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Finite element approximation of level set motion by powers of the mean
curvature

AXEL KRÖNER∗, EVA KRÖNER† , AND HEIKO KRÖNER‡

Abstract. In this paper we study the level set formulations of certain geometric evolution
equations from a numerical point of view. Specifically, we consider the flow by powers greater than
one of the mean curvature and the inverse mean curvature flow. Since the corresponding equations in
level set form are quasilinear, degenerate and especially possibly singular a regularization method is
used in the literature to approximate these equations to overcome the singularities of the equations.
Motivated by the paper [29] which studies the finite element approximation of inverse mean curvature
flow we prove error estimates for the finite element approximation of the regularized equations for the
flow by powers of the mean curvature. We validate the rates with numerical examples. Additionally,
the regularization error in the rotational symmetric case for both flows is analyzed numerically. All
calculations are performed in the 2D case.

Key words. mean curvature flow, level set equation, regularization, viscosity solution, finite
elements

AMS subject classifications. 35J60, 35J70, 35J75 , 65L60, 35D40

1. Introduction. Huisken and Ilmanen [39] used the inverse mean curvature
flow to prove the Riemannian Penrose inequality in general relativity. Later its level
set formulation was extended to the flow by powers k > 1 of the mean curvature by
Schulze [51] who also proved a certain inequality using this flow. The paper [39] arouse
the interest for a numerical analysis of this special level set approach to inverse mean
curvature flow which lead to the paper [29] by Feng, Neil and Prohl who introduced
a finite element discretization for the level set formulation of inverse mean curvature
flow as it appears in [39]. They prove error estimates in the H1-norm and the L2-
norm and confirm their rates by numerical examples. Furthermore, they focus on
the aspect that their finite element method approximates the regularized equation
(instead of the equation for level set inverse mean curvature flow) and present some
numerical examples in which they study the corresponding regularization error.

The contribution of this paper is to study the finite element approximation of the
regularized equation for level set inverse mean curvature flows as described in [29] for
the different setting characterized by the fact that here we have flows by powers k ≥ 1
of the mean curvature, as considered in [51]. We prove rates for the H1- and L2-error
and confirm them by numerical examples. In the second part of the paper we study
the regularization error in the rotational symmetric case for the flow by power k ≥ 1
of the mean curvature numerically, similarly as in [29]. We obtain rates within the
range of the corresponding theoretical estimate from [40]. Moreover, similar to this
estimate we observe that this rate improves when k ≥ 1 decreases. The third part
of the paper deals with the regularization error for level set inverse mean curvature
flow in a simplified rotational symmetric setting. Contrary to [29] we respect for an
estimate of the regularization error the artificial boundary values. We confirm the
obtained estimate in the simplified setting that the issue of artificial boundary values

∗Department of Mathematics, Humboldt University of Berlin, Berlin, Germany; CMAP, Ecole
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is omitted by a numerical example. The last section is devoted to some numerical
examples for the non-symmetric case.

We give a short overview over some related publications. For the behaviour of the
classical flows we refer to [3, 4, 27, 33, 38, 50, 52]. For level set formulations for mean
curvature flow, see, e.g., [28, 42, 46, 53, 54] and its interpretation as the value function
of a deterministic two-person game see [41]. For applications in image processing of
geometric PDEs we refer to [1, 2, 16, 17]. For6 geometric flows describing the evolution
of convex and non-convex curves see [5, 30, 32, 36, 43, 49]. The approximation of
geometric evolution equations with finite elements is considered in [6, 7, 8, 29, 45, 57,
56], by finite difference schemes in [21, 47], and by semi-Lagrangian schemes in [15].

The paper is organized as follows. Section 2 introduces the setting of the level
set flow by powers of the mean curvature (level set PMCF). Section 3 deals with the
finite element approximation of regularized level set PMCF, proves error estimates and
presents numerical examples. Section 4 presents numerically obtained rates for the
regularization error of level set PMCF. Section 5 introduces the regularized level set
inverse mean curvature flow formulation (level set IMCF), from [39]. Section 6 shows
theoretically and numerically obtained rates for the regularization error of regularized
level set IMCF. The final Section 7 contains some numerical examples in which we
simulate level set PMCF in the non-rotational symmetric case and we give a short
description of the implementation used for the numerical computations presented in
this paper. Finally, we give some remarks on an alternative level set formulation
sometimes used in the literature for the mean curvature flow case.

2. Level set PMCF. Let Ω ⊂ Rn+1 be open, connected and bounded having
smooth boundary ∂Ω with positive mean curvature which we consider as initial hy-
persurface. We call the level sets Γt := ∂{x ∈ Ω : u(x) > t}, t ≥ 0, of the continuous
function 0 ≤ u ∈ C0(Ω̄) a level set PMCF, if u is a viscosity solution of

(2.1)

div

(
Du

|Du|

)
= − 1

|Du| 1k
in Ω,

u = 0 on ∂Ω,

cf. [40, Section 2] for a definition viscosity solution in this case. If u is smooth in a
neighborhood of x ∈ Ω with non vanishing gradient and satisfies in this neighborhood
(2.1), then the level set {u = u(x)}, x ∈ Ω, is locally at x a smooth hypersurface and
moves at x in the direction of its outer normal with speed Hk where H is its mean
curvature in x. Using elliptic regularization of level set PMCF we obtain the equation

(2.2)

div

(
Duε√

ε2 + |Duε|2

)
= −(ε2 + |Duε|2)−

1
2k in Ω,

uε = 0 on ∂Ω,

which has a unique smooth solution uε for sufficiently small ε > 0, cf. [51, Section 4];
moreover, there is c0 > 0 such that

(2.3) ‖uε‖C1(Ω̄) ≤ c0

uniformly in ε and (for a subsequence)

(2.4) uε → u ∈ C0,1(Ω̄)
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in C0(Ω̄). We call u a weak solution of (2.1), which is unique for n ≤ 6. All the above
facts are proved in [51, Section 4] under the assumption that k ≥ 1. A weak solution
of (2.1) satisfies (2.1) in the viscosity sense, cf. Section [40, Section 2].

