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In this paper we study the level set formulations of certain geometric evolution equations from a numerical point of view. Specifically, we consider the flow by powers greater than one of the mean curvature and the inverse mean curvature flow. Since the corresponding equations in level set form are quasilinear, degenerate and especially possibly singular a regularization method is used in the literature to approximate these equations to overcome the singularities of the equations. Motivated by the paper [29] which studies the finite element approximation of inverse mean curvature flow we prove error estimates for the finite element approximation of the regularized equations for the flow by powers of the mean curvature. We validate the rates with numerical examples. Additionally, the regularization error in the rotational symmetric case for both flows is analyzed numerically. All calculations are performed in the 2D case.

Introduction. Huisken and Ilmanen

 [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF]used the inverse mean curvature flow to prove the Riemannian Penrose inequality in general relativity. Later its level set formulation was extended to the flow by powers k > 1 of the mean curvature by Schulze [START_REF] Schulze | Nonlinear evolution by mean curvature and isoperimetrical inequalities[END_REF] who also proved a certain inequality using this flow. The paper [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF] arouse the interest for a numerical analysis of this special level set approach to inverse mean curvature flow which lead to the paper [START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF] by Feng, Neil and Prohl who introduced a finite element discretization for the level set formulation of inverse mean curvature flow as it appears in [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF]. They prove error estimates in the H 1 -norm and the L 2norm and confirm their rates by numerical examples. Furthermore, they focus on the aspect that their finite element method approximates the regularized equation (instead of the equation for level set inverse mean curvature flow) and present some numerical examples in which they study the corresponding regularization error.

The contribution of this paper is to study the finite element approximation of the regularized equation for level set inverse mean curvature flows as described in [START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF] for the different setting characterized by the fact that here we have flows by powers k ≥ 1 of the mean curvature, as considered in [START_REF] Schulze | Nonlinear evolution by mean curvature and isoperimetrical inequalities[END_REF]. We prove rates for the H 1 -and L 2 -error and confirm them by numerical examples. In the second part of the paper we study the regularization error in the rotational symmetric case for the flow by power k ≥ 1 of the mean curvature numerically, similarly as in [START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF]. We obtain rates within the range of the corresponding theoretical estimate from [START_REF] Kröner | Approximation rates for regularized level set power mean curvature flow[END_REF]. Moreover, similar to this estimate we observe that this rate improves when k ≥ 1 decreases. The third part of the paper deals with the regularization error for level set inverse mean curvature flow in a simplified rotational symmetric setting. Contrary to [START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF] we respect for an estimate of the regularization error the artificial boundary values. We confirm the obtained estimate in the simplified setting that the issue of artificial boundary values is omitted by a numerical example. The last section is devoted to some numerical examples for the non-symmetric case.

We give a short overview over some related publications. For the behaviour of the classical flows we refer to [START_REF] Andrews | Evolving convex curves[END_REF][START_REF] Andrews | Classification of limiting shapes for isotropic curve flows[END_REF][START_REF] Ecker | Mean Curvature Evolution of Entire Graphs[END_REF][START_REF] Gerhardt | Flow of nonconvex hypersurfaces into spheres[END_REF][START_REF] Huisken | Flow by mean curvature of convex surfaces into spheres[END_REF][START_REF] Schulze | Evolution of convex hypersurfaces by powers of the mean curvature[END_REF][START_REF] Schulze | Convexity estimates for flows by powers of the mean curvature[END_REF]. For level set formulations for mean curvature flow, see, e.g., [START_REF] Evans | Motion of level sets by mean curvature[END_REF][START_REF] Malladi | Level set methods for curvature flow, image enhancement, and shape recovery in medical images[END_REF][START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF][START_REF] Sethian | Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces[END_REF][START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF] and its interpretation as the value function of a deterministic two-person game see [START_REF] Kohn | A deterministic-control-based approach to motion by curvature[END_REF]. For applications in image processing of geometric PDEs we refer to [START_REF] Alvarez | Axioms and fundamental equations of image processing[END_REF][START_REF] Alvarez | Formalization and computational aspects of image analysis[END_REF][START_REF] Caselles | A geometric model for active contours in image processing[END_REF][START_REF] Chan | An Active Contour Model without Edges[END_REF]. For6 geometric flows describing the evolution of convex and non-convex curves see [START_REF] Angement | On affine heat equation for non-convex curves[END_REF][START_REF] Gage | Curve shortening makes convex curves circular[END_REF][START_REF] Gage | The heat equation shrinking convex plane curves[END_REF][START_REF] Grayson | The heat equation shrinks embedded plane curves to points[END_REF][START_REF] Mikula | Evolution of plane curves driven by a nonlinear function of curvature and anisotropy[END_REF][START_REF] Sapiro | On affine plane curve evolution[END_REF]. The approximation of geometric evolution equations with finite elements is considered in [START_REF] Barrett | On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations[END_REF][START_REF] Barrett | On the parametric finite element approximation of evolving hypersurfaces in R 3[END_REF][START_REF] Barrett | Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves[END_REF][START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF][START_REF] Nochetto | Convergence Past Singularities for a Fully Discrete Approximation of Curvature-Driven Interfaces[END_REF][START_REF] Walkington | Algorithms for computing motion by mean curvature[END_REF][START_REF] Toulopoulos | Numerical methods for power-law diffusion problems[END_REF], by finite difference schemes in [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature flow[END_REF][START_REF] Osher | Fronts Propagating with Curvature Dependent speed: Algorithms Based on Hamilton-Jacobi Formulation[END_REF], and by semi-Lagrangian schemes in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF].

