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Abstract: Reduced-order models for a general class of non-linear lagoits with viscous damping, quadratic
and cubic non-linearities, are derived thanks to a real nafrfiorm procedure. A special emphasis is put on
the treatment of the damping terms, and its effect on the alodynamics. In particular, it is demonstrated
that the type of non-linearity (hardening/softening bebar) depends on damping. The methodology is then
applied for reducing the non-linear dynamics exhibited bsiraular cylindrical shell, hamonically excited

in the spectral neighbourhood of the natural frequency ofiapmmetric mode. The approximation, which
consists in using time-invariant manifold instead of cotiqguan accurate time-dependent one, is discussed.
The results show that the method is efficient for produciraute reduced-order models without a special
need for intensive numerical computations. Validity lgvof the approximation is then assessed by using the
amplitude of the forcing as bifurcation parameter. Finatlye method is compared to the Proper Orthogonal
Decomposition method (POD).

1 Introduction

Large amplitude vibrations of thin shells give rise to tygliphenomena that are activated by the geomet-
rically non-linear terms in the equations of motion. The mpioblem associated with the analysis of these
non-linear regimes is connected to the large dimension efplise space, so that usual methods such as
Galerkin projection onto the natural modes basis leads toge ltomputational effort in order to derive the
salient features of the motion. However, the complexitgftonsists in the curved geometry of the phase
space, instead of being in the dynamics itself. Reductiothouks, based on the idea wbn-linear normal
modegNNMs), are specifically designed in order to include thismetrical complexity in the definition of an
invariant manifold [1, 2, 3]. In a series of paper, Shaw, Ri@nd coworkers use the technique provided by the
center manifold theorem in order to reduce the original f@obby projecting them onto a low-dimensional
invariant manifold that catches the most important featufide method is a priori not restricted to conserva-
tive problems, and can handle gyroscopic as well as dampimgst[2]. However, very few studies by these
authors take damping terms into account.

Normal form theory can also be used as an alternative to caragrifold reduction. The real formulation,
proposed in [3] for conservative systems, defines of a nogali change of coordinates, allowing one to
express the dynamics in an invariant-based span of the @pes®. The main purpose of this study is to
extend the results of [3] so that modal viscous damping catialken into account. It will be realized thanks
to a kind of parameter continuation of the conservative ltestersus the damping terms. This result is then
used for derivation of reduced-order models (ROMSs) for tmmus structures subjected to external harmonic
forcing, the time-dependent invariant manifold of the &m@roblem being approximated by the time-invariant
manifold precedently computed.

The outline of the paper is as follows. In section 2, the ndifioren, up to order 3, is computed, and the
approximation used to compute the ROMs for continuous tbetauctures, are discussed. In section 3, it is
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shown that the type of non-linearity (hardening or softgriiehaviour), depends on the damping coefficients.
This result is illustrated with a two degrees-of-freedorof§)l system. Section 4 is devoted to the vibrations
of a fluid-filled circular cylindrical shell with harmonic foing. The NNM method is compared with the POD
method, and its validity limits are assessed via numericaligtions.

2 Theoretical formulation

2.1 Framework

Large amplitude, geometrically non-linear vibrations ohtinuous structures such as thin shells are here
considered. Due to the initial curvature in the middle stefaf shells-like structure, dynamical equations,
derived from Von Karman'’s strain-displacement relatiopshcontain both quadratic and cubic non-linear
terms. It is here assumed that the partial differential &qna (PDESs) of motion have been discretized).
by projection onto the eigenmodes basis, so that the gjgutimt of this study is an assembly &f oscillators
(IV being as large as wanted) with general quadratic and cubjo@mial nonlinearities. Itread&p = 1...N:

N N N
X, + wlX, + 26w, X, +ZZgUXX —|—ZZZh”kXX X, =0, 1)
i=1 j>1i i=1 j>i k>j

where X, stands for the modal displacement associated toptheigenmode of eigenfrequency,. The
coefficienthfj andhfjk arise from the projection of the non-linear terms of the PDiEbdhe linear modes.

Modal viscous damping terms of the for2g,w, X,, have also been introduced.