3. Discretization and error estimate for regularized level set PMCF. In
this section we present a finite element discretization of the regularized equation (2.2)
and prove error estimates. We will restrict us to the case that the space dimension
n+ 1 is 2 or 3 and that Ω is convex. The latter is only a restriction if n+ 1 = 3 since
∂Ω has positive mean curvature by assumption, cf. Section 1.

3.1. Discretization. We fix some standard notation concerning finite elements.
We denote the Euclidean norm of Rn by | · |. For an open subset Ω of Rn and m ∈ N∗,
p ≥ 1, we denote the corresponding Sobolev spaces by Wm,p(Ω), Wm,p

0 (Ω), Hm(Ω) =
Wm,2(Ω) and Hm

0 (Ω) = Wm,2
0 (Ω). The dual spaces are denoted by W−m,p(Ω) =

Wm,p
0 (Ω)∗ and the dual pairing by

(3.1) W−m,p(Ω)×Wm,p
0 (Ω) 3 (F,ϕ) 7→ 〈F,ϕ〉 = Fϕ ∈ R.

Let (Th,Ωh) be a quasi-uniform triangulation of Ω with mesh size 0 < h < h0, h0

sufficiently small, and Vh ⊂ H1(Ωh) the finite element space given by

(3.2) Vh =
{
v ∈ C0(Ω̄h) : v|∂Ωh = 0, v|T linear for all T ∈ Th

}
.

In view of the convexity of Ω there holds Ωh ⊂ Ω. A function uh ∈ Vh will be also
considered as a function on Ω by extending it by zero in Ω \ Ωh. Then vh ∈ H1(Ω).
The variational formulation of (2.2) is given by

(3.3)

∫
Ωh

〈Duεh, Dvh〉√
ε2 + |Duεh|2

dx =

∫
Ωh

(ε2 + |Duεh|2)−
1
2k vhdx for all vh ∈ Vh

where we fix ε > 0 from now on and denote the finite element solution by uεh. For
formal reason we will consider boundary tetrahedrons (boundary triangles in case
d = 2) to be extended to a boundary tetrahedron with one ’curved face’. Therefore
we will replace a boundary element T ∈ Th (i.e. n + 1 vertexes of T lie on ∂Ω) by
T̃ = T ∪B with

(3.4) B = {tp+ (1− t)Pp | 0 ≤ t ≤ 1, p ∈ bf},

where bf is the boundary face of T , i.e. n+ 1 vertexes of bf lie on ∂Ω, and Pp is the
unique minimizer of dist(p, ·)|∂Ω. We denote the resulting triangulation by T̃h. This
leaves the space of finite element functions we use (namely Vh) unchanged. Note, that
the boundary strip Ω \ Ωh has measure O(h2).

3.2. The linearized operator. We define the linear operator Lε and its dual
and state some properties. Let p > 1. We define for ε > 0 and z ∈ Rn

(3.5) |z|ε := fε(z) :=
√
|z|2 + ε2

and denote derivatives of fε with respect to zi by Dzifε. We have

(3.6) Dzifε(z) =
zi
|z|ε

, DziDzjfε(z) =
δij
|z|ε
− zizj
|z|3ε

.

We define the operator Φε by

(3.7) Φε : W 1,p
0 (Ω)→W−1,p∗(Ω), Φε(v) = −Di

(
Div

|Dv|ε

)
− 1

|Dv|
1
k
ε

,
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where 1
p + 1

p∗ = 1, so that (2.2) can be written as

(3.8) Φε(u
ε) = 0.

We denote the derivative of Φε in uε by

(3.9) Lε := DΦε(u
ε)

and have for all ϕ ∈W 1,p
0 (Ω) that

(3.10)
Lεϕ = −Di (DziDzjfε(Du

ε)Djϕ) +
1

k
fε(Du

ε)−1− 1
kDzjfε(Du

ε)Djϕ

=: −Di(a
ijDjϕ) + biDiϕ,

where we use the convention to sum over repeated indices. The coefficients aij and
bi are in C∞(Ω̄). Note, that the estimate (2.3) is not available for higher order
derivatives of uε uniformly in ε but since ε is fixed in the present section, this does
not have an effect on the following considerations. The linear operator

(3.11) Lε : W 1,p
0 (Ω)→W−1,p∗(Ω)

and its adjoint operator L∗ε are topological isomorphism, cf. Corollary A.2 in Section
7. From [14, Theorem 8.5.3] we deduce for L = Lε or L = L∗ε and F ∈ W−1,p∗(Ω)
that there is a unique solution uh ∈ Vh of

(3.12) 〈Luh, ϕh〉 = Fϕh for all ϕh ∈ Vh,

where u ∈ H1(Ω) is the unique solution of Lu = F and we have the estimate

(3.13) ‖uh‖W 1,p(Ω) + ‖u− uh‖W 1,p(Ω) ≤ c‖u‖W 1,p(Ω).

