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A NORMAL FORM APPROACH
FOR NON-LINEAR NORMAL MODES

Cyril Touzé

ENSTA-UME, Unité de Recherche en Mécanique
Chemin de la Huniére, 91761 Palaiseau Cedex, touze@ensta.fr

Résumé

The definition of a non-linear normal mode (NNM) is considered through the
framework of normal form theory. Following Shaw and Pierre, a NNM is defined as an
invariant manifold which is tangent to its linear counterpart at the origin. It is shown
that Poincaré and Poincaré-Dulac’s theorems define a non-linear change of variables
which permits to span the phase space with the coordinates linked to the non-linear
invariant manifolds. Hence, the equations governing the geometry of the NNMs are
contained within the coordinate transformation. Moreover, the attendant dynamics
onto the manifolds are given by the normal form of the problem. General calculations
for a conservative N-degrees of freedom system are provided. The relevance of the
method for the study of non-linear vibrations of continuous damped structures is
discussed.

1 Introduction

The main motivation for defining non-linear normal modes (NNMs) relies upon the
dependence of the mode shapes on the vibration amplitude. When increasing the vibra-
tion amplitude of a continuous structure, it is observed that single-mode motions (the
dynamics of which is still described by a single displacement-velocity pair) exhibit a spa-
tial deformation and differ more and more from the linear mode shape. This fact has been
reported for example by Bennouna, Benamar et al. [6, 7].

On the theoretical viewpoint, the review article of Rosenberg [1] accounts for the first
developments on the subject. Subsequent efforts have been made in the same direction
in order to define a NNM adequately. Within the framework of conservative non-linear
systems, significant developments have been realized by Rand, Vakakis and coworkers,
with the objective of taking the stability of the NNMs and their bifurcations into account
[2, 3, 4, 5].

A decisive contribution has been brought on the subject by the work of S. Shaw and C.
Pierre [8, 9, 10|. These authors define a NNM as an invariant manifold which is tangent to
its linear counterpart, the planar eigenspaces, at the origin. This definition allows them to
use efficient techniques developed for dynamical systems (see for example [11, 12|, or [13]
for the relevance of the approach in the context of hydrodynamics). The method used for



demonstrating the center manifold theorem [11, 14] has been applied by Shaw and Pierre
to solve the vibratory problem at hand. The invariance property of the manifolds has been
underlined. It permits to describe the motion along a NNM with a single displacement-
velocity pair, and thus to explain the amplitude dependence of the mode shapes. This is
a key point for generating reduced order models. This operative definition was shown to
be effective for discrete |9] as well as for continuous systems [10].

A quite similar viewpoint has been developed by Nayfeh et al. [15]. The crucial point
demonstrated in [15], is the equivalence of different approaches of current use for solving
the partial differential equations that govern the dynamics under study. The methods
developed in [8, 9, 10], in [15], and, more recently, in [16], enable one to compute a single
NNM. Once the geometry of the non-linear manifold has been calculated, the dynamics
is projected onto it, thus leading to a second-order differential problem. This method
works especially well when no internal resonance is considered. Although this problem is
well understood theoretically, challenging technical problems arise in the computation of
invariant manifolds when internal resonances are present. This leads to complicated and
tedious calculations, see |17, 18, 19, 20].

In this contribution, the definition of a NNM as an invariant manifold is used. Normal
form theory yields a non-linear change of variables which allows to go from the phase
space spanned by the linear eigenspaces to the one spanned by the NNMs. The geometri-
cal equations of the NNMs are thus included in the change of variables. The same idea, in
the context of vibratory systems, has already been used by Jezequel and Lamarche [21].
However they didn’t use the oscillator-form decoupling at linear order. Thus comparisons
with other methods were not made explicit. Pellicano and Mastroddi [32] developp simi-
lar calculations in order to correct a mistake present in [9]. Once again, complex-form
representation is used at linear stage.

Here, general quadratic and cubic non-linearities, as well as N degrees of freedom, are
taken into account. All invariant manifolds are calculated in a single computation, and
the dynamics onto the manifolds are made explicit. Roughly speaking, this demonstrates
that the normal form is the key point for the attendant dynamics onto the manifolds,
and thus that the problem at hand finds its ground basis in the theorems of Poincaré and
Poincaré-Dulac |12, 11, 13]. Finally, a simple definition of a NNM in terms of the new
variables will be given.

2 FRAMEWORK

2.1 General assumptions

In this paper, general computations for a N degrees-of-freedom non-linear structural
system is given. The system is assumed to be decoupled at linear order. If this is not
the case, eventual linear coupling terms can be easily eliminated. For example, one can
use a procedure presented in Appendix 1 of [9], which allows to put the system under
“oscillatory forms” at the linear stage. The non-linearities are of second and third order
in displacement. Thus the equations of motion take the form :

N N N

N N
Vp=1.N: X, +w?X,+> Y XX+ > > Y hL, XXX =0, (1)

i=1 j>i i=1 j>i k>j



where X, stands for the modal amplitude of linear mode p, with eigenfrequency w,. In
what follows, X, is called the physical coordinate.

Damping is not considered in (1). However, for lightly damped systems, for which
the damping is much smaller than the eigenfrequency, damping may be added after the
non-linear change of variables, as a small perturbation to the conservative case. A specific
discussion on damping can be found in section 7.2.

Assembly of N discrete non-linear oscillators produces equations of motion of the form
presented in Eq. (1). However, the method proposed here can also be applied to conti-
nuous structures such as strings, beams, arches, plates or shells, with weak geometric
non-linearities. The projection onto the linear eigenspaces of the partial differential equa-
tions which governs the vibration of such structures (e.g. Von Karmén type equations)
leads to a problem of the form (1) (see for example [22|, or [23, 24, 25]).