2.2 Non-linear change of coordinates

A third-order asymptotic development is introduced, inraikir manner than what has already been done
in the undamped case [3]. The guidelines of the computatierttee following. First, it is assumed that
no internal resonances between the eigenvalues are pigsisnassumption may be relaxed and its effect
on the results is easily obtained, see [3] and section 4)or&iby;, a real formulation is kept throughout the
calculations, so that the normal form will be expressed witillators. This is contrary to the usual complex
formulation used in normal form computations (sg. [4, 5, 6]), and have important consequences for
structural systems. Finally, the velocity = Xp is used so as to set Eq. (1) into its first-order form.

The non-linear change of co-ordinates reads:

N N N N N N N
Xy =Ry + > D () RiR; + 8,587 + DD RS+ 3 D (v Ry Ry + 57,585 )
=1 j>1i 1=1 j=1 i=1 j>i k>j
N N N
DS (iR R+l RSy ) (2a)
i=1 j=1 k>j
N N N N N N N
Y, =S+ 3 S (P RiR + 5Si5) + Y. S RS +3. 3 Y (AfijiRij n #fjksisjsk)
=1 j>1 i=1 j=1 1=1 521 k>j
N N N
DB (5 SiRs R+ ¢y RiS; Sk (2b)

The full expressions of the introduced coefficients are aported here for the sake of brevity. The interested
reader can find them in [7]. This non-linear change of coatdia leads to cancellation of all the quadratic
terms in the original dynamics, as these terms are non-ae$@s long as no internal resonance relationship
exists. On the other hand, a number of the cubic coefficianiteduced in Eg. (2) vanish since they cor-
respond to resonant cubic terms, which finally stay in thenabrform. The normal dynamics can thus be
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explicitely written:Vp = 1...N :

Rp‘“"ng + prwpsp + ( ppp + Agpp) R3 + ngpR 52 + CgppRzz)S
N

iy [Z [(hgm + Agm + Ang)RQ + BII;JJSJZ (CII;JJ + Cpr)Rij}
Jj>p

P p P 2 P 2 4 P
+ Z [ hzzp + Aup + Apzz)R + BpuSZ (szz + Czpz)R S :|:|

1<p
N
+5, {Z (B, iS5 + ClyR2) + 3 (B, Risi+ C;';pR?)] ~0. 3)
1>p <p
The coefficient§ A7, B, C},) arise from the cancellation of the quadratic terms, andsead

zgk - Z 9@ jk + Z 9i; @ ]k’ (48.)

1> 1<i
l
ij Zgzl j ke + ngibjk” (4b)
1> 1<i
zgk Zgzl Cik + Zglz Cik- (4C)
[>i 1<i

2.3 Reduced-order models

The dynamics, written with the introduced co-ordinat&s, S,,) (non-linearly related to the initial modal
coordinates), is now expressed within a curved invariaseld span of the phase space. Reduced-order models
(ROMs) are constructed by simply selecting the master ¢oatels, and setting all others to zero. Thanks to
the invariance property, these truncations may not prodiroeneous results, since actual motions of the
complete phase space will be computed with the reducediegaatin the conservative case, it has already
been demonstrated in [3] that keeping a single NNM allowsliptmn of the correct type of non-linearity,
whereas keeping a single linear mode may produce erronesulis.

As a consequence of the behaviour of (h%m ”k, Cf;k) terms with respect to the damping, a first-
order damping development (limited t9(&;) terms for lightly damped systems) shows that oﬁlgk is
affected. For higher values of the damping, the three caeffis are affected, see section 3 where the focus
is set on the variations of coefﬂmer(tﬁwk, B};.), which govern the type of non-linearity. The main effect
of keeping the linear damping terms in the normal form corapon is the occurrence ﬁf’jk, which gathers
them together so as to define a more precise decay of energy #ie invariant manifolds. These new
terms may be interpreted as non-linear dampers since thelirded to dynamical monoms of the form
{R Ry Ry s j e

Application of the proposed ROMs to real situations leadsotasider external forces applied to the struc-
ture. In this study, the ROM will be obtained by adding thesex&l force directly to the normal form. The
main advantage is that the calculation derived in secti@iintrinsical to the structure, whereas rigor-
ous computations including the external force must be donedch type of forcing studied. Secondly, the
perturbation brought by the external force onto the norraahfis at least a second-order effect [8].