Furthermore, if F ∈ Lp(Ω) we have

(3.14) ‖u− uh‖W 1,p(Ω) + h‖u− uh‖Lp(Ω) ≤ ch2‖F‖Lp(Ω).

Remark 3.1. Note, that we used the assertion of [14, Theorem 8.5.3] under
slightly different assumptions, namely:

(i) We assume a right-hand side F ∈W−1,p∗(Ω) (instead F ∈ Lp(Ω)).
(ii) We consider the equation on Ω (instead of a polygonal domain) and use as

discretization the triple (T̃h,Ω, Vh).

3.3. Error estimate. We have the following error estimate in the W 1,p-norm.

Theorem 3.2. For every p > n + 1 and small h > 0 there exists a constant
0 < c = c(‖uε‖W 2,2(Ω), p) such that (3.3) has a solution uεh ∈ Vh satisfying

(3.15) ‖uε − uεh‖W 1,p(Ω) ≤ ch.

This solution is unique in a small W 1,p-neighborhood of uε in Vh.

Proof. We set

(3.16) B̄hρ = {vh ∈ Vh : ‖uε − vh‖W 1,p(Ω) ≤ ρ},

with

(3.17) ρ = hλ
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for an arbitrary and now fixed n+1
p < λ < 1. We will obtain uh as the unique fixed

point in B̄hρ of the operator T : Vh → Vh with

(3.18) Lε(wh − Twh) = Φε(wh), wh ∈ Vh.

We show that (i) B̄hρ 6= ∅, (ii) T is a contraction and (iii) T (B̄hρ ) ⊂ B̄hρ .
(i) Let Ihu

ε be the interpolation of uε, i.e. the continuous piecewise linear function
on Ωh which is equal to uε at all nodes of Ωh. We extend Ihu

ε by zero to a function
on Ω. Since

(3.19) ‖Ihuε − uε‖W 1,p(Ω) ≤ ch

we have Ihu
ε ∈ B̄hρ for small h.

(ii) Let vh, wh ∈ B̄hρ and ξh = vh − wh then using (3.18) we conclude

(3.20)
Lε(Tvh − Twh) = Lεξh + Φε(wh)− Φε(vh)

= (Lε −DΦε(vh + Θξh))ξh =: F

In order to estimate ‖F‖W−1,p∗ (Ω) which leads to an estimate of ‖Tvh− Twh‖W 1,p(Ω)

in view of Corollary A.2 we choose ψ ∈W 1,p∗

0 (Ω) with ‖ψ‖W 1,p∗ (Ω) ≤ 1 and estimate
〈F,ψ〉 . To do so we use a mean value theorem for which we need the following auxiliary
estimate

(3.21)

‖Duε − (Dvh + ΘDξh)‖L∞(Ω) ≤ ‖Duε −DIhuε‖L∞(Ω)

+ ‖DIhuε −Dṽh‖L∞(Ω)

≤ ch+ cρh−
n+1
p ,

where ṽh = vh + Θξh ∈ B̄hρ and where we used an inverse estimate. The resulting
estimate implies

(3.22) ‖Tvh − Twh‖W 1,p(Ω) ≤ c(h+ ρh−
n+1
p )‖ξh‖W 1,p(Ω) ≤

1

4
‖ξh‖W 1,p(Ω)

for small h.
(iii) Let wh ∈ B̄hρ . We have

(3.23)

‖Twh − uε‖W 1,p(Ω) ≤ ‖Twh − TIhuε‖W 1,p(Ω) + ‖TIhuε − Ihuε‖W 1,p(Ω)

+ ‖Ihuε − uε‖W 1,p(Ω)

≤ ρ

2
+ ‖TIhuε − Ihuε‖W 1,p(Ω) + ch.

It remains to estimate the norm on the right-hand side. We have

(3.24)

‖TIhuε − Ihuε‖W 1,p(Ω) ≤ c‖Φε(Ihuε)‖W−1,p∗ (Ω)

= c‖Φε(Ihuε)− Φε(u
ε)‖W−1,p∗ (Ω)

≤ ch

again by a mean value theorem estimate. In view of (3.17) we have

(3.25) T (B̄hρ ) ⊂ B̄hρ .
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Employing a duality argument as in [29] we obtain an Lp-error estimate in the
following theorem.

Theorem 3.3. For p > n+ 1 we have

(3.26) ‖uε − uεh‖Lp(Ω) ≤ ch2

with c = c(‖uε‖W 2,2(Ω), p) > 0.

Proof. From the definitions of uε and uεh we get
(3.27)∫

Ω

(
∇uε

|∇uε|ε
− ∇uεh
|∇uεh|ε

)
· ∇ϕhdx+

∫
Ω

(
|∇uε|

1
k
ε − |∇uεh|

1
k
ε

)
ϕhdx = 0 for all ϕh ∈ Vh.

This equation can be written equivalently as

(3.28)

∫
Ω

(Aεh∇eεh) · ∇ϕhdx+

∫
Ω

(aεh · ∇eεh)ϕhdx = 0 for all ϕh ∈ Vh.

with

(3.29)

Aεh :=

∫ 1

0

D2fε(∇uε + t∇(uεh − uε))dt

aεh :=
1

k

∫ 1

0

fε(∇uε + t∇(uεh − uε))
1
k−1Dfε(∇uε + t∇(uεh − uε))dt

eεh := uεh − uε

and for later purposes we set

(3.30)
Āεh := D2fε(∇uε)

āεh :=
1

k
fε(∇uε)

1
k−1Dfε(∇uε).

