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1 Introduction

In many physical systems, damping has been observed to have a stabilizing or
destabilizing effect. The latter effect is counter-intuitive, as a stable system
without damping should indeed remain stable if dissipative forces are added.
Various discrete mechanical systems display this unusual feature. The most
famous is probably that studied by Ziegler in 1952 [40]. It consists of a double-
pendulum subjected to a follower force, which can be practically achived by
dry friction [6, 5]. It was found by Ziegler that the critical value of the load at
which the straight equilibrium position becomes unstable decreases and changes
in a discontinuous manner when an infinitesimal amount of viscous damping is
added in the model. Many gyroscopic systems presents this feature [32, 20], as
well as aeroelastic systems [23] and the experimental evidence of a destabilizing
effect of a viscous fluid has been obtained in the the context of rotor dynamics
[2, 17]. In the case of a general dynamical system, Bottema [8] has described
the required conditions for the damping to induce instability. After Kirillov &
Verhulst [20], the discontinuous behavior of the critical value of the parameter
for instability is linked to the existence of singularities of maps between mani-
folds of dimension n to spaces of dimension 2n− 1, as studied by Whitney [39]
in a purely mathematical context, independently of the effect of dissipation on
mechanical systems.

Destabilizing effect of damping in continuous, but finite systems, has also
been evidenced. The cantilevered beam subjected to a follower force has been
studied by Sugiyama & Langthjem [34] in terms of energy transfers at the free
end. In the case of a fluid-conveying pipe, the stabilizing or destabilizing nature
of damping has been shown to depend on the fluid-solid mass ratio [27]. Similar
conclusions have been drawn for the fluttering flag [18].

In infinite systems described by wave equations, the effect of damping on
stable waves has also been the aim of a large number of papers. In the problem
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consisting of a flow over a compliant panel, Landahl [22] showed that viscosity
was able to destabilize some neutral waves. The same phenomenon was observed
in the fluid-conveying pipe problem [31]. The first scientific community faced
to such destabilizing phenomena was that of plasma physics, where the concept
of wave of negative energy was introduced [38, 9, 4]. This concept has been
a considerable addition to the discussion at stability of these media and has
been introduced in the research field of mechanics by Cairns [10], who showed
that the classical expression of the wave energy introduced in plasma physics
represents here the work done on the system to generate the wave from t = −∞
to t = 0.

The objective of this chapter is to present a joint local/global stability anal-
ysis of a model problem of fluid-elastic instabilities: the fluid-conveying pipe.
As emphasized in a recent review by Päıdoussis [30], the fluid-conveying pipe
may be seen as a model problem for many physical systems where a slender
structure is coupled to an axial flow, and has applications in many fields, such
as paper and nuclear industries, aeronautics, musical acoustics or biomechanics.
The fluid-conveying pipe share many similarities with all the systems mentioned
above: once a critical value of a parameter is reached (here the flow velocity) the
finite length system exhibits an instability and damping can in some cases lower
the critical velocity value. In the infinite length system, unstable waves (tem-
porally or spatially amplified) may be identified as well as neutral waves that
become unstable waves when a small amount of damping is added. However, in
none of the above-cited works, a joint local and global analysis is performed to
determine which role the negative energy waves play in the global instability.

This chapter is organised as follows: In the next section, the local and global
analyses are briefly described. Next, the linear equations governing the dynam-
ics of a fluid-conveying pipe are presented. Local and global stability analyses of
this system are then performed. An application to energy harvesting is finally
proposed and a conclusion closes the chapter.

2 Local and global stability analyses

In this section, the local and global instability analyses of a general one-dimensional
mechanical system are presented.

2.1 Local analysis

Consider an infinite length one-dimensional medium governed by a wave equa-
tion of the form,

∂2

∂t2
M [y(x, t)] +

∂

∂t
C [y(x, t)] +K [y(x, t)] = 0 on Ω = [−∞,+∞], (1)

where M, C and K are mass, damping and rigidity operators respectively. In-
troducing in this equation a disturbance of the form of a plane harmonic wave

2



y = y0e
i(kx−ωt) leads to a dispersion relation that links frequency to wavenum-

ber,
D(k, ω) = 0. (2)

The medium is stable if, for any sinusoidal wave of infinite extent in the x-
direction and associated to a real wavenumber k, the corresponding frequencies
given by equation (2) are such that the displacement remains finite in time. The
local instability criterion is then,

Instability if ∃k ∈ R \ Im[ω(k)] > 0. (3)

This approach is said to be temporal, since it consists in examining the temporal
evolution of waves in time.