Finally, real normal form theory allows derivation of simpROMs with the main advantage that no
specific numerical effort is needed. All the computationssented in the paper are immediate on a standard
computer. However, two approximations are used. First,nibrenal form is computed via an asymptotic
development, so that a validity limit, in terms of amplituafevibration, exists. Secondly, when external forces
are taken into account, the time-dependent manifold isceqipiated by the time-invariant NNMs computed
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without external force. This second approximation setscarsé limitation in terms of the amplitude of the
forcing. In section 4, these validity limits will be numegity assessed, showing that the ROMs are valid for
a very large range of parameters values.

3 Type of non-linearity

In this section, an important result is derived concerning type of non-linearity for an assembly of
oscillators defined by Eq (1). Thanks to real normal form thieit is shown that the damping may have a
strong influence on the type of non-linearity and may turnktbkaviour from the hardening to the softening

type.

3.1 Single NNM motion

A single master coordinate, sayis retained in the normal form, Eq. (3). With a first-ordertpebative
method, the dependence of the frequency of free oscillationthe vibration amplitude may be expressed as:
wnr = wy(1l + T,a?), whereq is the vibration amplitude. Analytical expression®freads:

3(hgpp + Agpp) + W; ngp

T —
P 8wy,

(5)

Hardening behaviour is obtained fé}, > 0, whereasl},, < 0 implies softening behaviour. Sinct},, and
BY,, gathers the conjugate influences of all the linear modes thietdNM motion and depends on all the
linear damping coefficient§; };>1, this simple analytic formula shows that the type of nordirity depends
on the whole damping present in the structure, and not onltherconservative problem, as it is generally
admitted. In order to study the effects of the neglectedalimeodes onto the type of non-linearity of th®
mode, a simple two-degrees-of-freedom (dofs) systemiisdated in the next subsection.

3.2 Atwo dofs example

An extension of the simple mass-spring system selected 8] [8 here considered, where modal damping
have been added to each equation. The dynamics reads:

w% —I—w%

.. . 2
X1+ w2X; + 2§1w1X1+%(3X12 +X2) 4 WX X + X1(X2 4+ X2) =0 (6a)

w% +w§

2

X +wiXy + 252¢L)2X2+%(3X22 + X3 +wiX1 Xy + Xo(XP+X3)=0 (6b)
All the subsequent analysis will consider the case wherérgteoscillator play the role of a central manifold,
thus small values of; will be selected. The second oscillator will play the roleaoflamped manifold, the
dynamics of which will be enslaved in the first NNM. The effe€tincreasing values of; is studied. As a
consequence of the dependenced¢f, and Bi;; on the damping term&;, &), the sign ofT; may change
for increasingé,. This is illustrated for example in Fig. 1.

Another result is shown in Fig. 2, where the type of non-liitgds now represented as a functionwof,
and for different values af,. As already noticed by several studies [10, 11, 12, 13], eodignuity is observed
in these kind of non-linearity map, when a 2:1 internal resae occurs (here we hawg = 2wq). This is
the logical effect of a small denominator, indicating the talculation, realized under the assumption of no
internal resonance, breaks down in the vicinity of the rasme. Here, it is shown that taking into account
the whole damping of the structure smoothens the discatyinisor increasing values @b, Figure 2 shows
that the region of hardening behaviour after the 2:1 interesonance decreases, and can even disappear,
which happens here f@gp, = 0.1. From this study, it can be concluded that a careful preatictf the type
of non-linearity must include the damping in the analysisttiker analysis on this point may be found in [7],
where it is concluded that the effect of damping is genetallgnhance and favour the softening behaviour.
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hardening behaviou

softening behaviour

Figure 1: Type of non-linearity’, defined by Eq. (5), for increasing values&f The behaviour turns from
hardening to softening type fgs = 0.081. Other selected values arej = 3, wy = 5.4, andé; = 0.001.

hardening behaviour

softening behaviour

Figure 2: Type of non-linearity for different values &f, illustrating the fact that the discontinuity at the 2:1
internal resonance is smoothened by increasing the dangpithg slave oscillatorw, = 2 andé; = 0.001.