2.2 Invariant manifolds

As was pointed out by S. Shaw and C. Pierre, invariance is the central property of linear
modes that can be extended to the non-linear range. By invariance we mean that a motion
initiated along a manifold at time £ = 0 will always be contained within the manifold, for
every t > 0. For a linear system, the eigenspaces are planar invariant surfaces graduated
by the physical coordinates. A motion initiated along the first mode, for example, will be
such that :

Vp >2;Vt>0, X,(t) =0.

It is this property that one is interested in extending to the non-linear range. When the
motion is getting far from the equilibrium point, and when the non-linearities cannot
be neglected anymore, the invariant surfaces become curved manifolds. The effect of this
bending leads to residual excitation and contamination of higher-frequency modes through
non-resonant non-linear terms in (1), which could be viewed as “source terms”. This fact
was observed for a long time ago, see for example [26]. Defining a NNM as an invariant
manifold, which is tangent to the linear eigenspace at the origin, allows to recover a
dynamics governed by a single displacement-velocity pair [8, 9, 10].

In this paper, a non-linear change of variables will be defined with the help of normal
form theory. This will span the phase space with the NNMs. The situation is sketched in
Figure 1. The horizontal and vertical axis represent linear eigenspaces. These are in fact
planes but are represented here by lines for convenience. The curved invariant manifolds
are also represented. The idea behind this non-linear change of variables is to use the
coordinates linked to the invariant manifolds in order to express the dynamics, as it is
represented in figure 1 with a curved grid. This non-linear change of variables will be
properly defined and calculated in the next sections. We will show that it is consistent
with all previous approaches [9, 15, 18, 19].

3 Normal form theory

3.1 Poincaré and Poincaré-Dulac’s theorems

In this section, we start by recalling the theorems of Poincaré and Poincaré-Dulac,
which are the cornerstones of the normal form theory. The interested reader can refer to
[12, 11] for a more formal presentation.
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F1G. 1 — Sketch of the phase space of system (1) in the vicinity of the origin. Horizontal
and vertical axis : linear eigenspaces (they are in fact planes), graduated by the physical
coordinates : displacement X and velocity Y. For clarity, only two eigenplanes have been
represented, although N are present. Curved heavy lines : invariant manifolds, graduated
by the new variables : displacement R and velocity S. The level lines associated with
those variables, which are related to (X,Y’) by a non-linear relation, are also represented.

The leading idea consists of simplifying all the non-linear terms, which are not dyna-
mically important, in the vicinity of a fixed point. Consider a dynamical system :

x = Lx + N(x), (2)

which has a fixed point at the origin x = 0, where it is assumed that N(x) represents
the non-linear terms, expanded in polynomial series, with N(0) = 0. Poincaré’s theorem
states that, if there are no resonance relation between the eigenvalues of L, then it is
possible to find a non-linear change of variables :

x =y + h(y), (3)
such that the system (2) reduces to its linear part :
y =Ly. (4)

In equation (3), the non-linear coordinates transformation is tangent to the identity (and
thus ~(0) = 0), and h(y) represents polynomial higher-order terms.

The resonance relations between the eigenvalues {A;}x—1._n of the linear operator L
are defined by :

N
Vs=1N/\s=Zmz)\Z, mzzo, ZmzszQ, (5)

=1

where p is called the order of resonance [11, 12, 13|, and N the number of eigenvalues
of the system. Poincaré-Dulac’s theorem states that if there are resonance relations, then



all monomial terms in N(x) that are resonant cannot be eliminated. Those theorems are
demonstrated by successive eliminations of the quadratic terms, cubic terms... in N(x),
by introducing a polynomial h(y) of the appropriate degree, and eliminating the terms
that can be cancelled [11, 12, 13].

3.2 Application to vibratory systems

The remainder of the article consists in reproducing the same demonstration, which
means finding h. It is applied here to the particular case of a non-linear vibratory system
of the form (1), characterized by an eigenvalue spectrum : {+iwy }r=1. n. The vector field
under study will be reduced to its normal form. It will be shown that the new coordinates
are linked with a grid defined by the invariant manifolds.

The strength of the normal form theory follows from the fact that one is able to know
all important dynamical non-linear terms by simply looking at the eigenvalue spectrum of
the linear operator. Here, we have to make a distinction between trivial resonance relations
and internal resonance. Trivial resonance relations arise from the fact that, for a purely
imaginary eigenspectrum, equation (5) is always fulfilled with relations of the form :

Vi, Vj: dwp=i(wj— wj)+ iw. (6)

Hence there are cubic terms that cannot be eliminated from (1). For example, equation
(6) corresponds to a cubic term of the form X? Xy in the £ oscillator.

Internal resonance are all the other relations contained in (5) and which are not trivial.
For example, if there exist a relation of the form : wy = 2wy, then a second-order internal
resonance is said to exist, and a monomial term of the form X? will be unremovable
(resonant) in the evolution equation for X, [11, 12, 13, 22].

It is here assumed that there are no internal resonance relations between the eigen-
values {+iwy}r=1. n of the system (1). Hence all quadratic terms are non-resonant and
can be eliminated. Cubic terms arising from the trivial resonance relations will not be
cancelled. This is demonstrated below.