2.2 Global analysis

The global analysis considers the same local wave equation (1) in a finite domain
Ω = [0, l], associated with a set of boundary conditions, denoted as Bi(y) = 0 i =
1..N , where N is the maximal order of the spatial derivatives in operators K
and M. Considering ansatz solutions of the form y = φ(x)e−iωt, one obtains
a Sturm-Liouville problem which solutions are an infinite set of eigenfunctions
φn(x) and eigenfrequencies ωn. In this case, the instability condition reads,

Instability if ∃ωn \ Im[ωn] > 0. (4)

Numerical methods are generally used to solve this kind of problems. In the
following, a Galerkin method is used to compute approximate solutions. The
solution y(x, t) is decomposed on a truncated function basis that satisfies the
boundary conditions,

y(x, t) =

N
∑

n=1

ψn(x)q(t). (5)

After defining a scalar product,

〈f, g〉 =
∫

Ω

fgdx, (6)

the approximated form of y defined in equation (5) is introduced in (1), which
is then projected on a mode ψm(x). One finally obtains a discrete set of coupled
oscillator equations,

M~̈q + C~̇q +K~q = 0. (7)

The coefficients of the matrices M , C, and K result from the projection of
the inertia, damping and rigidity forces of equation (1). Finally, looking for

harmonic solutions in the form of ~q = ~q0e
−iωt leads to a second order eigenvalue

problem for the eigenfrequency. The criterion for global instability is then given
by (4), and the corresponding eigenvector gives the eigenmode in the form of a
combination of functions ψj(x).
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3 The fluid conveying pipe: a model problem

The simplest equation describing the linear dynamics of this system consists
in an Euler-Bernoulli equation for a beam of mass per unit length m, flexural
rigidityEI, in which an internal fluid of mass per unit lengthM and of negligible
viscosity is flowing at the constant velocity U . The dimensional wave equation
governing the vertical displacement Y (X,T ) reads [29],

EI
∂4Y

∂X4
+m

∂2Y

∂T 2
+M

∂2Y

∂T 2
+MU2 ∂

2Y

∂X2
+ 2MU

∂2Y

∂X∂T
= 0 (8)

The first two terms in this equation are the flexural rigidity and inertia terms
of the linearized Euler-Bernoulli equation. The third term is an inertia term
that from the presence of the fluid inside the pipe. The fourth term may be
understood as a centrifugal term that arises as soon as the beam experiences
a local curvature. Finally the fifth term is generally referred to as a Coriolis
force and may be interpreted by considering a portion of the pipe moving at
a constant velocity. Due to the presence of a moving mass inside, a force is
exerted on this portion of the pipe.

When damping is to be considered, one may add one or both of these two
additional forces to the wave equation,

Df (Y ) = C
∂Y

∂T
, Ds(Y ) = E∗I

∂5Y

∂X4∂T
. (9)

The first case is referred to as viscous damping and is generally a consequence
of the presence of a viscous fluid around the pipe, while the second is called
structural damping and is the consequence of a viscoelastic behavior of the
material that constitutes the pipe.

After introducing the characteristic length η =
(

EI
MU2

)1/2
and time τ =

(

(m+M)η4

EI

)1/2

and rescaling all dimensional quantities using these two param-

eters, the wave equation takes a form that depends on only one independent
parameter β,

∂2y

∂t2
+
∂4y

∂x4
+
∂2y

∂x2
+ 2

√

β
∂2y

∂x∂t
= 0, (10)

where β is the mass ratio,

β =
M

m+M
∈ [0, 1]. (11)

Note that the case β = 0 is stricly equivalent of cantilevered beam with a follower
force, referred to as the Beck’s column [3]. In their dimensionless forms, the
damping operators now write,

df (y) = c
∂y

∂t
, ds(y) = α

∂5y

∂x4∂t
. (12)
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When considering a finite length system, the non-dimensional length has to
be introduced,

l =
L

η
= UL

√

M

EI
, (13)

and two boundary conditions have to be specified at each boundary. They read

y(x = x0, t) = y′(x = x0, t) = 0 , y′′(x = x0, t) = y′′′(x = x0, t) = 0, (14)

for a clamped end and a free end respectively, where the primes (.)′ denote
derivation with respect to x and x0 takes the value 0 or l.

