errors for the unit circle as initial curve in
the cases k = 1, 1.5, 2. Although we have only for the sup-norm a theoretical estimate
we also plot the H1-error; we remark that in the situation of the circle the solution
is of class C∞(B̄r0(0)). Figure 9 shows the same scenario as Figure 8 apart from the
fact that we now consider the ellipse (half axes with lengths 1 and 2) as initial curve.
Furthermore, as reference solution we consider a solution with h = 0.05 and ε = 0.05.

5. Effect of k on behavior of the flow for an example case. The phe-
nomenon of becoming round can be measured by the isoperimetrical deficit

(5.1) l(t)2 − 4πa(t),
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Fig. 5: Radial solution for a circle as initial curve for k = 1, 1.5, 2.

where l(t) denotes the length of the curve and a(t) the enclosed area at time t.
According to theoretical results in [50] we confirm the monotonicity of this deficit
during the evolution in the special case of the ellipse as initial curve, see Figure 10.
Furthermore, we see that with increasing k (and ε = 0.05) the curves transform faster
into a circle (they are not yet shrinked to a point except for k = 0.5, see Figure 7, where
the ’point’ is reached quite well). In Figure 5 and Figure 6 we see when comparing the
exact solutions for the circle for different values of k and the approximate solutions
for the ellipse with ε = 0.15 for different values of k, respectively, that the flow reaches
the singularity for larger k earlier.

6. Implementation. To calculate the finite element approximation uεh of uε we
used a discretization with unstructured grids, see Figure 11. These were generated by
the mesh generator Gmsh, see [34]. We solved the non-linear equation (2.2) with a
Newton method which uses a bi-conjugate gradient stabilized solver (BiCGSTAB) and
SSOR preconditioning. For the implementation we used PDELab, a discretization
module for solving PDEs which depends on the Distributed and Unified Numerics
Environment (DUNE). As further references concerning PDELab we refer to [47, 11],
information about DUNE can be found in [12, 9, 10, 25]. In order to get solutions
for small ε we used a warm-start, i.e. we decreased ε stepwise to the desired small
value and performed on each stage a calculation with the solution for the previous ε
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Fig. 6: Solution for ellipse as initial curve. Picture 1–3: Section in direction of the long half
axis of the initial curve for k = 1, 1.5, 2; Picture 4–6: the same for the short half axis.
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Fig. 7: Solution for ellipse for ε = 0.1.
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Fig. 8: Total approximation error, ε = h, for k = 1, 1.5, 2, in case of a circle as initial curve.
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Fig. 9: Total approximation error, ε = h, for k = 1, 1.5, 2 in case of ellipse with half axes 1
and 2 as initial curve.

as initial value.

7. Appendix. Since Lε : H1
0 (Ω) → H−1(Ω) is a topological isomorphism by

classical L2-theory this also holds for L∗ε : H1
0 (Ω) → H−1(Ω). We define the to Lε

associated uniformly, elliptic regular Dirichlet bilinear form of order 1 by

(7.1) B : W 1,p
0 (Ω)×W 1,p∗

0 (Ω)→ R, B[u, v] =

∫
Ω

aijDiuDjv + biDiuv dx

and set

(7.2)
Np∗ ={v ∈W 1,p∗

0 (Ω) : B[ψ, v] = 0 for every ψ ∈ C∞0 (Ω)}
Np ={v ∈W 1,p

0 (Ω) : B[v, φ] = 0 for every φ ∈ C∞0 (Ω)}

From Fredholm’s alternative, cf. [54, Theorem 10.7], we deduce that for every F ∈
W−1,p∗(Ω) the equation

(7.3) B[u, ϕ] = Fϕ ∀ϕ ∈W 1,p∗

0 (Ω)

has a solution u ∈W 1,p
0 (Ω) if and only if

(7.4) v ∈ Np∗ ⇒ Fv = 0.
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Fig. 11: Mesh for the discretization with size h = 0.15 for ellipse with half axes 1 and 2.

If dimNp∗ = dimNp = 0 then for every F ∈ W−1,p∗(Ω) equation (7.3) has a unique
solution.

Lemma 7.1. dimNp∗ = dimNp = 0.

Proof. Let v ∈ Np∗ . From [54, Theorem 7.6] we get v ∈ W 1,p′

0 (Ω) for all 1 <
p′ <∞, especially for p′ = 2. Since we know from L2-theory that (7.3) has a unique
solution u ∈ W 1,2

0 (Ω) if p = 2 and F = 0 we deduce that v = 0. Analogously we
obtain the remaining claim.

By bounded inverse theorem we conclude the following result.

Corollary 7.2. Lε, L
∗
ε are topological isomorphisms.
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