4 Quadratic terms
In this section, we define the non-linear change of variables which cancels all quadratic

terms. As the processing of the quadratic terms does not involve cubic terms, system (1)
is truncated to second order, and is written :

Xp = Y;h (73)

N N
Y, =—wlX, - > Y XX (7b)

i=1 j>i

(the mention : V p = 1...N will be omitted when not confusing).
The first step consists of defining a second-order polynom with 2V variables (N pairs



displacement-velocity). It is chosen tangent to the identity, and is written :

N N N N

X, =Up+ > Y (aUU; + B ViV + > Y AUV, (8a)
:1 ZVZZ z;l ];1

Y, =V, + Y ) (@LUU; + Vi) + > ) ALUV;. (8b)
i=1 j>i i=1 j=1

(Up, Vp) are the new variables. The polynoms (8) are written in this form to take
commuting and non-commuting terms into account. Some practical formulaes linked to
the manipulation of such polynoms are given in appendix A.

The unknown of the problem are now the 2N?(2N + 1) coefficients {af;, 07, cf;, o,

r:s 75} They are determined by introducing (8) in (7). This generates terms of the form

UZ-UJ-, VZV;, U;Vj... They are cumbersome for the identification of the different monomials,
because involving the derivative of a variable against time. This is remedied by observing
that, at lower order :

U, =V, +O(UZ,V3), (9a)
V;? = _WI%UP + O(Uz?’ ‘/;2)’ (Qb)

where O(U?,V;?) stands for all quadratic quantity involving the variables. Hence, for
example, we have :

UZU] = ‘/;U] + O(Uz?): ‘/;3):

where the accuracy is now at cubic order. Thus all the terms of the form U;U;, ViVj, UiVj...
can be replaced by V;U;, —w?U;V;, V;Vj..., and the identification is possible at order two.
When truncating all the above developments to second order, (7) is now written as :

N N
U+ZZ — WPV, + (0 — WH)UV;] + D0 3 (Vi — wUiU))

i=1 j>i i=1 j=1

=V, + ) D (BUU; + BEViVy) + ) > 24UV,
=1 j>i i=1 j=1
] N N N N
VzﬂLZZ[(O‘fj_%Q‘ ViU; + (of; — wiB)UiV] +ZZ% — wjU;Uj)
1=1 j>i i=1 j=1 (10b)
N N N N
= —wy |Up+ D D (@ UU; + ViV + > Y U, | - ZzggUin.
i=1 j>i i=1 j=1 i=1 j>i

The last step is the identification of the different monoms in (10). This is realized after
noticing that full sums (of the form Y7~ Z;\;l) with commuting terms have been intro-
duced through the process. This is simply resolved by recombining the terms, according
to a formula, given in Appendix A.

The coefficients of like power terms are equated. This will produce linear subsystems in
the unknowns of the problem. The solution of these subsystems will provide the coefficients
that permits to cancel the quadratic terms. The identification for equation (10a) allows

one to express {a? P} as functions of {a?,, b7, .} :

ij ija%g ij> Vigr Cij



Vi=1...N:

p 2 — AP

2(au — W u) = Y
2 _

—Cchw; = oy

QP

% ﬁm

Vi=1.N—1, Vj > i.N:

2 2 __ D
—CW; — Ciw; = og;

— 1P

cfj + cg’z = Pij

p 2 D
p 2 D
Q5 — U“jbfj Vji

For equation (10b), the identification of like power terms leads to :

Vi=1.N:
2(af; — wiBF) = ~wycl;
Vhw; = wyal; + g

W = —wybl;

Vi=1l.N—-1, Vj > i..N:

_’Y% ]2 - 7_17'71' 12 = —wzafj - gfj

’Yf)j + ’Y;Ji = _wzb%
ol i = —id,
oy — wi Bl = —wyc;

The two systems (11) and (12) are solved to give all the searched coefficients :

Vi=1.N,Vj>i.N:

Vi=1.N,Vj>i.N:

2 2 2

p Wi T Wi Wy,

Yij = D—gij
ijp

2 2 2

p_ Wi W P D

Yii = D 9ij
ijp

where D;jp, = (wi + wj — wp)(w; + wj + wp) (—w; + w; + wp) (wi — wj — wp).



One can notice that D;;, contains all possible second-order resonance relations, which
indicates that the calculation breaks down in case of internal resonance. This is completely
usual and consistent with previous approaches [8, 18, 19, 15].

At this stage, we have exhibited a non-linear change of variables which allows to cancel
all the quadratic terms in (1), when no internal resonance are present. The methodology
sketched in this section is general and will be applied in the next section in order to
eliminate the cubic terms. Since the calculations are tedious, only the important steps of
the procedure will be explained. The only difference with the case treated in this section
lies in the fact that trivial resonant terms exists at cubic order and will not be removed.

5 Cubic terms

5.1 Elimination of the quadratic terms

The first step consists in eliminating the quadratic terms from Eq. (1). We use the
results of the previous section, that is we do the replacement :

N N

Xp=Up+ Z Z(aijin + bszVz'Vj)a (14a)
i=1 j>i
N N

Y, = VoY > LUV, (14b)
i=1 j—1

in Eq. (1), beforehand written as X = F(X). As we are now interested in cubic terms, all
developments are truncated at order 3. After some algebraic transformation, the system
is written :

U, ="V, (15a)

) N N N N N N

Vo= —wiUp = 3 N WL UUU =Y Y [AL UiUU, + BY, UiV Vi, (15b)
i=1 j>i k>j =1 j=1 k>j

which is correct up to order 3 included.