4 Non-linear vibrations of circular cylindrical shells

4.1 Equations of motion

A water-filled perfect circular cylindrical shell, simplypported, and harmonically excited in the neigh-
bourhood of the fundamental frequency, is selected in aelerive a NNM-based ROM for a continuous
structure. A detailed discussion on the model can be foufitiinl5], so that only the important results with
regard to the reduction process, are recalled. Donnell’slmzar shallow-shell theory is used to take into
account large amplitude motions, so that in-plane inettgasverse shear deformation and rotary inertia are
neglected. The equation of motion for the transverse déteai(z, 0, t) writes:

1 0%F 1 [92F &%w O*F 9w 9%F 9*w

4 . . o I _ _
DV w el +phi = [ =0+ 353 ¥ 32 | 502 022 “owdd 000  0a? 0020 )

whereD is the flexural rigidity,Z Young’s modulusy Poisson’s ratioh the shell thicknessk the mean shell
radius,p the mass density, the coefficient of viscous damping the radial pressure applied to the surface of



C. Touzé, M. Amabili and O. Thomas 6

the shell by the contained fluid, arfds a point excitation, located é@, z):
f = f6(RO — RO (x — &) cos(wt). (8)

Fis the usual Airy stress function, which satisfies the follogvcompatibility equation:

1 4
Y = "foz

2
1 0%w K 9w > Pw 0w ] ©)

ROx00 ) 012 R2002

A circumferentially closed circular cylindrical shell odmgth L is considered. Mathematical expressions of
boundary conditions are given in [14, 15]. The containediflsiassumed to be incompressible, inviscid and
irrotational. The expression @f which describes the fluid-structure interaction, is giirefil4].

The PDE of motion is discretized by projection onto the reltinodes basis. The reference solution,
whose convergence has been carefully verified in [12, 14dpmputed by keeping 16 natural modes. The
transverse deflection is thus expanded via:

3 4
w(z,6,t) = Z [Ap in (t) cos(knbf) + By, g (t) sin(knd)] sin( Ay, x) + Z Aam—1),0t) sin(A2m-1)7),
s e
(10)

wheren is the number of circumferential waves;, the number of longitudinal half-waves (for symmetry
reasons, only odd values are retainex}), = mn/L; A, ,(t) and B, ,,(t) are the generalized coordinates.
By use of the Galerkin method, 16 second-order differemgglations are obtained. They are in the form
of the general equations used as the starting point of thdystEq. (1), by simply adjusting th&,, and
postulating modal damping.

The reference solution is obtained for the following shéll=520 mm,R = 149.4 mmj = 0.519 mm,
E =2.06.10" Pa,p = 7800 kg.nT3, pr = 1000 kg.nT3 (water-filled shell), and’ =0.3. The excitation
frequencyw is set in the vicinity of the fundamental mode=5, m=1), whose eigenfrequency is 79.21 Hz.
Modal dampingt; ,, = 0.0017 is assumed. The harmonic point excitation is located= L /2 andd = 0,
and two different magnitudes will be used to obtain numdsidhe frequency-response curves : 3N and 8N.

In the next subsections, two different ROMs will be used amgared. The first one is obtained with the
real normal form procedure described in the precedent@etiThe second one is obtained by application of
the POD method. Detailed comments on the construction oP®B-based ROM are not provided here for
the sake of brevity, the interested reader can find them inl&p

4.2 Freguency-response curves

The response of the shell in the vicinity of an asymmetric enisdnvestigated. As a consequence of the
rotational symmetry displayed by the shell, asymmetric esodppears by pairs, and 1:1 internal resonance
exists between each pair of companion modes. Hence, thenalimhodel which could capture accurately
the dynamics is composed of two NNMs, and is simply writtesnfrEq. (3), by keeping the two master
coordinates corresponding to the driven and the companimaterrand cancelling all the others.

The POD model is computed from time series obtained by din@&-integration of the full order model.
A great care must be observed in the choice of these timessageaeported in [15]. The minimal model found
is composed of three proper orthogonal modes (POMSs), as @iy rRodel with two POMs were unable to
detect a crucial bifurcation point, leading to coupled ohs and travelling waves.