The paper is organized as follows. Section 2 introduces the setting of the level set flow by powers of the mean curvature (level set PMCF). Section 3 deals with the finite element approximation of regularized level set PMCF, proves error estimates and presents numerical examples. Section 4 presents numerically obtained rates for the regularization error of level set PMCF. Section 5 introduces the regularized level set inverse mean curvature flow formulation (level set IMCF), from [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF]. Section 6 shows theoretically and numerically obtained rates for the regularization error of regularized level set IMCF. The final Section 7 contains some numerical examples in which we simulate level set PMCF in the non-rotational symmetric case and we give a short description of the implementation used for the numerical computations presented in this paper. Finally, we give some remarks on an alternative level set formulation sometimes used in the literature for the mean curvature flow case.

Level set PMCF.

Let Ω ⊂ R n+1 be open, connected and bounded having smooth boundary ∂Ω with positive mean curvature which we consider as initial hypersurface. We call the level sets Γ t := ∂{x ∈ Ω : u(x) > t}, t ≥ 0, of the continuous function 0 ≤ u ∈ C 0 ( Ω) a level set PMCF, if u is a viscosity solution of (2.1) Section 2] for a definition viscosity solution in this case. If u is smooth in a neighborhood of x ∈ Ω with non vanishing gradient and satisfies in this neighborhood (2.1), then the level set {u = u(x)}, x ∈ Ω, is locally at x a smooth hypersurface and moves at x in the direction of its outer normal with speed H k where H is its mean curvature in x. Using elliptic regularization of level set PMCF we obtain the equation

     div Du |Du| = - 1 |Du| 1 k in Ω, u = 0 on ∂Ω, cf. [40,
(2.2)      div Du ε ε 2 + |Du ε | 2 = -(ε 2 + |Du ε | 2 ) -1 2k
in Ω,

u ε = 0 on ∂Ω,
which has a unique smooth solution u ε for sufficiently small ε > 0, cf. [51, Section 4]; moreover, there is c 0 > 0 such that

(2.3) u ε C 1 ( Ω) ≤ c 0
uniformly in ε and (for a subsequence)

(2.4) u ε → u ∈ C 0,1 ( Ω)
in C 0 ( Ω). We call u a weak solution of (2.1), which is unique for n ≤ 6. All the above facts are proved in [START_REF] Schulze | Nonlinear evolution by mean curvature and isoperimetrical inequalities[END_REF]Section 4] under the assumption that k ≥ 1. A weak solution of (2.1) satisfies (2.1) in the viscosity sense, cf. Section [40, Section 2].

3. Discretization and error estimate for regularized level set PMCF. In this section we present a finite element discretization of the regularized equation (2.2) and prove error estimates. We will restrict us to the case that the space dimension n + 1 is 2 or 3 and that Ω is convex. The latter is only a restriction if n + 1 = 3 since ∂Ω has positive mean curvature by assumption, cf. Section 1. 

W -m,p (Ω) × W m,p 0 (Ω) (F, ϕ) → F, ϕ = F ϕ ∈ R.
Let (T h , Ω h ) be a quasi-uniform triangulation of Ω with mesh size 0 < h < h 0 , h 0 sufficiently small, and V h ⊂ H 1 (Ω h ) the finite element space given by (3.2)

V h = v ∈ C 0 ( Ωh ) : v |∂Ω h = 0, v |T linear for all T ∈ T h .
In view of the convexity of Ω there holds Ω h ⊂ Ω. A function u h ∈ V h will be also considered as a function on Ω by extending it by zero in Ω \ Ω h . Then

v h ∈ H 1 (Ω).
The variational formulation of (2.2) is given by

(3.3) Ω h Du ε h , Dv h ε 2 + |Du ε h | 2 dx = Ω h (ε 2 + |Du ε h | 2 ) -1 2k v h dx for all v h ∈ V h
where we fix ε > 0 from now on and denote the finite element solution by u ε h . For formal reason we will consider boundary tetrahedrons (boundary triangles in case d = 2) to be extended to a boundary tetrahedron with one 'curved face'. Therefore we will replace a boundary element T ∈ T h (i.e. n + 1 vertexes of T lie on ∂Ω) by T = T ∪ B with (3.4)

B = {tp + (1 -t)P p | 0 ≤ t ≤ 1, p ∈ bf },
where bf is the boundary face of T , i.e. n + 1 vertexes of bf lie on ∂Ω, and P p is the unique minimizer of dist(p, •) |∂Ω . We denote the resulting triangulation by Th . This leaves the space of finite element functions we use (namely V h ) unchanged. Note, that the boundary strip Ω \ Ω h has measure O(h 2 ).