Let ϕ ∈W 1,p∗

0 (Ω) be given by

(3.31) L∗εϕ := |eεh|p−1 sgn(eεh)

with sign-function sgn. Furthermore, let ϕh ∈ Vh the corresponding finite element
solution of this equation. We test (3.31) with eεh and get by symmetry of Āεh that

(3.32)

∫
Ω

|eεh|pdx =

∫
Ω

(Aεh∇eεh) · ∇ϕhdx+

∫
Ω

(aεh · ∇eεh)ϕhdx.

By (3.28) we have further

(3.33)

∫
Ω

|eεh|pdx =

∫
Ω

(
(Aεh − Āεh)∇eεh

)
· ∇ϕhdx+

∫
Ω

((aεh − āεh) · ∇eεh)ϕhdx

≤ c
∫

Ω

|∇eεh|2|∇ϕh|dx+ c

∫
Ω

|∇eεh|2ϕhdx

≤ c‖ϕh‖W 1,p∗ (Ω)‖eεh‖2W 1,2p(Ω).

In view of Corollary A.2 and (3.31) we get

(3.34) ‖ϕh‖W 1,p∗ (Ω) ≤ c
(∫

Ω

|eεh|(p−1)p∗dx

) 1
p∗

= c‖eεh‖
p
p∗

Lp(Ω).

Using (3.32) and Theorem 3.2 to estimate ‖eεh‖W 1,2p(Ω) we conclude.
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The discretization errors in the H1- and L2-norm have been calculated numeri-
cally by solving Eqn. (2.1) for the case of a unit circle as initial curve with ε = 0.1
and k = 1 on meshes of various refinements (h = 0.006, ..., 0.4). The solutions have
been calculated iteratively by linearizing Eqn. (3.3) in the following way:

(3.35)

∫
Ωh

Vj
〈
Duεh,j , Dvh

〉
dx =

∫
Ωh

fjvhdx for all vh ∈ Vh

where j ∈ N is the iteration index and Vj and fj have been updated in each iteration:

(3.36)

Vj :=

{
1 j = 1,

γVj−1 + (1− γ) 1√
ε2+|Duεh,j |2

j > 1,

fj :=

{
1 j = 1,

γfj−1 + (1− γ)(ε2 + |Duεh,j |2)−
1
2k j > 1.

The value of γ affects the convergence of the iterations and was set to 0.1. In each
iteration the linearized equation has been solved using Freefem [37]. These solutions
where compared to a solution obtained by solving Eqn. (2.1) in radial coordinates.
Note, that due to radial symmetry Eqn. (2.1) simplifies to an ODE which was solved
on a one-dimensional grid of h = 0.001. Figure 1 shows the numerical discretization
errors as well as the rates proven in Theorem 3.2 and Theorem 3.3. Figure 2 shows
the discretization errors uεh − uε0.001 and the corresponding meshes.

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0.001  0.01  0.1  1

e
rr

o
r

discretization parameter h

ch
ch

2

H
1
-norm

L
2
-norm

Fig. 1. Discretization error for the unit circle as initial curve with k = 1, ε = 0.1.

4. Numerical study of the regularization error for PMCF. This section
shows some numerically obtained rates for the regularization error of regularized level
set PMCF. Since small values of the regularization parameter ε are difficult to handle
we restrict the setting in order to have very high accuracy to the rotational symmetric
case. A similar case in a rotational symmetric setting which omits the important issue
of artificial boundary values in the model from [39] was considered in [29, Figure 5]
for regularized level set IMCF.

We state the following theoretical regularization error estimate.

Theorem 4.1. Let u be solution of (2.1) and uε of (2.2). Then for λ > 2k the
regularization error of the regularized level set PMCF satisfies

|u− uε|C0(Ω) = O(ε
1
λ ).(4.1)
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Fig. 2. Top: mesh with decreasing meshsize h. Bottom: uε
h − uε

0.001

Proof. See [40].

We recall a well-known interpolation lemma which enables us to deduce also an
approximation error in Hölder-norms.

Lemma 4.2. For 0 < β < α ≤ 1 and a function v ∈ C0(Ω) we have

(4.2) [v]β ≤ 21− βα [v]
β
α
α ‖v‖C0(Ω),

where these expressions might become infinity and

(4.3) [v]α := sup
x 6=y

|v(x)− v(y)|
|x− y|α

.

Since uε is uniformly bounded in the C1-norm, cf. (2.3), we can use Lemma 4.2 to
conclude

(4.4) ‖u− uε‖C0,β(Ω) ≤ c(β)ελ(1−β)

for every 0 < β < 1 and 0 < λ < 1
2k .

Our rotational symmetric example for which we study the regularization error is
a shrinking circle. Let the circle ∂Br0(0) ⊂ R2 with radius r0 > 0 serve as our initial
curve so that the solution u of (2.1) is given as

(4.5) u(r) =
rk+1
0 − rk+1

k + 1
,

where r ≥ 0 denotes the radius variable in polar coordinates in R2 with center in 0.
The regularized equation reduces to the following one-dimensional equation when
formulated in radial coordinates

(4.6)


1

r

d

dr

 r d
dru

ε√
ε2 +

∣∣ d
dru

ε
∣∣2
 = −

(
ε2 +

∣∣∣∣ d

dr
uε
∣∣∣∣2
)− 1

2k

in [0, r0],

d

dr
uε(0) = 0 and uε(r0) = 0.