The coeflicients Afjk,Bf’jk are due to the introduction of the non-linear change of
variables (14) which eliminates the quadratic terms but introduces cubic-order terms, of
which some are velocity-dependent. Their expressions are :

N
Afjk = Z gﬁaé'k + Z gﬁa;ka (16a)

1> 1<i
N
Bl =Y gil+ Y gt (16b)
1> I<i

5.2 Processing of the cubic terms

In this subsection, the cubic non-resonant terms of equation (15) will be cancelled
through the same process as that used in section 4. The only difference is the presence



of trivially resonant terms that cannot be eliminated. The following cubic polynoms are
introduced :

N N N
U, =R, + Z Z Z(rfijiRij + 82..5:5,Sk)
i=1 j>i k>j
N N N
+3 NN (. SiR; Ry, + uf RiS;Sk), (17a)
i=1 j=1 k>j
N N N
V;, = Sp + Z Z Z()\fijzR]Rk + ,uf]kSzSySk)
=1 j>i k>j
N N N
+3 NS (B SiR Ry + €5, RiSiS), (17b)

i=1 j=1 k>j

written in such a form to take the commuting and non-commuting terms into account.
The unknowns of the problem are now the $N*(N + 1)(2N + 1) coefficients that are
introduced : {r{;;, sip thigs Uik Nk ufjk, Viiks &) At the end of this step, the
displacement-velocity pairs will be the (R, S,) variables.

Equations (17) are differentiated with respect to time and introduced in (15). Products

of the form R;S;Ry, R;R;S ... are eliminated by noticing that, at lower order :

Rp = Sp +O(RS”S?)’ (183‘)
Sp = —w’R, + O(R, S?). (18b)

The precision is now at cubic order, because the quadratic terms have been processed.
This allows to replace the terms involving a derivative with respect to time, and leads to
the identification of power-like cubic order terms. This step is not reproduced in detail
here for a sake of conciseness. Two tricks are used in order to simplify a little bit the
calculations. First the terms have to be ordered, and one has to make a distinction between
commuting and non-commuting terms. A formula given in the appendix A helps in this
tedious step. Secondly, the complete substitution can be performed only for equation (15a).
For (15b), one has just to notice that the left-hand side of the equation is exactly the
same, provided the substitution of {r”k, Shiks tikr Ugint for {0, Misks Vises &t Then,
The first term of the right-hand side is calculated by doing the inverse substitution :
({Nks Mijrs Vigrs Ei) 1s Teplaced by {rf,, siy, 0, uiy}). The two last terms are
computed by simply substituting (U;, V;) for (R;, S;) (other terms leads to higher-order
polynomials).

The power-like coefficients are then equated. This leads to two sets of 24 equations
given in appendix B and appendix C, respectively from eq. (15a) and (15b). Combining
together these equations produces closed subsystems for {r{;, si, ti, ui;}. Those
systems have either a solution (which is the case for non-resonant terms), or not (which
is the case for the trivially resonant terms). When a solution exist, then the monoms can
be cancelled. When not, all the involved coefficients are set to zero, and the associated
monom stay in the dynamical equation.

This calculation leads to the following results :

Vi=1..N,Vj>i.N,Vk>j.N: s fjk:/\fjk:() (19a)
Vi=1..N,Vj=1..N, Vk>j.N: &, =&, =0 (19b)



And thus the non-linear change of variables reduces to :

N N N N N N

Up = Rp + Z Z Z T‘fijiRij + Z Z Z ufijiSjSk, (20&)
i=1 j>i k>j 1=1 j=1 k>j
N N N N N N

V=S4 33> i SiSiSk+ > > > vE SiR;Ry. (20b)
i=1 j>i k>j i=1 j=1 k>j

In these sums, some terms are equal to zero, which corresponds to the trivial resonance
relations. These are :

Vp=1.N: Uppp = Toop = Hppp = Vipp = 0
Vi>p.N:rp=up.. =u;: =0
'uﬁjj = I/I]JJJJ - VJ;DJ 0 (21)
Vi<p: rf’ip:ufip: pu =0
Hiip = Vizp = Vi = 0

The non-zero coefficients are reported in Appendix D. The denominators of the coef-
ficients given in Appendix D vanish when third-order internal resonances are present.

We are now in position to define the normal dynamics, thanks to the non-linear change
of variables (20). This will be done in the next section, and will enable us to precise the
definition of a NNM with the formalism of normal form theory.

6 Recapitulation of the results

6.1 Normal dynamics

The objective of the previous mathematical developments was to define a non-linear
change of variables which eliminates the non-resonant terms in (1). This has been made
with the help of normal form theory together with Poincaré and Poincaré-Dulac’s theo-
rems. Assembling the two calculations in section 4 and 5 gives the following relations, for
all p :

N N
Xp=Ry+ > > (abRiR; + 1],S5;)

o N N N N N N
=1 j>i k>j i=1 j=1 k>j
N N N N N N
Y,= 5, +ZZ%’;RS FY YD R SiSiSk+ D > Y vl SiRRe. (22D)
i=1 j=1 i=1 j>i k>j i=1 j=1 k>j

(X,, Y,) are the physical coordinates; we decide to call (R,, S,) the normal coordinates.
These coordinates allow one to define a kind of “decoupling” between the variables at the
non-linear stage. This decoupling does not share all the properties of a linear decoupling
with eigenspaces. Specifically, superposition is not possible. This result generalize the
answer given in [32]. However, these new variables are linked with the invariant manifolds



and allow a simple definition of a NNM, as will be shown in the next subsection, especially
because the invariance property is now explicited.

The normal dynamics is defined by substituting for (22) into (1). It describes the
dynamics of the system, up to order 3, in a space spanned by the invariant manifolds
(recall figure 1). It reads :

Vp=1...N:
R, =S,, (23a)
v 2 3 2
Sp - waP B (Agpp + hgpp)Rp - ngpRPSp
- N
o RP Z [(A§pj + Aﬁjj + thj)Rg + ngjsﬂ + Z [(Afip + Aiii + h’iip)RZ? + Bﬁiisf]
~j>p i<p
r'N
— 5 ZprjRij+ZBZpRiS,~ : (23b)
Li>p i<p

One can notice in (23b) all the trivially resonant terms that cannot be cancelled. These
terms correspond to the coefficients set to zero in (21). Moreover, this normal dynamics
shows that velocity-dependent terms have to be considered, a point that has already been
noticed by S. Shaw and C. Pierre. It is demonstrated here that these terms are coming
from the processing of the quadratic terms. Hence, in a purely cubic non-linear system
(with of; = 0), no velocity-dependent terms appear in the normal dynamics.