3.2. The linearized operator. We define the linear operator L ε and its dual and state some properties. Let p > 1. We define for ε > 0 and z ∈ R n (3.5)

|z| ε := f ε (z) := |z| 2 + ε 2
and denote derivatives of f ε with respect to z i by D z i f ε . We have

(3.6) D z i f ε (z) = z i |z| ε , D z i D z j f ε (z) = δ ij |z| ε - z i z j |z| 3 ε .
We define the operator Φ ε by

(3.7) Φ ε : W 1,p 0 (Ω) → W -1,p * (Ω), Φ ε (v) = -D i D i v |Dv| ε - 1 |Dv| 1 k ε ,
where 1 p + 1 p * = 1, so that (2.2) can be written as

(3.8) Φ ε (u ε ) = 0.
We denote the derivative of Φ ε in u ε by (3.9)

L ε := DΦ ε (u ε )
and have for all ϕ ∈ W 1,p 0 (Ω) that (3.10)

L ε ϕ = -D i (D z i D z j f ε (Du ε )D j ϕ) + 1 k f ε (Du ε ) -1-1 k D z j f ε (Du ε )D j ϕ =: -D i (a ij D j ϕ) + b i D i ϕ,
where we use the convention to sum over repeated indices. The coefficients a ij and b i are in C ∞ ( Ω). Note, that the estimate (2.3) is not available for higher order derivatives of u ε uniformly in ε but since ε is fixed in the present section, this does not have an effect on the following considerations. The linear operator

(3.11) L ε : W 1,p 0 (Ω) → W -1,p * (Ω)
and its adjoint operator L * ε are topological isomorphism, cf. Corollary A.2 in Section 7. From [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF]Theorem 8.5.3] 

we deduce for L = L ε or L = L * ε and F ∈ W -1,p * (Ω) that there is a unique solution u h ∈ V h of (3.12) Lu h , ϕ h = F ϕ h for all ϕ h ∈ V h ,
where u ∈ H 1 (Ω) is the unique solution of Lu = F and we have the estimate

(3.13) u h W 1,p (Ω) + u -u h W 1,p (Ω) ≤ c u W 1,p (Ω) . Furthermore, if F ∈ L p (Ω) we have (3.14) u -u h W 1,p (Ω) + h u -u h L p (Ω) ≤ ch 2 F L p (Ω) .
Remark 3.1. Note, that we used the assertion of [14, Theorem 8.5.3] under slightly different assumptions, namely:

(i) We assume a right-hand side

F ∈ W -1,p * (Ω) (instead F ∈ L p (Ω)).
(ii) We consider the equation on Ω (instead of a polygonal domain) and use as discretization the triple ( Th , Ω, V h ).

Error estimate.

We have the following error estimate in the W 1,p -norm.

Theorem 3.2. For every p > n + 1 and small h > 0 there exists a constant

0 < c = c( u ε W 2,2 (Ω) , p) such that (3.3) has a solution u ε h ∈ V h satisfying (3.15) u ε -u ε h W 1,p (Ω) ≤ ch.
This solution is unique in a small W 1,p -neighborhood of u ε in V h .

Proof. We set

(3.16) Bh ρ = {v h ∈ V h : u ε -v h W 1,p (Ω) ≤ ρ}, with (3.17) ρ = h λ
for an arbitrary and now fixed n+1 p < λ < 1. We will obtain u h as the unique fixed point in Bh ρ of the operator T :

V h → V h with (3.18) L ε (w h -T w h ) = Φ ε (w h ), w h ∈ V h .
We show that (i) Bh ρ = ∅, (ii) T is a contraction and (iii) T ( Bh ρ ) ⊂ Bh ρ . (i) Let I h u ε be the interpolation of u ε , i.e. the continuous piecewise linear function on Ω h which is equal to u ε at all nodes of Ω h . We extend I h u ε by zero to a function on Ω. Since (3.19)

I h u ε -u ε W 1,p (Ω) ≤ ch we have I h u ε ∈ Bh ρ for small h. (ii) Let v h , w h ∈ Bh ρ and ξ h = v h -w h then using (3.18) we conclude (3.20) L ε (T v h -T w h ) = L ε ξ h + Φ ε (w h ) -Φ ε (v h ) = (L ε -DΦ ε (v h + Θξ h ))ξ h =: F In order to estimate F W -1,p * (Ω) which leads to an estimate of T v h -T w h W 1,p (Ω) in view of Corollary A.2 we choose ψ ∈ W 1,p * 0 (Ω) with ψ W 1,p * (Ω) ≤ 1 and estimate F, ψ .
To do so we use a mean value theorem for which we need the following auxiliary estimate

(3.21) Du ε -(Dv h + ΘDξ h ) L ∞ (Ω) ≤ Du ε -DI h u ε L ∞ (Ω) + DI h u ε -Dṽ h L ∞ (Ω) ≤ ch + cρh -n+1 p ,
where ṽh = v h + Θξ h ∈ Bh ρ and where we used an inverse estimate. The resulting estimate implies

(3.22) T v h -T w h W 1,p (Ω) ≤ c(h + ρh -n+1 p ) ξ h W 1,p (Ω) ≤ 1 4 ξ h W 1,p (Ω)
for small h.

(iii) Let w h ∈ Bh ρ . We have (3.23) T w h -u ε W 1,p (Ω) ≤ T w h -T I h u ε W 1,p (Ω) + T I h u ε -I h u ε W 1,p (Ω) + I h u ε -u ε W 1,p (Ω) ≤ ρ 2 + T I h u ε -I h u ε W 1,p (Ω) + ch.
It remains to estimate the norm on the right-hand side. We have

(3.24) T I h u ε -I h u ε W 1,p (Ω) ≤ c Φ ε (I h u ε ) W -1,p * (Ω) = c Φ ε (I h u ε ) -Φ ε (u ε ) W -1,p * (Ω)
≤ ch again by a mean value theorem estimate. In view of (3.17) we have

(3.25) T ( Bh ρ ) ⊂ Bh ρ .
Employing a duality argument as in [START_REF] Feng | Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity[END_REF] we obtain an L p -error estimate in the following theorem.