4 Effect of damping on the local and global sta-

bility of the fluid-conveying pipe

4.1 Local stability

The dispersion relation of the undamped fluid-conveying pipe reads,

D(k, ω) = k4 − ω2 + k2 + 2
√

βkω = 0. (15)

The frequency associated to a real wavenumber k then reads,

ω± =
√

βk ± k
√

β + k2 − 1. (16)

For β ∈ [0, 1[ and k ∈ [0,
√
1− β], frequencies ω± are complex conjugate and the

positive imaginary part of one of them gives rise to a wave with an amplitude
exponentially growing in time. For k >

√
1− β, ω(k) ∈ R and waves are said

neutral. In conclusion the medium is locally unstable ∀β ∈ [0, 1[. Conversely
for β ≥ 1, the medium is neutrally stable. However, it has to be noted that
β > 1 has no physical meaning in the present context.

In various studies on the effect of damping on wave propagation, the key role
of the wave energy has been evidenced. Although introduced in the context of
shear layer waves between two non miscible fluids [10], the definition is generic
and can be readily used in any mechanical system. Consider an harmonic wave
with ω and k ∈ R and D(k, ω) = 0. The wave energy is defined as the work
done on the system to establish this neutral wave from t = −∞ to t = 0, and
reads,

E = −ω
4

∂D

∂ω
y20 . (17)

If E is negative, it means that energy has to be removed from the system to
establish the wave. The latter is then referred to as a negative energy wave
(NEW) [38].

Now consider that a small amount of viscous damping is added in the system,
so that the dispersion relation takes the form,

D1(k, ω + δω) = D(k, ω + δω)− ic(ω + δω) = 0, (18)

5



where δω ≪ ω is a small perturbation to the frequency introduced by the
damping, which satisfies at order one,

δω
∂D

∂ω

∣

∣

∣

∣

(k,ω)

= icω. (19)

We readily deduce from this expression the pertubation on the growth rate
δσ = Im(δω),

δσ =
cω

∂D/∂ω
. (20)

This quantity has the opposite sign of the wave energy E. A NEW is hence
destabilized by viscous damping. The same calculation performed with vis-
coelastic damping gives:

δσ =
αk4ω

∂D/∂ω
, (21)

which leads us to the same conclusions.
In the fluid-conveying pipe case, the wave energy has for expression,

E± =
1

2
k2
√

k2 + β − 1
(

√

k2 + β − 1±
√

β
)

, (22)

and E− has negative values in the range k ∈]
√
1− β, 1[. Hence, the range of

temporally unstable waves becomes [0, 1[ when damping is added, whereas it
was k ∈ [0,

√
1− β] in the conservative case. Damping enlarged the range of

unstable wavenumbers. Moreover, the system is now temporally unstable for
any value of β, when it was for β ∈ [0, 1[ in the conservative case.

On Fig. 1, the ranges of unstable wave in the damped and undamped cases
are compared when the parameter β, quantifying the Coriolis force varies from
0 to 1. It can be concluded from this figure that Coriolis force stabilizes waves,
which are in turn destabilized by a small amount of damping. The same kind
of behavior was observed in discrete systems in 1879 by Thomson and Tait [36].

4.2 Global stability

Boundary conditions and finite length parameter l are now introduced. The
dimensionless parameter l in equation (13) is proportional to both L and U ,
indicating that it can be seen as a dimensionless length or flow velocity. Al-
though the limit l = 0 has no meaning when it is sought as a length, it can be
achieved by letting the flow velocity vanish. In the global approach, it is then
more convenient to use L to rescale the lengths, so that the dimensionless wave
equation becomes,

∂2y

∂t2
+
∂4y

∂x4
+ v2

∂2y

∂x2
+ 2

√

βv
∂2y

∂x∂t
= 0, (23)

where the length of the dimensionless problem being the unity and with,

v = l. (24)
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Figure 1: Range of unstable wavenumbers as function of β. This illustrates the
fact that the range of wavenumbers

√
1− β is stabilized by the Coriolis force

and this range is then destabilized when damping is added in the medium.