We solve this one-dimensional boundary value problem by a Newton-Algorithm com-
bined with Thomas Algorithm as direct solver. In Figure 3(a) the error ‖uε−u‖L∞(Ωh)
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Fig. 3. (a) regularization error in case of a circle as initial curve for k = 1, 1.2, 1.5, 2, 3; (b) rate
of regularization error as function of k.

is plotted for k = 1.0, k = 1.2, k = 1.5, k = 2.0, and k = 3. By fitting the function
cεrk to the computed L∞-errors we obtain the rate of regularization error rk (Fig-
ure 3(b)) as function of k, namely rk ≈ 1.83/k0.34, that means indeed that the rate
depends on the power k — the larger k the smaller the rate. However, this is a little
bit better than 1/(2k).

Figure 4 shows the corresponding solutions of the regularized equations.

5. Level set IMCF. We recall from [39] the following facts. Let M ⊂ Rn+1 be a
closed, embedded hypersurface. A classical solution of the inverse mean curvature flow
is a smooth family x : M × [0, T ] → Rn+1 of hypersurfaces Mt := x(M, t) satisfying
the parabolic evolution equation

(5.1)
∂x

∂t
=

ν

H
, x ∈Mt, 0 ≤ t ≤ T,

where H, assumed to be positive, is the mean curvature of Mt at the point x and
ν is the outward unit normal. If the flow is given by the level sets of a function
u : Rn+1 → R via

(5.2) Et := {x ∈ Rn+1 : u(x) < t}, Mt := ∂Et,

then, wherever u is smooth with ∇u 6= 0, equation (5.1) is equivalent to

(5.3) div

(
∇u
|∇u|

)
= |∇u|

and the left-hand side of (5.3) is the mean curvature of the level set {u = t} and the
right-hand side is the inverse normal speed.

We set

(5.4) v := (n− 1) log |x|, FL := {v < L}, ΩL := FL \ Ē0

where E0 ⊂ Rn+1 is an open set with ∂E0 ∈ C1 and E0 ⊂⊂ F0. The regularized level
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Fig. 4. Radial solution for a circle as initial curve for (a) k = 1, (b) k = 1.5, (c) k = 2 and
(d) k = 3.

set equation is given by

(5.5)


Eεuε := div

(
∇uε√

|∇uε|2 + ε2

)
−
√
|∇uε|2 + ε2 = 0 in ΩL,

uε = 0 on ∂E0,

uε = L− 2 on ∂FL

where L, ε > 0 and in case there exists a (hence unique) solution uε we will denote it
by uε,L as well. From [39, Lemma 3.4] we know the following existence result.

Lemma 5.1. For every L > 0 there is ε(L) > 0 such that for 0 < ε ≤ ε(L) a
smooth solution uε of (5.5) exists.

Furthermore, [39, Example 2.3] shows that one expects that L is at most c
ε(L) , or

equivalently,

(5.6) ε(L) ≤ c

L
.

From [39, page 365] we recall the definition of a weak solution of (5.3).

Definition 5.2. (i) Let Ω ⊂ Rn+1 be an open set then u ∈ C0,1(Ω) is a weak
solution of (5.3) on Ω if

(5.7) JKu (u) ≤ JKu (v)
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where

(5.8) JKu (v) :=

∫
K

|∇v|+ v|∇u|dx

for all v ∈ C0,1(Ω) with {v 6= u} ⊂⊂ Ω and compact {v 6= u} ⊂ K ⊂ Rn+1.
(ii) u is a weak solution of (5.3) with initial condition E0 if

(5.9) u satisfies (i) with Ω = Rn+1 \ Ē0 and E0 = {u < 0}.

We state the following existence theorem which holds due to [39, Theorem 3.1] and
remark that the latter contains further information like a gradient estimate.

Theorem 5.3. For every open and bounded set Ω ⊂ Rn+1 there is a weak solution
of (5.3) with initial condition E0 which is unique on Rn+1 \ E0.

Furthermore, from the proof of [39, Theorem 3.1] we conclude the following. There
exist R 3 Li → ∞, 0 < εi → 0, solutions ui = uεi,Li of (5.5) (i.e. with ε = εi and
L = Li) and u ∈ C0,1(Rn+1 \ E0) so that

(5.10) ui → u

locally uniformly on Rn+1 \ E0 and u is a weak solution of (5.3). Furthermore, the
proof of [39, Theorem 3.1] shows that we may assume that εi is small compared to 1

Li
.

6. Barriers and regularization error for rotational symmetric level set
IMCF. The regularized equation (5.5) depends on the triple (ε,ΩL, L) where ΩL
and L are coupled explicitly. We derive in a first step upper and lower bounds for the
solution of (5.5) depending on the data. Then we simplify the setting by assuming that
E0 is a ball and that the boundary values on ∂ΩL coincide with (exact) IMCF starting
from ∂E0. Our general barriers imply in this special case that the regularization error
is of order ε2 which we confirm with a numerical example. We remark that in general
the ’regularization error’ is mainly dominated by the artificial boundary values. We
think that it is interesting to study the regularization error for more general E0.