6.2 Definition of a NNM

With the normal coordinates, a non-linear normal mode is simply defined by the cancel-
lation of all other variables, except the displacement-velocity pair considered. For example,
one has just to set :

Vk%p:Rk:SkZO, (24)

for investigating the NNM labelled p. Then the normal dynamics on the p** non-linear
manifold is governed by :

R, =S, (25a)
Sp=—w’R, — (A2, +h: )RS — BY R,S;. (25b)

ppp ppp) P ppp

The equation of the manifold, expliciting its geometry in the phase space, is given in
(22). Replacing (24) in (22) gives :

Vk#p:

_ k 2 k 2 k 3 k 2
X = ay,Ro + bppSp + Tppplty + upppRpSp (26a)
Yy =8 RyS, + pb S5 + vk S, R (26b)

This can be written with the physical coordinates, only. This will allow us to compare
more precisely the method proposed here with [8, 9, 10|, where the idea is to define a
master displacement-velocity pair, and to express all the other pairs as functions of this
one. The same operation is led here with equation (24). Since, from equation (22), we
have :

X,=R,+O0(R%S%), Y,=5,+0(R,S2),

PP PP



then, up to order 3 (the precision term O(X3}, Y!) is omitted) :

prip
VEk#p:
_ k 2 k 2 k 3 k 2
Xp = aprp + b;D;DY;7 + rpprp + upprpqu ) (273)
Vi =8 XY, 4+ pb Y2+ vk VX2 (27b)

Coefficients appearing in equations (27), which define the geometry of the invariant
manifold, have been compared with previous calculations of the same geometry led in
[9, 18, 19, 15]. It has been verified that all the coefficients match, and thus the methods
are completely equivalent. However, it seems more suitable to think about this non-linear
change of variables as the definition of new coordinates linked to the invariant manifolds
(see Figure 1). It allows one to have a more precise picture of the phase space in the
vicinity of the origin, to take into account all the bendings of all the invariant manifolds,
and finally, it seems more natural, in comparison with the linear case, to think about the
NNMs as new coordinates, which are non-linearly linked with the physical ones. More
specifically, it allows to explain easily the failure of Galerkin-based method followed by a
severe truncature, without performing again many developments, as is done recently for
example in [33].

Another interesting point is the generality of equations (23), which govern the dyna-
mics onto the manifolds. These equations have been demonstrated in the most general
case. Two remarks seems to be worth mentioning here.

First, the “decoupling” at the non-linear stage through the cancellation of all the
non-resonant terms is now obvious, when simply looking at Egs (23). Those non-resonant
terms are not dynamically important and are only responsible of the curvature of the phase
space (see figure 1). More specifically, what was defined as a “similar NNM” by Rosenberg
correspond to a case where non-resonant terms are not present in the vibrations equations,
and thus the manifolds are flat. The generic case give rise to “non-similar NNM” and a
curvature of the manifolds. The invariance property is readable in equations (23) since all
the variables {(R;, S;)|j # p} are in factor of R, and S,. Thus “single-mode” dynamics
along NNMs are now underlined : a motion initiated in one invariant manifold at time
t = 0 will stay into it for every ¢ > 0. This is again underlined in the exemple of subsection
7.4.

Second, it has been shown that the dynamics onto the manifolds is given by the
normal form of the problem studied. This point is crucial since, through equations (23),
one is able to write the normal form of any vibratory system, from the knowledge of its
eigenspectrum {=+iw, },>1, only. This is the strength of Poincaré’s theorem to show that the
dynamically important non-linear terms are given at the linear stage with the eigenvalues
of the linear operator. Hence, it is now possible to study any dynamical vibratory system
onto the manifolds with equations (23), and then to come back to the physical coordinates
with the inverse operation of (22). In this manner, the operation stated here has some
resemblance with the one led at the linear range (modal decomposition). Developments
of such ez-nihilo models (only with the knowledge of the linear part), has already been
successfully used in hydrodynamics, see for example [13, 27].

7 DISCUSSION

After having clarified the main points of the method proposed in the previous sec-
tions, some left-aside points are now discussed ; and a very simple example is given. This



will allow us to state some open questions which asks for more work or experimental
validations.

7.1 Asymptotic developments

The method proposed in this article for the computation of the NNMs relies upon a
non-linear change of variables which permits to span the phase space with coordinates
linked to the invariant manifolds. This non-linear coordinate transformation is calculated
with an asymptotic development (see eqgs. (22) for example). The main problem is that the
radius of convergence of the asymptotic series is not given throughout the calculations.
Moreover, all given equations are accurate up to order 3. Higher-order terms can cause
disturbances when considering for example too large amplitudes. Example of the precision
of the asymptotic development can be found in [28].

An alternative technique to overcome the failure of the asymptotic development is
given in [16], where a polar form is used in order to calculate more precisely the invariant
manifolds. The results seems very promising, and could perhaps be applied to the method
proposed here. This will be tested in a near future. More generally, mathematical methods
known as “Non-linear Galerkin Methods”, introduced by M. Marion and R. Temam in
[29], seem to be powerful tools to overcome the difficulties mentioned here. Finally, the
developments written here could be done with a complex representation, as it is done for
example in [15, 21, 32]. This could substantially simplify the calculations.