The Galerkin method presented in section 2.2 is used here to obtain the
present results. The chosen test functions are the eigenmodes of the pipe without
flow. The functions ψn(x) are hence the eigenfunctions of equation (23) with
the same set of boundary conditions and v = 0. These eigenfunctions are
basically the eigenmodes of a beam and are known and well documented analytic
functions (see for instance the book by Blevins [7]). Equation (23) is then
projected on each mode ψm, leading to N ordinary differential equations for the
time variable, which read,

~̈q + 2
√

βv C ~̇q + (Kd + v2Kf)~q = 0. (25)

The coefficients of the matrices C, Kd and Kf result from the projection of
the Coriolis, flexural rigidity and centrifugal operators respectively. Note that
Kd is diagonal, as discussed above. The coefficients of these matrices can be
found in the paper by Gregory & Päıdoussis [16]. In the clamped-clamped case,
C is skew-symmetric and Kf is symmetric. In the clamped-free case, C and
K have both symmetric and skew-symmetric parts. This has consequences on
the bifurcations properties of these two systems. The bifurcation types have
been studied in such discrete systems. The role of matrix symmetries in the
bifurcation is not in the scope of the present paper and can be found in other
mathematical studies [19, 20].

4.2.1 Evolution of eigenfrequencies and bifurcations

The evolution of the eigenfrequencies when v is increased from 0 is plotted on
Fig. 2 in four typical cases: a pipe clamped at both ends, a clamped-free pipe
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Figure 2: Evolution in the complex plane of the eigenfrequencies of the clamped-
clamped and clamped-free pipe when the velocity parameter v is increased from
zero, for different values of the mass ratio β.

at β = 0, and a clamped-free pipe at β = 0.2 and β = 0.95. These graphs
illustrate the typical behaviors of the eigenfrequencies when the flow velocity
is increased. Different bifurcations are evidenced. In the case of a clamped-
clamped pipe, instability always arises through a saddle-node bifurcation. The
instability is called static instability, or buckling. In the case of a clamped-free
pipe, the bifurcation depends on the value of the mass ratio β. If β = 0, the
dissipation matrix vanishes in equation (25) and the instability occurs via a
Hopf bifurcation after the merging of two eigenfrequencies on the real axis. In
the fluid-elastic community, this instability is referred to as flutter instability,
as it results in self-sustained oscillations of the structure once the amplitude
of the solution has been saturated by the non-linear effects. When β 6= 0, the
increase of the flow velocity has at first a stabilizing effect, due to a flow-induced
damping through the matrix C: all the eigenfrequencies travels towards the
negative imaginary part half plane. When further increasing the flow velocity,
one eigenfrequency changes its trajectory and crosses the real axis, giving rise
to a flutter instability.
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Figure 3: (a), marginal global stability curve of the pipe conveying fluid in the
parameter plane (β, l) (thick black) compared with the local stability criterion;
(b), marginal global stability curves for increasing viscous damping.

4.2.2 Effect of damping on marginal stability of the clamped-free

pipe

The global stability of the system is now characterized by plotting in the (β, l)
plane the marginal stability curve on Fig. 3a for c = 0 (no damping). This
curve corresponds to the line in the (β, l) plane where the maximum growth
rate maxn[Im(ωn)] = 0. On the same figure, the local stability criterion β = 1
is plotted. It appears then that the long system limit for global instability is
the local stability criterion. On Fig. 3b, different values of the dimensionless
damping c from 0 to 1000 are considered. The resulting marginal stability
curve move continuously from the undamped limit to an horizontal limit. For
β ∈ [0, 0.2], the damping appears to have a stabilizing effect while it has a
destabilizing effect for β > 0.2. Hence also for the finite length clamped-free
pipe, damping can have a destabilizing effect. While in absense of damping, the
instability criterion of the finite length tends to the local one when l is increased,
no such limit can be observed in the damped case because the damped medium
is locally unstable ∀β. However, the horizontal limit observed at high values of
the damping cannot be predicted by a local criterion.