Let positive L̄ and ε̄ be given so that problem (5.5) has a solution ū = uε̄,L̄.
As stated above we want to estimate the regularization error which means here to
estimate

(6.1) |u− ū|C0(Ω̄l)

for some fixed 0 < l < L̄, where u is a weak solution of (5.3). Since the boundary
values on ∂FL in (5.5) are rather artificial, (6.1) can only be expected to be small
for 0 < l � L̄. The idea to derive an estimate for (6.1) is as follows. Let δ > 0 be
arbitrary then there exists i = i(δ) ∈ N so that

(6.2) |u− uεi,Li |C0(Ωl) ≤ δ and εi � ε̄ and Li � L̄.

We then construct barriers for (5.5) for general ε > 0 and L > 0 for which (5.5) has a
solution and deduce from these bounds in the cases (ε, L) = (ε̄, L̄) and (ε, L) = (εi, Li)
bounds for ū and uεi,Li , respectively, which imply an estimate for ū− uεi,Li .

We assume that ε > 0 and L > 0 are so that (5.5) has a solution. We use the
ansatz ϕ(v) where ϕ ∈ C∞(R) will be chosen appropriately. We have

(6.3) Div(x) = (n− 1)
xi
|x|2

, DiDjv(x) = (n− 1)

(
δij
|x|2
− 2

xixj
|x|4

)
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and

(6.4) ∆v(x) =
(n− 1)(n− 2)

|x|2
.

Setting r = |x| and w = (|ϕ′|2|Dv|2 + ε2)
1
2 we have

(6.5)

Eεϕ(v) = div

(
ϕ′Dv

(|ϕ′|2|Dv|2 + ε2)
1
2

)
−
(
|ϕ′|2|Dv|2 + ε2

) 1
2

= w−3(ϕ′′|Dv|2w2 + ϕ′∆vw2 − |ϕ′|2ϕ′′|Dv|4

− (ϕ′)3DivDjvDiDjv − w4).

Using w = ( (n−1)2

r2 |ϕ′|2 + ε2)
1
2 we obtain further

(6.6)

Eεϕ(v) = w−3

(
ϕ′′

(n− 1)2

r2
w2 + ϕ′

(n− 1)(n− 2)

r2
w2 − |ϕ′|2ϕ′′ (n− 1)4

r4

+ (ϕ′)3 (n− 1)3

r4
− w4

)
= w−3

(
(ϕ′)3

r4
(n− 1)4 +

ε2

r2
(ϕ′′(n− 1)2 + ϕ′(n− 1)(n− 2))

− (n− 1)4

r4
|ϕ′|4 − 2ε2 (n− 1)2

r2
|ϕ′|2 − ε4

)
.

assumption 6.1. We assume

(6.7) ε = αL−1,

with 0 < α < 1
2 .

In view of (5.6) this assumption is a not too restrictive and will be assumed in the
following. Our aim is that the leading term of the right-hand side of (6.5) is

(6.8)
(n− 1)4

r4
(ϕ′)3(1− ϕ′)

and this is enforced by exploiting the fact that all remaining terms

(6.9)
ε2

r2
(ϕ′′(n− 1)2 + ϕ′(n− 1)(n− 2)− 2(n− 1)2|ϕ′|2 − ε2r2)

have the factor ε2. We will choose ϕ with |ϕ′′| < 1 and 0 < |1 − ϕ′| = δ < 1 so that
the term (6.8) becomes leading if

(6.10)

|(ϕ′)3(1− ϕ′)| ≥ (1− δ)3δ

≥ 12α2(n− 1)−2

≥ α2((n− 1)−2 + (1 + δ)(n− 1)−2

+ 2(1 + δ)2(n− 1)−2 +
1

8
(n− 1)−4).

We assume that ∂E0 ⊂ Br2(0) \ Br1(0) with 0 < r1 < r2. Our ansatz for the upper
barrier is ϕ1(v) and for the lower barrier ϕ2(v) with ϕi, i = 1, 2, a linear function with
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slope 1 + (−1)i+1δ which lies above (case i = 1)/below (case i = 2) and touches the
line segment which connects the points ((n− 1) log ri, 0) and (L,L− 2) and δ satisfies
(6.10). From a comparison principle we know that these barriers are bounds for uε

from above and below in ΩL, furthermore, these bounds are obtained explicitly for
given data L,α as follows. For the upper bound we obtain

(6.11) ϕ1(x) =

{
s1(x− (n− 1) log r1) if s1 >

L−2
L−(n−1) log r1

,

s1(x− L) + L− 2 else,

where x ∈ R. Analogously, we have for the lower bound

(6.12) ϕ2(x) =

{
s2(x− (n− 1) log r2) if s2 <

L−2
L−(n−1) log r2

,

s2(x− L) + L− 2 else.