Theorem 3.3. For p > n + 1 we have

(3.26) u ε -u ε h L p (Ω) ≤ ch 2 with c = c( u ε W 2,2 (Ω) , p) > 0. Proof.
From the definitions of u ε and u ε h we get (3.27)

Ω ∇u ε |∇u ε | ε - ∇u ε h |∇u ε h | ε • ∇ϕ h dx + Ω |∇u ε | 1 k ε -|∇u ε h | 1 k ε ϕ h dx = 0 for all ϕ h ∈ V h .
This equation can be written equivalently as (3.28) 

Ω (A ε h ∇e ε h ) • ∇ϕ h dx + Ω (a ε h • ∇e ε h ) ϕ h dx = 0 for all ϕ h ∈ V h .

with (3.29)

A ε h := 1 0 D 2 f ε (∇u ε + t∇(u ε h -u ε ))dt a ε h := 1 k 1 0 f ε (∇u ε + t∇(u ε h -u ε )) 1 k -1 Df ε (∇u ε + t∇(u ε h -u ε ))dt e ε h := u ε h -u ε and for later purposes we set (3.30) Āε h := D 2 f ε (∇u ε ) āε h := 1 k f ε (∇u ε ) 1 k -1 Df ε (∇u ε ). Let ϕ ∈ W
Ω |e ε h | p dx = Ω (A ε h ∇e ε h ) • ∇ϕ h dx + Ω (a ε h • ∇e ε h )ϕ h dx.
By (3.28) we have further

(3.33) Ω |e ε h | p dx = Ω (A ε h -Āε h )∇e ε h • ∇ϕ h dx + Ω ((a ε h -āε h ) • ∇e ε h ) ϕ h dx ≤ c Ω |∇e ε h | 2 |∇ϕ h |dx + c Ω |∇e ε h | 2 ϕ h dx ≤ c ϕ h W 1,p * (Ω) e ε h 2 W 1,2p (Ω) .
In view of Corollary A.2 and (3.31) we get

(3.34) ϕ h W 1,p * (Ω) ≤ c Ω |e ε h | (p-1)p * dx 1 p * = c e ε h p p * L p (Ω) .
Using (3.32) and Theorem 3.2 to estimate e ε h W 1,2p (Ω) we conclude.

The discretization errors in the H 1 -and L 2 -norm have been calculated numerically by solving Eqn. (2.1) for the case of a unit circle as initial curve with ε = 0.1 and k = 1 on meshes of various refinements (h = 0.006, ..., 0.4). The solutions have been calculated iteratively by linearizing Eqn. (3.3) in the following way:

(3.35) Ω h V j Du ε h,j , Dv h dx = Ω h f j v h dx for all v h ∈ V h
where j ∈ N is the iteration index and V j and f j have been updated in each iteration:

(3.36)

V j := 1 j = 1, γV j-1 + (1 -γ) 1 √ ε 2 +|Du ε h,j | 2 j > 1,
f j := 1 j = 1, γf j-1 + (1 -γ)(ε 2 + |Du ε h,j | 2 ) -1 2k j > 1.
The value of γ affects the convergence of the iterations and was set to 0.1. In each iteration the linearized equation has been solved using Freefem [START_REF] Hecht | New development in FreeFem++[END_REF]. These solutions where compared to a solution obtained by solving Eqn. (2.1) in radial coordinates. Note, that due to radial symmetry Eqn. (2.1) simplifies to an ODE which was solved on a one-dimensional grid of h = 0.001. Figure 1 shows the numerical discretization errors as well as the rates proven in Theorem 3.2 and Theorem 3.3. Figure 2 shows the discretization errors u ε h -u ε 0.001 and the corresponding meshes. 4. Numerical study of the regularization error for PMCF. This section shows some numerically obtained rates for the regularization error of regularized level set PMCF. Since small values of the regularization parameter ε are difficult to handle we restrict the setting in order to have very high accuracy to the rotational symmetric case. A similar case in a rotational symmetric setting which omits the important issue of artificial boundary values in the model from [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF] was considered in [29, Figure 5] for regularized level set IMCF.

We state the following theoretical regularization error estimate.

Theorem 4.1. Let u be solution of (2.1) and u ε of (2.2). Then for λ > 2k the regularization error of the regularized level set PMCF satisfies Fig. 2. Top: mesh with decreasing meshsize h. Bottom:

|u -u ε | C 0 (Ω) = O(ε 1 λ ).
u ε h -u ε 0.001
Proof. See [START_REF] Kröner | Approximation rates for regularized level set power mean curvature flow[END_REF].

We recall a well-known interpolation lemma which enables us to deduce also an approximation error in Hölder-norms. Lemma 4.2. For 0 < β < α ≤ 1 and a function v ∈ C 0 (Ω) we have

(4.2) [v] β ≤ 2 1-β α [v] β α α v C 0 (Ω) ,
where these expressions might become infinity and

(4.3) [v] α := sup x =y |v(x) -v(y)| |x -y| α .
Since u ε is uniformly bounded in the C 1 -norm, cf. (2.3), we can use Lemma 4.2 to conclude

(4.4) u -u ε C 0,β (Ω) ≤ c(β)ε λ(1-β)
for every 0 < β < 1 and 0 < λ < 1 2k . Our rotational symmetric example for which we study the regularization error is a shrinking circle. Let the circle ∂B r0 (0) ⊂ R 2 with radius r 0 > 0 serve as our initial curve so that the solution u of (2.1) is given as

(4.5) u(r) = r k+1 0 -r k+1 k + 1 ,
where r ≥ 0 denotes the radius variable in polar coordinates in R 2 with center in 0.