4.2.3 Kulikovskii’s criterion

We have observed in section 4.2.2 that the long system limit of the marginal
stability curve in the undamped case is the local stability criterion. In the
case of the Ginzburg-Landau equation, which is a simplified amplitude equation
describing fluid-mechanics systems such as jets, vortices or shear layers, the long
system limit for global instability criterion was found to be that of transition
from local convective instability to absolute instability [37, 11]. Convective and
absolute instabilities distinguish the long time behavior the temporally growing
wave packet generated by an impulse forcing on an unstable medium. In the
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Figure 4: Eigenfrequencies of the clamped-clamped and clamped-free pipe at
β = 0.95 and for different values of the length l, compared to the kulikovskii
criterion. In the upper-left plot of each case, the circles and crosses represent
the locii of the eigenvalues just below and just above the instability threshold
respectively. These plots illustrate the fact that although the apparition of
instability is different between these two sets of boundary conditions, all the
eigenfrequencies approach a common limit when the length of the system is
increased to infinity.
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case of convective instability, the growing wave packet is advected by the stream,
while in the case of absolute instability, the wave packet grows in place. For the
fluid-conveying pipe, the transition between these two kind of local instabilities
occurs at β = 8/9 [21].

Hence the long system limit is predicted by a local criterion, which is not
unique. A criterion introduced by Kulikovskii in 1966 in the context of electron
beam instability and cited in the book by Lifshitz and Pitaevskii [26] permits
to determine which local criterion should prevail. Kulikovskii showed that as
the length of the system tends to infinity, the eigenvalues tend to a continuous
line in the complex frequency plane such that the most spatially amplified (or
least evanescent) downstream propagating wave is exactly balanced by the least
spatially evansescent (or most amplified) upstream propagating wave, which is
formally written as:

Im(k+ − k−) = 0, (26)

where k+ is the downstream wavenumber that has the minimum imaginary
part, and k− is the upstream wavenumber that has the maximum imaginary
part. It can be shown in the fluid mechanics media mentioned above that in
case of convective instability, no frequency of positive imaginary part satisfies
this criterion. Conversely, it is possible to satisfy this criterion with unstable
frequencies in the fluid conveying pipe case when convectively unstable. Con-
sequently, in the long system limit, the convectively unstable pipe is unstable
while it is not the case for the Ginzburg-Landau equation. To illustrate this
phenomenon, the Kulikovskii criterion is plotted on Fig. 4 in the complex plane
of frequencies and compared to the locii of eigenfrequencies when the length of
the system is increased to large values. The value of β = 0.95 is chosen so that
the medium is convectively unstable. Two different sets of boundary conditions
are presented. It appears that although the occurence of bifurcations are differ-
ent in both systems, the eigenfrequency maps converge to the same limit when
l → ∞.

4.2.4 Lengthscale criterion

We have discussed in the previous section the long system limit. We now address
the opposite case of short systems. On figure 3a, for the values of the parameters
comprised between the local and global stability curves, and below the dashed
lines on figure 3b the system is globally stable although locally unstable. In
this situation, the confinement induced by considering a short system has for
consequence to prevent unstable waves to play a role in the dynamics. This
confinement effect can be quantified and can give an approximate criterion of
stability. Let us state that an unstable wave can give rise to an unstable mode of
the finite system only if its wavelength is smaller that the length of the system.
The smallest unstable wavelengths are,

λ =
2π√
1− β

, λd = 2π, (27)
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Figure 5: Global stability curves of the pipe conveying fluid in the (β, l) plane
for increasing values of the viscous damping (plain and dashed lines), compared
with the length criteria defined in equation (27) (dash-dotted lines).

in the undamped and damped cases respectively. Plotted against the marginal
stability curves on Fig. 5, these criteria show a good agreement. The marginal
stability curve goes continuously from the length criterion without damping to
that with damping.