7.2 Damping

Damping has been ignored in all the previous developments. This is mainly motivated
by the fact that dynamically important modes are the lightly damped ones, which have
very long evolution time constants. Strongly damped modes are of less interest since their
behaviour can be summarized as a quick exponential decay to zero.

Considering only lightly damped modes is also motivated by the two following facts.
First, for metallic thin structures such as plates or shells for example, the lightly damped
modes are those with eigenfrequencies below the coincidence frequency. They are generally
numerous (of the order of 50, see for example [30]). For a comprehensive description of
the steady state dynamics of such structures, at large time scales, it should be enough
to consider those modes. Second, non-linear systems becomes more and more interesting
when typical non-linear regime such as quasiperiodic or chaotic motions are encountered
(see for example [31]). In this manner, only the lightly damped modes, which are “master”
compared to the “slaved”, strongly damped ones, are of prime importance. Slaved modes
can be cancelled through adiabatic elimination, when the time constants are well apart
one from each other [13].

Thus, for all these reasons, lightly damped modes are of prime interest. To proceed
with them, it is possible to carry out the normal form calculations without the damping
(as it has been made here); and to add the damping in the normal form, as a small
perturbation of the conservative problem. Experimental and theoretical validations are
needed to confirm this issue, and this will be the main point of the future research on this
subject.



7.3 Internal resonance

One major advantage of the method proposed here is its ability to handle easily the
case of internal resonance. The presence of an internal resonance will simply result in a
failure in the computations of the coefficients resulting from the 48 linear equations listed
in Appendix B and C. More precisely, only one subsystem will have no longer a solution.
Then, as it has been done for the trivially resonant terms, all coefficients of the non-linear
change of variables, corresponding to the subsystem under study, will be set to zero, and
the corresponding monoms will remain in the normal form.

It is one advantage of the method proposed here, because all the calculations have
been completely carried out. Considering an internal resonance does not give rise to other
calculations.

7.4 A simple example

The tedious calculations of the general case are now illustrated through a very simple
example. More complete examples are treated in |28|.

Following Bennett and Eisley [26], the vibrations of a beam with clamped ends are
investigated. The idea here is to point out some interesting features rather than to propose
a complete treatment of the problem.

After projection of the partial differential equations of the motion on the linear nor-
mal mode basis, the restriction of the first three modes leads to the following temporal
problem :

X1+ wiX) + bl X3 4 hlgp X2X1 + bl X2X1 + hls X2Xs + ki Xs =0 (28a)
Xo 4 WXy + h2, X2 X5 + h2, X2 Xo + h2,, X5 + h2, X1 X5 X5 =0 (28b)
X3 + wiXs + i X7+ by, Xo X1 + higg X3 X1 + b33 X7 X5 + hi X5 =0 (28c)

In the paper of Bennett and Eisley, it was shown that forcing the system at a frequency
near wi leads to a residual contribution in the amplitude of the third mode (X3). This was
due to the term A3, X? in equation (28¢c), identified as a “source” term for the third mode.
Initiating a motion along the first mode, with X5(0) = X3(0) = 0 shows that for ¢ > 0,
energy is transferred to X3, and thus X3(t) # 0. It is the same term which is responsible
for the dependence of the first mode shape on amplitude, since a contribution of mode 3,
vibrating at the forcing frequency near ws, is present in the response.

Applying the previous results to this system shows that the normal dynamics, expres-
sed with the normal coordinates (R,, Sp), is written :

Ry + W?Ry + Ry (A} R* + htp, R + h1sR2) = 0 (29a)
Ry + w2Ry + Ry(h2 o R? + h243R2 + h2,,R%) = 0 (29b)
R34+ w2Rs + R3(h3 3 R? + h3,,R2) = 0 (29¢)

Hence the “source term” in the third equation has been cancelled, and the invariance
properties is maintained. This term is contained in the non-linear change of variables,
and in the manifold equations which describe the geometry of the NNMs the phase space.
Equations (29) can be directly deduced from (23). The study of non-linear normal motions
can be realized with those equations, then one is able to come back to the physical problem
given by (28).



8 CONCLUSION

In this paper, the concept of non-linear normal mode (NNM) has been reconsidered
through normal form theory. It has been shown that a non-linear change of variables allows
one to go from the phase space spanned by the linear eigenplanes to the one spanned by
the invariant manifolds. The bending of the manifolds are given by the non-resonant
terms, whereas the dynamics onto the manifolds are governed by the resonant ones. The
expression of the geometry of all NNMs is contained in the non-linear change of variables.
All these computations leads to a simple redefinition of a non-linear normal mode motion,
which is simply obtained by the cancellation of all the other normal coordinates, as in the
linear case. In fact, thinking of the NNMs as a curved span of the phase space, non-linearly
connected to the orthogonal planar span given by the eigenmodes, allows to re-utilize some
linear concepts, with adjustments, to the non-linear stage.