The regularized equation reduces to the following one-dimensional equation when formulated in radial coordinates (4.6)

           1 r d dr   r d dr u ε ε 2 + d dr u ε 2   = -ε 2 + d dr u ε 2 -1 2k in [0, r 0 ], d dr u ε (0) = 0 and u ε (r 0 ) = 0.
We solve this one-dimensional boundary value problem by a Newton-Algorithm combined with Thomas Algorithm as direct solver. In Figure 3 , that means indeed that the rate depends on the power k -the larger k the smaller the rate. However, this is a little bit better than 1/(2k).

Figure 4 shows the corresponding solutions of the regularized equations.

5. Level set IMCF. We recall from [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF] the following facts. Let M ⊂ R n+1 be a closed, embedded hypersurface. A classical solution of the inverse mean curvature flow is a smooth family x : M × [0, T ] → R n+1 of hypersurfaces M t := x(M, t) satisfying the parabolic evolution equation (5.1)

∂x ∂t = ν H , x ∈ M t , 0 ≤ t ≤ T,
where H, assumed to be positive, is the mean curvature of M t at the point x and ν is the outward unit normal. If the flow is given by the level sets of a function u : R n+1 → R via (5.2)

E t := {x ∈ R n+1 : u(x) < t}, M t := ∂E t ,
then, wherever u is smooth with ∇u = 0, equation (5.1) is equivalent to set equation is given by (5.5)

           E ε u ε := div ∇u ε |∇u ε | 2 + ε 2 -|∇u ε | 2 + ε 2 = 0 in Ω L , u ε = 0 on ∂E 0 , u ε = L -2 on ∂F L
where L, ε > 0 and in case there exists a (hence unique) solution u ε we will denote it by u ε,L as well. From [39, Lemma 3.4] we know the following existence result.

Lemma 5.1. For every L > 0 there is ε(L) > 0 such that for 0 < ε ≤ ε(L) a smooth solution u ε of (5.5) exists.

Furthermore, [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF]Example 2.3] shows that one expects that L is at most c ε(L) , or equivalently,

(5.6) ε(L) ≤ c L .
From [39, page 365] we recall the definition of a weak solution of (5.3).

Definition 5.2. (i) Let Ω ⊂ R n+1 be an open set then u ∈ C 0,1 (Ω) is a weak solution of (5.3) on Ω if

(5.7) J K u (u) ≤ J K u (v)
where

(5.8) J K u (v) := K |∇v| + v|∇u|dx for all v ∈ C 0,1 (Ω) with {v = u} ⊂⊂ Ω and compact {v = u} ⊂ K ⊂ R n+1 .
(ii) u is a weak solution of (5.3) with initial condition E 0 if

(5.9) u satisfies (i) with Ω = R n+1 \ Ē0 and E 0 = {u < 0}.

We state the following existence theorem which holds due to [39, Theorem 3.1] and remark that the latter contains further information like a gradient estimate.

Theorem 5.3. For every open and bounded set Ω ⊂ R n+1 there is a weak solution of (5.3) with initial condition E 0 which is unique on R n+1 \ E 0 .

Furthermore, from the proof of [39, Theorem 3.1] we conclude the following. There exist R L i → ∞, 0 < ε i → 0, solutions u i = u εi,Li of (5.5) (i.e. with ε = ε i and L = L i ) and u ∈ C 0,1 (R n+1 \ E 0 ) so that (5.10) u i → u locally uniformly on R n+1 \ E 0 and u is a weak solution of (5.3). Furthermore, the proof of [START_REF] Huisken | The inverse mean curvature flow and the Riemannian Penrose inequality[END_REF]Theorem 3.1] shows that we may assume that ε i is small compared to 1 Li . 6. Barriers and regularization error for rotational symmetric level set IMCF. The regularized equation (5.5) depends on the triple (ε, Ω L , L) where Ω L and L are coupled explicitly. We derive in a first step upper and lower bounds for the solution of (5.5) depending on the data. Then we simplify the setting by assuming that E 0 is a ball and that the boundary values on ∂Ω L coincide with (exact) IMCF starting from ∂E 0 . Our general barriers imply in this special case that the regularization error is of order ε 2 which we confirm with a numerical example. We remark that in general the 'regularization error' is mainly dominated by the artificial boundary values. We think that it is interesting to study the regularization error for more general E 0 .