5 Application to energy harvesting

The possibility to take profit of the energy transfer between a flow and a struc-
ture through the flutter phenomenon has recently received a significant amount
of attention. Various harvesting systems have been considered theoretically
or experimentally, such as the simple Kelvin-Voigt type dampers [33], electro-
magnetic coupling [35] or piezolectric coupling [15, 1, 28]. In this section, we
summarize a a study of a clamped-free plate equipped with a continuous distri-
bution of piezoeletric patches [15]. The piezoelectric effect couples deformation
in the plate to the electric field and electrical energy may then be harvested at
the outlets of a piezoelectric patch. Although more sophisticated circuits can
be considered [24], in the model presented here, the harvested energy is that
dissipated in a shunting resistance. The dimensionless model presented here
takes the form of two coupled wave equations for the the vertical displacement
of the plate y and the electrical charge displacement per unit length q :

1

V 2

(

1 + α2
) ∂4y

∂x4
+
∂2y

∂t2
− α

V

∂2q

∂x2
= −[p], (28)

γ
∂q

∂t
+ q − α

V

∂2w

∂x2
= 0. (29)

In (28), the two first terms are the rigidity and inertia terms of the linear Euler-
Bernoulli beam model, the third term quantifies the momentum exerted on the
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plate consecutively to the electric field in the piezoelectric patches and the right-
hand term is the pressure jump between both sides of the plate. The later can
be written as a linear function of the small amplitude displacement y and its
effective expression may take different forms depending on the approximations
and geometries of the system. For instance, if the typical length of deformation
is large compared to the width of the plate, the pressure jump has the same
three fluid terms as in the fluid conveying pipe equation (8) [25]. In the op-
posite case of an infinite span plate, one gets the same three terms, scaled by
1/k where k is the wavenumber [12]. In equation (29), the first two terms stand
for the Ohm’s law, while the third term expresses the inverse piezoelectric cou-
pling: a deformation in the piezoelectric material leads to an electrical charge
displacement. The parameters of the problem are V , the nondimensional flow
velocity, α, the piezoelectric coupling coefficient, and γ is the ratio between the
fluid-solid and electrical characteristic timescales.

The uncoupled medium (α = 0) bears temporally unstable waves, as well as
neutral waves, some of them being negative energy waves. An analysis similar
to that performed in section 4.1 shows that the temporal growth rate of neutral
waves is perturbed by the following amount when piezoelectric coupling is added:

δσ ≃ ωα2γk4

V 2(1 + ω2γ2)
∂D

∂ω

· . (30)

This expression shows that the perturbation of the growth rate has the opposite
sign of the wave energy and scales as α2. Piezoelectric coupling hence destabi-
lizes negative energy waves. Moreover, δσ presents a maximum when γ = 1/ω,
that is when the time scale of the RC circuit is the same as that of the wave.

In the linear analysis, the conversion efficiency of the system can be defined
for an unstable wave, as the ratio between the power dissipated in the resistances
during one period, and the mean of the energy present in the system over this
same period.

It is found in [15] that the maximum efficiency is always maximized for a
negative energy wave destabilized by piezoelectric coupling, when γ ∼ 1/ω.
In other words, energy harvesting may destabilize negative energy waves, and
conversion efficiency is maximized with these waves.

The finite length system may also be analyzed and similar results as in the
case of the fluid-conveying pipe are found. The system can indeed be desta-
bilized or stabilized by piezoelectric coupling. An anaysis of the efficiency of
the conversion shows that the maximum efficiency exists in the domain of pa-
rameters where destabilization by piezoelectric coupling occurs. It happens for
long systems, which originates from the same confinement effect discussed in
the previous section.
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6 Conclusion

The counter-intuitive effect of damping on the stability fluid-conveying pipe has
been analysed both in terms of waves propagating in the infinite medium (local
approach) and in terms of modes in the finite length system (global approach).
The fluid-conveying pipe is a model problem for many fluid-elastic system where
a compliant structure interacts with a flow, such as flags, plates, shells, walls or
wings.

It was shown that the Coriolis force has a stabilizing effect on the infinite
medium and that damping cancels this effect. The destabilizing effect of damp-
ing was shown to be due to the creation of negative energy waves by the Coriolis
term. The finite length system can be stabilized or destabilized by damping. A
lengthscale analysis has shown that destabilization by damping may be due to
the destabilization of negative energy waves. In references [14, 13], additionnal
rigidity forces are considered on the pipe, such as elastic foundation or tension.
A more rich picture of stability properties is then evidenced.

Extension to energy harvesting systems has been briefly addressed. It was
shown that energy harvesting has a similar destabilizing effect on such fluid-
elastic systems ans that negative energy waves maximize energy conversion ef-
ficiency.
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