The frequency-response curves for excitation amplitud8 bf are reported on Fig. 3. The reference
solution is composed of two branches. The main branch quorets to zero amplitude for the companion
mode B, 5, and has two pitchfork bifurcations (BP) at/w; 5= 0.9714 and at 1.0018, where the second
branch appears. This new branch corresponds to partisipafiboth A, 5 and B 5, giving a travelling wave
response. The second branch undergoes two Neimark-Saokes)(bifurcations (TR), ab/w; 5= 0.9716
and 0.9949. Betwen these two values, amplitude-modulajeds{-periodic) responses are found to exist.
The two ROMs gives very satisfactorily results for this caBeth predict finely the bifurcations points, and
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Figure 3: Frequency-response curves for (a): the drivenenbds and (b): the companion modg, 5, for
the shell model, harmonically excited in the vicinity ©f 5. Black line is the reference solution, computed
with 16 eigenmodes. Green line is the POD solution compuddebping three POD modes. Blue line is the
NNM ROM, computed by keeping two NNMs. Stability is indicate&ith dotted and dash-dotted lines.

every solutions, as well as their stability type, are recesle The only difference being that the NNM ROM
needs only two dofs, whereas three POD modes have been aigcessecover the second branch.

The two ROMs have also been tested for a higher value of tlenfpamplitude, which have been set
at 8N: the responses are reported on Fig. 4, where the failpeomments are worth mentionable. First of

2.5

w

{
/

0.5} /
!
i
H
i

0.85 1

0wy 5 (b)

0.85 0.9

Figure 4: Frequency-response curves for (a): the drivenexiad and (b): the companion modg, 5, for the
shell model, harmonically excited in the vicinity of; 5, excitation amplitude at 8N. Thick line : reference

solution, thin line : POD solution, dashed line : NNM.

all, the POD model seems to behave better than the NNM maslshlation branches of the POD ROM are
closer to the original solution than the solution branchewided by keeping 2 NNMs. However, the branch
switching (BP) on the second branch predicted by the POD havdeshifted to the right of the branch, hence
overpredicting the range of stable periodic solutions,hed & slight change in the qualitative predictions are



C. Touzé, M. Amabili and O. Thomas 8

given by the POD model. On the other hand, the qualitativdiptiens of the NNM-based ROM are still very
good, but in this case the softening behaviour is overptedic

It can be observed here that the POD model could be improvadsimg a time response computed for
excitation of 8 N to find the proper orthogonal modes; howetbras been found more interesting here to
investigate the robustness of a reduced order model to elsaingthe system parameters, so that the POD
model built with the response at 3N was used here for exaitagimplitude of 8N. On the other hand, the
NNM model is built once and for all, and may not been changednwarying the amplitude of the forcing.
The observed differences with the reference solution aetmsequences of the two approximations used to
build it: asymptotic development and time-invariant maluf

cloud of points generated by :
case

0.025

case b

0.3 0.4 0.5 0.6

Figure 5: Poincaré section if4; 5, A;o). Clouds of points : section of the orbits generated by case b
(perdiodic coupled response) and case ¢ (quasiperiodipleduesponse). POD axis differs very few from
the original x- and y-axis, whereas the cut of the 4-dimamaionvariant manifold used to construct the
NNM-based ROM goes right in-between the points.

In order to get a geometrical interpretation of the freqyeresponse curves shown in the precedent sec-
tion, a Poincaré section of the 32-dimensional phase sgapeoposed in Fig. 5. Two clouds of points,
corresponding to time series computed from the full-ordedel, are represented by points. The Poincaré
section is the planéA; 5, A; ), each point corresponding to a cut through that section.fif$tetime series
(case b) has been computed from a periodic coupled solutibareas the second one (case c) corresponds
to the quasiperiodic regime found on the second branch, sueaactly the time series that has been used
to construct the POD model. This figure illustrates clearlyyv@ POD modes are necessary to recover the
dynamics: as a significant contribution onto the, coordinate is found, the corresponding POD axis must
be mandatory kept. This can also be connected to the facthtbd@®OD method is linear, as it furniches the
best orthogonal axis that contains most information. Orother hand, the NNM method is non-linear, and
construct a curved invariant manifold to approximate theaigics. That's why in this case, only 2 NNMs
allows recovering the dynamics.