Let positive L and ε be given so that problem (5.5) has a solution ū = u ε, L. As stated above we want to estimate the regularization error which means here to estimate (6.1) |u -ū| C 0 ( Ωl )

for some fixed 0 < l < L, where u is a weak solution of (5.3). Since the boundary values on ∂F L in (5.5) are rather artificial, (6.1) can only be expected to be small for 0 < l L. The idea to derive an estimate for (6.1) is as follows. Let δ > 0 be arbitrary then there exists i = i(δ) ∈ N so that

(6.2) |u -u εi,Li | C 0 (Ω l ) ≤ δ and ε i ε and L i L.
We then construct barriers for (5.5) for general ε > 0 and L > 0 for which (5.5) has a solution and deduce from these bounds in the cases (ε, L) = (ε, L) and (ε, L) = (ε i , L i ) bounds for ū and u εi,Li , respectively, which imply an estimate for ū -u εi,Li . We assume that ε > 0 and L > 0 are so that (5.5) has a solution. We use the ansatz ϕ(v) where ϕ ∈ C ∞ (R) will be chosen appropriately. We have

(6.3) D i v(x) = (n -1) x i |x| 2 , D i D j v(x) = (n -1) δ ij |x| 2 -2 x i x j |x| 4 and (6.4) ∆v(x) = (n -1)(n -2) |x| 2 .
Setting r = |x| and w = (|ϕ

| 2 |Dv| 2 + ε 2 ) 1 2
we have (6.5)

E ε ϕ(v) = div ϕ Dv (|ϕ | 2 |Dv| 2 + ε 2 ) 1 2 -|ϕ | 2 |Dv| 2 + ε 2 1 2 = w -3 (ϕ |Dv| 2 w 2 + ϕ ∆vw 2 -|ϕ | 2 ϕ |Dv| 4 -(ϕ ) 3 D i vD j vD i D j v -w 4 ). Using w = ( (n-1) 2 r 2 |ϕ | 2 + ε 2 ) 1 2
we obtain further (6.6)

E ε ϕ(v) = w -3 ϕ (n -1) 2 r 2 w 2 + ϕ (n -1)(n -2) r 2 w 2 -|ϕ | 2 ϕ (n -1) 4 r 4 + (ϕ ) 3 (n -1) 3 r 4 -w 4 = w -3 (ϕ ) 3 r 4 (n -1) 4 + ε 2 r 2 (ϕ (n -1) 2 + ϕ (n -1)(n -2)) - (n -1) 4 r 4 |ϕ | 4 -2ε 2 (n -1) 2 r 2 |ϕ | 2 -ε 4 .
assumption 6.1. We assume

(6.7) ε = αL -1 ,
with 0 < α < 1 2 . In view of (5.6) this assumption is a not too restrictive and will be assumed in the following. Our aim is that the leading term of the right-hand side of (6.5) is

(6.8) (n -1) 4 r 4 (ϕ ) 3 (1 -ϕ )
and this is enforced by exploiting the fact that all remaining terms (6.9)

ε 2 r 2 (ϕ (n -1) 2 + ϕ (n -1)(n -2) -2(n -1) 2 |ϕ | 2 -ε 2 r 2 )
have the factor ε 2 . We will choose ϕ with |ϕ | < 1 and 0 < |1 -ϕ | = δ < 1 so that the term (6.8) becomes leading if (6.10)

|(ϕ ) 3 (1 -ϕ )| ≥ (1 -δ) 3 δ ≥ 12α 2 (n -1) -2 ≥ α 2 ((n -1) -2 + (1 + δ)(n -1) -2 + 2(1 + δ) 2 (n -1) -2 + 1 8 (n -1) -4 ).
We assume that ∂E 0 ⊂ B r2 (0) \ B r1 (0) with 0 < r 1 < r 2 . Our ansatz for the upper barrier is ϕ 1 (v) and for the lower barrier ϕ 2 (v) with ϕ i , i = 1, 2, a linear function with slope 1 + (-1) i+1 δ which lies above (case i = 1)/below (case i = 2) and touches the line segment which connects the points ((n -1) log r i , 0) and (L, L -2) and δ satisfies (6.10). From a comparison principle we know that these barriers are bounds for u ε from above and below in Ω L , furthermore, these bounds are obtained explicitly for given data L, α as follows. For the upper bound we obtain (6.11)

ϕ 1 (x) = s 1 (x -(n -1) log r 1 ) if s 1 > L-2 L-(n-1) log r1 , s 1 (x -L) + L -2 else,
where x ∈ R. Analogously, we have for the lower bound (6.12)

ϕ 2 (x) = s 2 (x -(n -1) log r 2 ) if s 2 < L-2 L-(n-1) log r2 , s 2 (x -L) + L -2 else.
These barriers provide good estimates in Ω l , 0 < l L, if L is large, α small and r i < 1 are both close to 1, then especially the initial hypersurface has 'small oscillation'. Note, that since the boundary values L -2 of u ε on ∂F L are rather artificial we also expect good estimates only in Ω l (and not in Ω L ). We recall that applying this construction of barriers for the pairs (ε, L) and (ε i , L i ) leads to barriers φ1 (v), φ2 (v), ϕ i 1 (v), and ϕ i 2 (v) with obvious notation and that we have then the inequality (6.13)

ϕ i 2 (v) -φ1 (v) ≤ u -u ε ≤ ϕ i 1 (v) -φ2 (v)
which is an estimate of the regularization error.

We will exploit this way to construct barriers in the special situation when E 0 is a ball with center in the origin and radius r and when we choose as boundary values on ∂Ω L those from (exact) level set IMCF. Then the requirement for the barriers is that ϕ i , i = 1, 2, is a linear function with slope 1 + (-1) i+1 δ which lies above (case i = 1)/below (case i = 2) and touches the line segment which connects the points ((n -1) log r, 0) and (L, L) where L ∈ R suitable (i.e. equal to the 'arrival time' of IMCF at the boundary of B L (0)) and δ satisfies (6.10). It is clear that this yields a regularization error which is 'purely due to ε' and which is given by ε 2 . To see this note that the constant δ involved in the definition of the slopes of the barriers is of size δ ≈ α 2 ≈ ε 2 .