The main drawback of the method, which is based on an asymptotic development, has
been underlined, and methods to overcome this difficulty has been suggested. However,
general calculations led in this paper enables an easy implementation for computer simu-
lations. This should allow to extend the range of linear modeling to the case of moderate
non-linearities. The generality of equations (23), which capture all the possible dynamics
up to order 3 for vibratory systems with discrete eigenspectrum of the form : {%iw,},>1,
has been underlined. Moreover, it allows to define ez-nihilo models with the knowledge of
the eigenvalues only. Experimental validations, as well as theoretical studies of the normal
dynamics, featuring internal resonance or not, are now needed to complete the study of
non-linear vibratory systems with moderate non-linearities.
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A Algebraic formulas
for some polynomial manipulations

We mention here some formulas which have been used in the derivation of the equa-

tions.
— Number of monoms in a polynom of degree N with p indeterminates :

p—1

%
> Ciiia
=0

(N.B. : without the constant term. Only the monoms with indeterminates have been
counted.)
— Simplification of a quadratic polynom with commuting terms :

N-1 N
SO = Y 35
i=1 j>14 i=1 7>
— Reordering of a cubic polynom :
N N N
35S 052 = Yz
i=1 j>i k>j
N-1 N
+ ) > 10iXgYiZi + 0y X;ViZy + i XoYiZy + iy XaY; 7
i=1 j>i
N-2N-1 N

+ Z Z Z [ XiYiZj + cjin X;YiZk + e XiY; 7]

i=1 j>i k>j



B Identification of equation (15a)

The 24 equations arising from the power-like identification of the terms in eq. (15a)
are given here, with a mention of the monoms from which each term derives.

Vi=1..N:
—with; = N (R?)
Z’i = :U’?ii (Sz?’)
3riy — 2wiub, = vh (R S;)
205 — 3wish; = & (RiS?)
Vi=1.N—1,Vj>i.N:
TZ] - wzufij - Vfu (R?S])
t?m - wiQ Sfjj f]] (RiS? )
tfzg wjz'szpij = fn (R;S?)
Th Wi, Vigj (R7Si)
_%Q'tgu - Wz? tfij = /\Z‘j (RZ2 R;)
—wyty; — Wity N (RiR})
Ujsi + ufz'j = ,Ufij (S7S;)
Wi+ Uiy = Mg (5:57)
27‘2-]- — 2wz-2u§ii — wf-ufij = V;-"Z-j (R;R;S;)
2ry; = wiug; — wiub, = Vb (R:R;S;)
_2‘*’1'252']' + 2t§ii + t:gij = fﬁ; (RiSiS;)
—2&)]2'8%]- + tjij + 2tijj = fZJ (R]S,S])

Vi=1.N-2 Vj>i..N—-1,VEk>j.N:

—Wity; — Withy — Wit = A (i By
Ukig + Ui F Uiy = M (55 5%)

Tik = Wil — Wity = Vi (£ Sk)
Tok — Wil — Wl = Vi )
Tijk = Wity — Wil = Vi (Sift; By
Biw T Lk — WSt = iy (555 )

Bhaj + tigp = wisue = Eiu (Sil%;5))

thig + Gk — Wiste = & (Fi:5;5%)

C Identification of equation (15b)

The 24 following equations arise from the identification of the power-like terms (which
are indicated into the brackets) from the development of eq. (15b).
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D Cubic coefficients

We give here the values of all the non-zero coefficients appearing in equation (20).
Solutions are given for all p = 1...N.

Vi=1..N,i#p:

i = D(l) [(Twf — wp) (M + A%;) + 2wi BY]

ufzz = D(l) [6’7’5]11 +6Afu ( w — W )Bfm]

Mgy = ”zu X )

sz?n = D(I) [(ng )(hfu + Azpzz) + 2(“) w BZJ
ip

1
where Dfp) = (W) — wf) (W) — 9y).
Vie1.N—1,i%p Vj>i.N:

wi (Wi — 2wF — 2w2) + (Wl — 4w3) (W) — 2w?)

p _Fi\¥ j 3/ \“p j P P P
Tijj = (w wQ)D(l) [Am + Am + hw}
ijp
2w (W} — 4w? + 3wi)Bp N 2wiws B
1 tjj 1 Jij
(wf — WZ)Dz(j])) ngjz)J
)R = 2~ )+ (D)~ 2)
Uijj = (@2 — ) DO ijj
ijp
Sw — 6w — 2w 2w
[A’Lj] + A?zy + h’Z]J] z B;Jz]
(@ —w2)Dyj, Dj;)
1
u?ﬁ‘j :D( ) [4 (A;;ZJ + Afn + hfn) B 4w]2Bf’” + (4w —wy’ +w; )Bfw]
ijp
6wiws + 2wiw? + 2wiw? — 8w; — wy — wy
v fjj =— 1 [Afn + A?U + hfﬂ]
- w?)Dﬁj;
2wi(Bwl +wf —4Aw?) o wi(—wh +dwi —wP)
1 ijj 1 Jtj
(wp )D Z(]I)J D Z(J'I)J
8w? — 2w} — 2w
_ %
V;)ij - 1) [Afﬂ + Ang + hfy]]
D; zap
N 2wiwy — 8wj + 2wiw? N wiw? + dwiw? — Wi
e ijj 50 jij
1Jp Jp
6wiw? + 2wiw) + 2wiw — 8wl — wi — wi
P J P i gp
Hijj = ) ijj
(w2 w? )Dup
6w’ + 2w — 8wj 4wi — wi — w?
P P P P p
9 PO [Am + Ajij + hm} 1) Bfm
(wp ) tjp tjp

where DZ(J; (wp + w;i — 2w;)(wp + w; + 2w;) (—wp + w; + 2w;) (—wp + w; — 2w;).