These barriers provide good estimates in Ωl, 0 < l � L, if L is large, α small
and ri < 1 are both close to 1, then especially the initial hypersurface has ’small
oscillation’. Note, that since the boundary values L − 2 of uε on ∂FL are rather
artificial we also expect good estimates only in Ωl (and not in ΩL). We recall that
applying this construction of barriers for the pairs (ε̄, L̄) and (εi, Li) leads to barriers
ϕ̄1(v), ϕ̄2(v), ϕi1(v), and ϕi2(v) with obvious notation and that we have then the
inequality

(6.13) ϕi2(v)− ϕ̄1(v) ≤ u− uε̄ ≤ ϕi1(v)− ϕ̄2(v)

which is an estimate of the regularization error.
We will exploit this way to construct barriers in the special situation when E0 is

a ball with center in the origin and radius r and when we choose as boundary values
on ∂ΩL those from (exact) level set IMCF. Then the requirement for the barriers
is that ϕi, i = 1, 2, is a linear function with slope 1 + (−1)i+1δ which lies above
(case i = 1)/below (case i = 2) and touches the line segment which connects the
points ((n − 1) log r, 0) and (L, L̃) where L̃ ∈ R suitable (i.e. equal to the ’arrival
time’ of IMCF at the boundary of BL(0)) and δ satisfies (6.10). It is clear that this
yields a regularization error which is ’purely due to ε’ and which is given by ε2. To
see this note that the constant δ involved in the definition of the slopes of the barriers
is of size δ ≈ α2 ≈ ε2.

In the corresponding implementation we solved the equivalent 1D-problem on the
interval [0, logL] given by

(6.14)
(ϕ′)3

e4x
+

ε2

e2x
ϕ′′ − 1

e4x
|ϕ′|4 − 2ε2 1

e2x
|ϕ′|2 − ε4 = 0

with boundary values ϕ(0) = 0, ϕ(logL) = logL which is solved by ϕ(x) = x if ε = 0.
This is illustrated in Figure 5. Note that [29, Table 5] differs by the obtained rate O(ε)
instead of O(ε2) as in our case. This might be due to the fact that the example in [29,
Table 5] simulates IMCF backward in time, i.e. the boundary of the domain is the
hypersurface which is reached by the IMCF starting from level sets in the interior of
the domain. Then the solution has stationary points. We study the forward problem,
i.e. we calculate what happens with a given initial hypersurface in the future and
hence we don’t have stationary points in the rotational symmetric case.

7. Simulations and further remarks. In this section we present some sim-
ulations in the non-rotational symmetric case for PMCF. A short description of the
implementation used for the numerical examples is presented, and finally we provide
an alternative level set formulation.
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Fig. 5. Regularization error in case of a circle as initial curve.
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7.1. Simulations in a non-rotational symmetric case for PMCF. The
phenomenon of becoming round can be measured by the isoperimetrical deficit

(7.1) l(t)2 − 4πa(t),

where l(t) denotes the length of the curve and a(t) the enclosed area at time t.
According to theoretical results in [51] we confirm the monotonicity of this deficit
during the evolution in the special case of the ellipse as initial curve, see Figure 6.
Furthermore, we see that with increasing k and ε = 0.05 the curves transform faster
into a circle except for k = 0.5, see Figure 8, where the ’point’ is reached quite well).
In Figure 4 and Figure 7 we see when comparing the exact solutions for the circle
for different values of k and the approximate solutions for the ellipse with ε = 0.15
for different values of k, respectively, that the flow reaches the singularity for larger
k earlier.

In our previous Figure 4 we plot a section (along the long and short half axes of
the initial curve) of the solution uε in the case of the circle and in Figure 7 in the case
of an ellipse as initial curve for different values of ε.

Figure 8 shows level sets of u0.1 for the case of the ellipse as initial curve and
different values of k. We remark that our theory covers only the case k ≥ 1 but there
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Fig. 8. Solution for ellipse for ε = 0.1.

Fig. 9. Mesh for the discretization with size h = 0.15 for ellipse with half axes 1 and 2.

is a well-defined and well-known behavior for the flow of convex curves with speeds
given by general positive powers of the curvature, see [4]. Our observations are as
follows. For k = 0.5 we see for ε = 0.1 a quite good approximation of the phenomenon
of shrinking to a ’round point’ and further lessening of ε does not show significant
improvements. For all k the inner level line for ε = 0.1 seems to be already ’round’
while for k = 2 this seems to be far from a ’point’.

7.2. On the implementation. To calculate the finite element approximation
uεh of uε we used a discretization with unstructured grids, see Figure 9. These were
generated by the mesh generator Gmsh, see [34]. We solved the non-linear equation
(3.3) with a Newton method which uses a bi-conjugate gradient stabilized solver
(BiCGSTAB) and SSOR preconditioning. For the implementation we used PDELab, a
discretization module for solving PDEs which depends on the Distributed and Unified
Numerics Environment (DUNE). As further references concerning PDELab we refer
to [48, 11], information about DUNE can be found in [13, 9, 10, 26]. In order to
get solutions for small ε we used a warm-start, i.e. we decreased ε stepwise to the
desired small value and performed on each stage a calculation with the solution for
the previous ε as initial value.

7.3. Alternative level set formulation. For completeness we mention an al-
ternative formulation of the motion by powers of the mean curvature which uses a level
set formulation with a level set function which depends on the time. Let M0 ⊂ Rn+1
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be a given initial hypersurface and u0 : Rn+1 → R a continuous function such that

(7.2) M0 = {x ∈ Rn+1 : u0(x) = 0}.