In the corresponding implementation we solved the equivalent 1D-problem on the interval [0, log L] given by (6.14) (ϕ ) 3 e 4x + ε 2 e 2x ϕ -

1 e 4x |ϕ | 4 -2ε 2 1 e 2x |ϕ | 2 -ε 4 = 0 with boundary values ϕ(0) = 0, ϕ(log L) = log L which is solved by ϕ(x) = x if ε = 0.
This is illustrated in Figure 5. Note that [29, Table 5] differs by the obtained rate O(ε) instead of O(ε 2 ) as in our case. This might be due to the fact that the example in [29, Table 5] simulates IMCF backward in time, i.e. the boundary of the domain is the hypersurface which is reached by the IMCF starting from level sets in the interior of the domain. Then the solution has stationary points. We study the forward problem, i.e. we calculate what happens with a given initial hypersurface in the future and hence we don't have stationary points in the rotational symmetric case.

7. Simulations and further remarks. In this section we present some simulations in the non-rotational symmetric case for PMCF. A short description of the implementation used for the numerical examples is presented, and finally we provide an alternative level set formulation. 7.1. Simulations in a non-rotational symmetric case for PMCF. The phenomenon of becoming round can be measured by the isoperimetrical deficit (7.1)

l(t) 2 -4πa(t),
where l(t) denotes the length of the curve and a(t) the enclosed area at time t.

According to theoretical results in [START_REF] Schulze | Nonlinear evolution by mean curvature and isoperimetrical inequalities[END_REF] we confirm the monotonicity of this deficit during the evolution in the special case of the ellipse as initial curve, see Figure 6. Furthermore, we see that with increasing k and ε = 0.05 the curves transform faster into a circle except for k = 0.5, see Figure 8, where the 'point' is reached quite well).

In Figure 4 and Figure 7 we see when comparing the exact solutions for the circle for different values of k and the approximate solutions for the ellipse with ε = 0.15 for different values of k, respectively, that the flow reaches the singularity for larger k earlier.

In our previous Figure 4 we plot a section (along the long and short half axes of the initial curve) of the solution u ε in the case of the circle and in Figure 7 in the case of an ellipse as initial curve for different values of ε.

Figure 8 shows level sets of u 0.1 for the case of the ellipse as initial curve and different values of k. We remark that our theory covers only the case k ≥ 1 but there is a well-defined and well-known behavior for the flow of convex curves with speeds given by general positive powers of the curvature, see [START_REF] Andrews | Classification of limiting shapes for isotropic curve flows[END_REF]. Our observations are as follows. For k = 0.5 we see for ε = 0.1 a quite good approximation of the phenomenon of shrinking to a 'round point' and further lessening of ε does not show significant improvements. For all k the inner level line for ε = 0.1 seems to be already 'round' while for k = 2 this seems to be far from a 'point'.

On the implementation. To calculate the finite element approximation u ε

h of u ε we used a discretization with unstructured grids, see Figure 9. These were generated by the mesh generator Gmsh, see [START_REF] Geuzaine | Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. We solved the non-linear equation (3.3) with a Newton method which uses a bi-conjugate gradient stabilized solver (BiCGSTAB) and SSOR preconditioning. For the implementation we used PDELab, a discretization module for solving PDEs which depends on the Distributed and Unified Numerics Environment (DUNE). As further references concerning PDELab we refer to [48,[START_REF] Bastian | Generic implementation of finite element methods in the distributed and unified numerics environment (dune)[END_REF], information about DUNE can be found in [START_REF] Blatt | The Iterative Solver Template Library[END_REF][START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. Part ii: Implementation and tests in DUNE[END_REF][START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. part i: abstract framework[END_REF][START_REF] Dune | Distributed and unified numerics environment[END_REF]. In order to get solutions for small ε we used a warm-start, i.e. we decreased ε stepwise to the desired small value and performed on each stage a calculation with the solution for the previous ε as initial value.

7.3. Alternative level set formulation. For completeness we mention an alternative formulation of the motion by powers of the mean curvature which uses a level set formulation with a level set function which depends on the time. Let M 0 ⊂ R n+1 be a given initial hypersurface and u 0 : R n+1 → R a continuous function such that (7.2)

M 0 = {x ∈ R n+1 : u 0 (x) = 0}. Let u : [0, ∞) × R n+1 → R be the unique viscosity solution of (7.3) d dt u =|Du| div Du |Du| k in R n+1 × (0, ∞) with u(0, •) = u 0 in R n+1
, we call the family of the (7.4)

M (t) = {x ∈ R n+1 : u(t, x) = 0}, t > 0,
a (time dependent) level set PMCF. Equation (7.3) is a fully nonlinear, degenerate and possibly singular (if Du = 0) parabolic equation. In the case k > 1 the elliptic main part of (7.3) is not in divergence form and fully nonlinear in the second spatial derivatives which is of disadvantage having our finite element approach in mind. Furthermore, it is higher dimensional than the equation we used. Nevertheless, this formulation is quite common in the literature in the cases 0 < k ≤ 1 and in general also available when the speed is not necessarily positive. We give a short overview.

Existence and uniqueness of a solution for (7.3) is proved in [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF][START_REF] Evans | Motion of level sets by mean curvature[END_REF] in the case k = 1. In [START_REF] Mitake | On convergence rates for solutions of approximate mean curvature equations[END_REF] equation (7.3) in case 0 < k ≤ 1 is approximated by a family of regularized equations and rates of convergence of the corresponding solutions are obtained.