4.3 Bifurcation diagram with varying amplitude of forcing

The three models are now investigated for a fixed excitatiegufency, and by using the excitation am-
plitude as bifurcation parameter. The objective are twaifdirst to detect more complex behaviours and test
the robustness of the reduced models over a wide range @itieeriwhere mutliple states are found to exist,
from periodic to chaotic responses. Secondly, it is a wayrtd fhe validity limits of the asymptotic NNM,
computed with two approximations, in terms of amplitude ibrations and amplitude of forcing.

The result of the computation, for the ROM composed of 2 NNiIshown on Fig. 6. Direct numerical
integration is performed with the Gear's BDF method, andfbard to be very slow and difficult to obtain for
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Figure 6: Bifurcation diagram of Poincaré maps and maximyaplunov exponent for the shell under increas-
ing harmonic load with frequenay=0.92v; 5 for the NNM ROM with two dofs. (a): generalized coordinate
A; 5(t), driven mode. (b): generalized coordindse s (¢), companion mode. (c): maximum Lyapunov expo-
nent.

large values of the forcing amplitude. More precisely, i baen found impossible to perform the integration
over the right-end point shown in Fig. 6 at about 240 N. Thdidates that the validity limit of the ROM is
reached. For values of the forcing amplitude below 240 Nligize and quantitative comparison with the
full-order model, is found to be reasonably good.

Results for the POD models are not reported here, the ingetesader can find them in [16]. It shows
that the model composed of 3 POD modes gives poor resultgnagared to the original one, but without the
problem mentioned before for the NNM model : integration \passible, but qualitative discrepancies were
found. A model composed of 5 POD modes, with time series obthin the chaotic regime, has been found
to recover satisfactorily the main features of the bifusradiagram [16].

5 Conclusion

A normal form procedure for an assembly &f non-linear oscillators, including a non-conservative- per
turbation brought by a modal viscous damping term, has bedwed. It allows construction of simple NNM
reduced-order models, with applications to geometricadip-linear vibrations of structures, with the limita-
tion that an asymptotic approach to the invariant manifelgiven. With a second approximation, external
forces can be taken into account, by using the time-invamaanifold constructed from the normal form
procedure instead of the time-dependent ones.

With this methodology, a result concerning the influencehefdamping on the type of non-linearity, has
been obtained. It shows that the damping generally flavirsadftening type non-linearity, and large values
of damping of neglected modes may change the behaviour cilleeted one from hardening to softening.

Finally, the method has been applied so as to derive ROMs afi@fflled circular cylindrical shell,
harmonically excited in the neighbourhood of the fundarmlemiode. Numerical results shows that the NNM-
based ROM gives perfect results for low values of forcing ktogle (3N of amplitude of excitation, which
results in a displacement of approximately 1.5 times thektiéss of the shell). For larger values (8N of
amplitude of excitation, which results in a displacemen3 times the thickness of the shell), results are still
qualitatively in close agreement, with a slight overprédit of the softening type behaviour. The validity
limit, in terms of amplitude of forcing, has been assessati wiimerical integration: it has been found that
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up to 240 N of excitation, the model was useable. This cleaoints out that these reduced models, which
are very easy to compute, without a special numerical effiives very satisfactorily results for a large range
of parameters values, i.e. for vibration amplitude up ton3e the thickness, and forcing amplitude up to
240 N.

Comparison with the POD method have also been drawn. Thégesun be interpreted as consequences
of the way the models are built. POD method is in essencerjisedhat for low amplitudes of forcing, a better
reduction is provided by the NNM method, which is non-lineard allows projection onto curved subspaces.
The NNM method used here, relies on a local theory (normahfprocedure), so that the obtained results are
not valid everywhere. This is not the case for the POD metkdudch is global, and allows recovering the
bifurcation diagrams with varying the force amplitude, ided a robust model (here with 5 POD modes),
built in the chaotic regime, has been established. Furthparisons between the two methods with regard
to the results presented in this paper are provided in [17].
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