Vi=1.N—1,Vj>i.N, j#p :

1] 2 _ 2 D(2) 4] 514 4]
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2 jii 2 A
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where Dgz), = (wp + 2w; — wj)(wWp + 2w; + w;) (—wp + 2w; + w;) (—wp + 2w;

—wj).
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4,2 6 2,112,,y2 2,2, 2 2,2 2,,2,,2 2,4

wpwy + wy — 2wiwiw, + 10wjwiw; + 3wiw, — bwpwiw, — 3w;wy,

+2wiwpw? + Swiw, + 3wiwy — 1wiw] — 3wiw) + wiw) + 3ws
2,4, 6 _ 6 4.2 5o 42 5 2 4\ DD

+wi(§p2 (2'()Z :}pz—'— ngwi waw:o 65"‘)19“1)?1%'3'] 4,2 2,12 2

—2wiw;w, + w;w, — wj + 3wiw; + wy — Twiw, — Nwjw; + 2ww;w,

+9wiw; + 3wf + dwiws + wiw, — bwiwp + 10w;wiw? — 6wiwiws + 3wews
—3wpws — wh + wiwp — 3wpw?) (h + Al + ARy + Al

Bwiwy + wf — bwwiw? — dwiwy, + bwiwiwiw? + bwiwiws — Twiwjw
+18wjwpw? + 3wiwp — wiwpw; — Twiwgw, — bwiwiw) + wiwp — dwiwywy

2,2, 474 6,2 £ 4 4 _ 9 6 2 26 2,\6) BP
+hwiwiw, + wiw] — dwiw; — dwiwy; — wiw, + 3wiw;) By

2, ,6 2, 4 3 4, 4 4,22 Q44,202 26 | 6,2 2 4 2
B+ G Bt + Tufuy — Sufuel — iy ol i
—3wgw]2~ —|;3;)jwp 2—1— (fillwi w,flwzL - Bwiu?)- . i)wz- wjéwp p— 2wiw;w, — wpwsw,
+2wiwkijp + ch;)k — 3%";%4_ 10w; c:kwj —w;) By ) )
— 2002 — 6wlwiw? — dwiwt — 42w? 2,2 20402
4%“2‘)19‘2%‘4 6wzwécw% 4u)%u)gS 12;0,;%;%2—!- szijp+4wzw]wp
+12wiwipw; + 10w;ws — bw;w; + dw;wiw:w,) By,]
2 4 4 2 24 4 2 6 o 4 2 2 4 2.2, 2 6
W, W, + w; W, + 3wjw; + wpw, — w, — 3w;w, + 3wiw, + 2wiw;w, + w;
4,2 4 .2, 4 2,,2,,2 6 2,,2,,2 2,,2,,2 4,2
—|—3c;)k<;)j + u)izu)g1 + Qogkwju;p " wkp+ 2w; ;}kwj —plOwi wgwp — 3wjw;
Fwiwi — dwiw; — w; + wiwy) (hyy + Ay + Abs + A%
—3wiwy — wiwpw, — 2wiww? — 2wiww? — wiwpw? + wiwy
2, ,6 2, 4,2 4,2, )2 2, ,6 2,2, 4 4, 4 6,2 2, 14,2
Fwpw; — 2Wiwpw, — wiwew; + 3w;wy — Wiwiw, — 3wywy + 3wpw, — wiw;w,

8 2722 2 2, 6 4, 4 2,2 4 2,6\ P
e WA N L W L
—dwfeff + dwui] 4wl — il + 6wfuwi — dwfulu
P
—2w;wy, + dw;w — 2wjwiw; — 4w wywy) B

i i jik
4,2 2 6, ,2 4,4 6, ,2 4,4 2,,2, 4 4,2, 2
—2w; wiw, + 3w wy, — 3w;wy + 3w;w, — 3w;w, — Wwiw, — 2w;wiw,
—wd — w?w,‘iwﬁ + w%w? - 2w§w,%wj2- — w?w,ﬁwf, + 3w§wj2- + 1Owi2w,%w]2-w§
2,6 2,6 2,2 4 4,1 2, 4 2 2, 47 2\ P
twiwy + wiwp — Wiww; — 3w;w; — wiwjw, — w; wkwj)Bkij]



1 112t 2k 2 4,2 6 1 A2 o4 2 6 42
IS D(—S)[( Nwjw; — 3wjw, + wpw; — wpy + wiw, — Twew, — w; + w;wi

2,,2,,2 2, ,4 6 202,02 1 )2, 44 2, /4 2, 4 2, ,4
+2cgjwz- wp4 _23%'%'2 —|—23a22k — 6wz-2w,§w12, + wjiw, + 3w;w, + dwiw, — dw;wy
_ p P p p
+wi2+23azjwi 22wkijp2+4102wi wkw?j)ghigk 2—!— Aijk2+4A,§ij + Ajik)
+( 12wiwiw; — 6wiws — dwiww? + dwiwiwiw) + dwiwsiw?
2,124 4,14 2, 4, 2 4,2 2 2,76\ 3P
H2wpwiw, — dwjwy — 12wiwpw, — bw;wiw; + 10wiwy) B

J ijk

2, .6 2,,2,,2, .2 2,,6 2,,2,,4 2,.,6 4,,2,,2

+( Bwpw? + bwiwiwiw? + wiwy — Bwiwiw; — wiwy — wiwEw;
+18wiww? — bwiwiws — Swjwy + 3wiwy + wiwp + Swiwrw, — 6wiwews

8 2,2, 4 6,,,2 4,4 4.2 2 4,4 2,4, .2\ P
Heh 4wy - Sufly  Sujul - Tulufey - Sulul UL,
H( i ) - duly b Tojuleg £ Bl k3 -
—3w,w; + w;w; + 2wiwpwiw, + 1wwiw; + wpw; — 10wiwew; — 3wiwy

a4 20 4 2 2.6 2, 4,2 0 2 92 4 o 2 4 2)pp
3wjwyi — wiwpw; + dwjw; + bwpwjw, — wiwiw, — 2w;w;w,) By,

where DS’,)CP = (wg + w;i — wp — wj) (Wr + w; — wp + wj) (—wk + w; + wp + wj) (—wg + w; +

Wy — wj) Wk + w; + wp — wj) (Wk +w; + wp + wj) (—wi + wi — Wy + wj) (—wg + wi — wp — wj).