Concerning regularizations of equations we also refer to [START_REF] Bellettini | Elliptic approximations pf prescribed mean curvature surfaces in Finsler geometry[END_REF]. The time dependent formulation (7.3) in the case k = 1 3 , i.e. the affine curvature equation, is used for image processing, cf. [START_REF] Alvarez | Axioms and fundamental equations of image processing[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF]. In the case k = 1, i.e. mean curvature flow, equation (7.3) has been studied intensively analytically and numerically, cf., e.g., [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF][START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature flow[END_REF][START_REF] Deckelnick | Convergence of a finite element method for non-parametric mean curvature flow[END_REF][START_REF] Deckelnick | Computation of geometric partial differential equations and mean curvature flow[END_REF][START_REF] Kohn | A deterministic-control-based approach to motion by curvature[END_REF]. We want to point out the paper [START_REF] Deckelnick | Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow[END_REF] by Deckelnick, where the solution u ε of a regularized version of (7.3) is approximated by a finite difference scheme which was originally proposed by Crandall and Lions [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature flow[END_REF]. In Deckelnick's paper rates for the convergence of the discrete solution to the solution u of the (not regularized) level set equation are proved. The total error consists of a regularization error of the form (7.5) u -u ε L ∞ (Ω) ≤ c α ε α with α ∈ (0, 1 2 ) arbitrary and c α a positive constant, see [START_REF] Deckelnick | Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow[END_REF]Theorem 1.2] for details, and a discretization error which is a polynomial expression in the numerical parameter and the reciprocal regularization parameter. Furthermore, the value for the convergence order of the discretization error (and hence for the total approximation error) is very low; the main point here is that this rate is of polynomial order. A calculation showed that in the setting of our paper the constants involved in the L 2 -and H 1error estimate for the discretization error depend at most exponentially on 1 ε . Such an exponential dependence is not unusual as can be seen in the paper [START_REF] Deckelnick | Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow[END_REF]. There the viscosity solution u of (7.3) is approximated by a solution u ε of the regularized equation and then the regularized equation is approximated by a solution u ε,h of a semi-discrete problem. The regularization error is again of the form (7.5) but the error u ε -u ε,h measured in a certain energy norm, cf. [START_REF] Deckelnick | Computation of geometric partial differential equations and mean curvature flow[END_REF]Theorem 6.4], is only of order c ε h, where, and this is the important point, the constant c ε depends exponentially on 1 ε . Numerical tests from that reference, however, suggest that the resulting bound overestimates the error. In the special case of two dimensions, i.e. the moving hypersurfaces are curves, Deckelnick and Dziuk [START_REF] Deckelnick | Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow[END_REF] prove L ∞ -convergence (without
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 12 Discretization. We fix some standard notation concerning finite elements. We denote the Euclidean norm of R n by | • |. For an open subset Ω of R n and m ∈ N * , p ≥ 1, we denote the corresponding Sobolev spaces by W m,p (Ω), W m,p 0 (Ω), H m (Ω) = W m,2 (Ω) and H m 0 (Ω) = W m,Ω). The dual spaces are denoted by W -m,p (Ω) = W m,p 0 (Ω) * and the dual pairing by (3.1)
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 1 Fig. 1. Discretization error for the unit circle as initial curve with k = 1, ε = 0.1.

  (a) the error u ε -u L ∞ (Ω h )
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 3 Fig. 3. (a) regularization error in case of a circle as initial curve for k = 1, 1.2, 1.5, 2, 3; (b) rate of regularization error as function of k.
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 4 Fig. 4. Radial solution for a circle as initial curve for (a) k = 1, (b) k = 1.5, (c) k = 2 and (d) k = 3.
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 256 Fig. 5. Regularization error in case of a circle as initial curve.

Fig. 7 .

 7 Fig.7. Solution for ellipse as initial curve. Picture 1-3: Section in direction of the long half axis of the initial curve for k = 1, 1.5, 2; Picture 4-6: the same for the short half axis.

Fig. 8 .

 8 Fig. 8. Solution for ellipse for ε = 0.1.

Fig. 9 .

 9 Fig. 9. Mesh for the discretization with size h = 0.15 for ellipse with half axes 1 and 2.
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rates) of the discrete solution provided h = h(ε) sufficiently small, where 'sufficiently small' is not given by an explicit formula or polynomial dependence.

Appendix A. Some auxiliary observations. Since L ε : H 1 0 (Ω) → H -1 (Ω) is a topological isomorphism by classical L 2 -theory this also holds for L * ε : H 1 0 (Ω) → H -1 (Ω). We define the to L ε associated uniformly, elliptic regular Dirichlet bilinear form of order 1 by

From Fredholm's alternative, cf. [55, Theorem 10.7], we deduce that for every F ∈ W -1,p * (Ω) the equation

3) has a unique solution.

Lemma A.1. dim N p * = dim N p = 0.

Proof. Let v ∈ N p * . From [55, Theorem 7.6] we get v ∈ W 1,p 0 (Ω) for all 1 < p < ∞, especially for p = 2. Since we know from L 2 -theory that (A.3) has a unique solution u ∈ W 1,2 0 (Ω) if p = 2 and F = 0 we deduce that v = 0. Analogously we obtain the remaining claim.

By bounded inverse theorem we conclude the following result.

Corollary A.2. L ε , L * ε are topological isomorphisms.