Let u : [0,∞)× Rn+1 → R be the unique viscosity solution of

(7.3)
d

dt
u =|Du|div

(
Du

|Du|

)k
in Rn+1 × (0,∞) with u(0, ·) = u0 in Rn+1, we call the family of the

(7.4) M(t) = {x ∈ Rn+1 : u(t, x) = 0}, t > 0,

a (time dependent) level set PMCF. Equation (7.3) is a fully nonlinear, degenerate
and possibly singular (if Du = 0) parabolic equation. In the case k > 1 the elliptic
main part of (7.3) is not in divergence form and fully nonlinear in the second spa-
tial derivatives which is of disadvantage having our finite element approach in mind.
Furthermore, it is higher dimensional than the equation we used. Nevertheless, this
formulation is quite common in the literature in the cases 0 < k ≤ 1 and in general
also available when the speed is not necessarily positive. We give a short overview.
Existence and uniqueness of a solution for (7.3) is proved in [18, 19, 28] in the case
k = 1. In [44] equation (7.3) in case 0 < k ≤ 1 is approximated by a family of regular-
ized equations and rates of convergence of the corresponding solutions are obtained.
Concerning regularizations of equations we also refer to [12]. The time dependent for-
mulation (7.3) in the case k = 1

3 , i.e. the affine curvature equation, is used for image
processing, cf. [1, 31]. In the case k = 1, i.e. mean curvature flow, equation (7.3) has
been studied intensively analytically and numerically, cf., e.g., [15, 21, 23, 24, 41]. We
want to point out the paper [22] by Deckelnick, where the solution uε of a regularized
version of (7.3) is approximated by a finite difference scheme which was originally
proposed by Crandall and Lions [21]. In Deckelnick’s paper rates for the convergence
of the discrete solution to the solution u of the (not regularized) level set equation are
proved. The total error consists of a regularization error of the form

(7.5) ‖u− uε‖L∞(Ω) ≤ cαεα

with α ∈ (0, 1
2 ) arbitrary and cα a positive constant, see [22, Theorem 1.2] for details,

and a discretization error which is a polynomial expression in the numerical parameter
and the reciprocal regularization parameter. Furthermore, the value for the conver-
gence order of the discretization error (and hence for the total approximation error)
is very low; the main point here is that this rate is of polynomial order. A calculation
showed that in the setting of our paper the constants involved in the L2- and H1-
error estimate for the discretization error depend at most exponentially on 1

ε . Such
an exponential dependence is not unusual as can be seen in the paper [25]. There
the viscosity solution u of (7.3) is approximated by a solution uε of the regularized
equation and then the regularized equation is approximated by a solution uε,h of a
semi-discrete problem. The regularization error is again of the form (7.5) but the
error uε − uε,h measured in a certain energy norm, cf. [24, Theorem 6.4], is only of
order cεh, where, and this is the important point, the constant cε depends exponen-
tially on 1

ε . Numerical tests from that reference, however, suggest that the resulting
bound overestimates the error. In the special case of two dimensions, i.e. the moving
hypersurfaces are curves, Deckelnick and Dziuk [25] prove L∞-convergence (without
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rates) of the discrete solution provided h = h(ε) sufficiently small, where ’sufficiently
small’ is not given by an explicit formula or polynomial dependence.

Appendix A. Some auxiliary observations. Since Lε : H1
0 (Ω) → H−1(Ω)

is a topological isomorphism by classical L2-theory this also holds for L∗ε : H1
0 (Ω) →

H−1(Ω). We define the to Lε associated uniformly, elliptic regular Dirichlet bilinear
form of order 1 by

(A.1) B : W 1,p
0 (Ω)×W 1,p∗

0 (Ω)→ R, B[u, v] =

∫
Ω

aijDiuDjv + biDiuv dx

and set

(A.2)
Np∗ ={v ∈W 1,p∗

0 (Ω) : B[ψ, v] = 0 for every ψ ∈ C∞0 (Ω)}
Np ={v ∈W 1,p

0 (Ω) : B[v, φ] = 0 for every φ ∈ C∞0 (Ω)}

From Fredholm’s alternative, cf. [55, Theorem 10.7], we deduce that for every F ∈
W−1,p∗(Ω) the equation

(A.3) B[u, ϕ] = Fϕ for all ϕ ∈W 1,p∗

0 (Ω)

has a solution u ∈W 1,p
0 (Ω) if and only if

(A.4) v ∈ Np∗ implies Fv = 0.

If dimNp∗ = dimNp = 0 then for every F ∈ W−1,p∗(Ω) equation (A.3) has a unique
solution.

Lemma A.1. dimNp∗ = dimNp = 0.

Proof. Let v ∈ Np∗ . From [55, Theorem 7.6] we get v ∈ W 1,p′

0 (Ω) for all 1 <
p′ <∞, especially for p′ = 2. Since we know from L2-theory that (A.3) has a unique
solution u ∈ W 1,2

0 (Ω) if p = 2 and F = 0 we deduce that v = 0. Analogously we
obtain the remaining claim.

By bounded inverse theorem we conclude the following result.

Corollary A.2. Lε, L
∗
ε are topological isomorphisms.
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[34] C. Geuzaine and J.-F. Remacle,. Gmsh: a 3-d finite element mesh generator with built-in
pre-and post-processing facilities. Int. J. Numer. Methods Eng., 79 (11): (2009) 1309–1331.

[35] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics 224, Springer, Berlin, Heidelberg, New York etc., 2001.

[36] M. Grayson. The heat equation shrinks embedded plane curves to points. J. Diff. Geom., 26:
285–314, 1987.

[37] F. Hecht. New development in FreeFem++. J. Numer. Math. 20, No. 3-4, 251-265, 2012.
[38] G. Huisken. Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom., 20 (3):

117–138, 1984.
[39] G. Huisken and T. Ilmanen. The inverse mean curvature flow and the Riemannian Penrose

inequality. J. Differ. Geom., 59 (3): 353–437, 2001.
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