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Abstract: Reduced-order models for a general class of non-linear oscillators with viscous damping, quadratic
and cubic non-linearities, are derived thanks to a real normal form procedure. A special emphasis is put on
the treatment of the damping terms, and its effect on the normal dynamics. In particular, it is demonstrated
that the type of non-linearity (hardening/softening behaviour) depends on damping. The methodology is then
applied for reducing the non-linear dynamics exhibited by acircular cylindrical shell, hamonically excited
in the spectral neighbourhood of the natural frequency of anasymmetric mode. The approximation, which
consists in using time-invariant manifold instead of computing an accurate time-dependent one, is discussed.
The results show that the method is efficient for producing accurate reduced-order models without a special
need for intensive numerical computations. Validity limits of the approximation is then assessed by using the
amplitude of the forcing as bifurcation parameter. Finally, the method is compared to the Proper Orthogonal
Decomposition method (POD).

1 Introduction

Large amplitude vibrations of thin shells give rise to typical phenomena that are activated by the geomet-
rically non-linear terms in the equations of motion. The main problem associated with the analysis of these
non-linear regimes is connected to the large dimension of the phase space, so that usual methods such as
Galerkin projection onto the natural modes basis leads to a huge computational effort in order to derive the
salient features of the motion. However, the complexity often consists in the curved geometry of the phase
space, instead of being in the dynamics itself. Reduction methods, based on the idea ofnon-linear normal
modes(NNMs), are specifically designed in order to include this geometrical complexity in the definition of an
invariant manifold [1, 2, 3]. In a series of paper, Shaw, Pierre and coworkers use the technique provided by the
center manifold theorem in order to reduce the original problem by projecting them onto a low-dimensional
invariant manifold that catches the most important features. The method is a priori not restricted to conserva-
tive problems, and can handle gyroscopic as well as damping terms [2]. However, very few studies by these
authors take damping terms into account.

Normal form theory can also be used as an alternative to center manifold reduction. The real formulation,
proposed in [3] for conservative systems, defines of a non-linear change of coordinates, allowing one to
express the dynamics in an invariant-based span of the phasespace. The main purpose of this study is to
extend the results of [3] so that modal viscous damping can betaken into account. It will be realized thanks
to a kind of parameter continuation of the conservative results versus the damping terms. This result is then
used for derivation of reduced-order models (ROMs) for continuous structures subjected to external harmonic
forcing, the time-dependent invariant manifold of the forced problem being approximated by the time-invariant
manifold precedently computed.

The outline of the paper is as follows. In section 2, the normal form, up to order 3, is computed, and the
approximation used to compute the ROMs for continuous forced structures, are discussed. In section 3, it is
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shown that the type of non-linearity (hardening or softening behaviour), depends on the damping coefficients.
This result is illustrated with a two degrees-of-freedom (dofs) system. Section 4 is devoted to the vibrations
of a fluid-filled circular cylindrical shell with harmonic forcing. The NNM method is compared with the POD
method, and its validity limits are assessed via numerical simulations.

2 Theoretical formulation

2.1 Framework

Large amplitude, geometrically non-linear vibrations of continuous structures such as thin shells are here
considered. Due to the initial curvature in the middle surface of shells-like structure, dynamical equations,
derived from Von Karman’s strain-displacement relationships, contain both quadratic and cubic non-linear
terms. It is here assumed that the partial differential equations (PDEs) of motion have been discretized,e.g.
by projection onto the eigenmodes basis, so that the starting point of this study is an assembly ofN oscillators
(N being as large as wanted) with general quadratic and cubic polynomial nonlinearities. It reads:∀p = 1...N :

Ẍp + ω2
pXp + 2ξpωpẊp +

N
∑

i=1

N
∑

j≥i

gp
ijXiXj +

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

hp
ijkXiXjXk = 0, (1)

whereXp stands for the modal displacement associated to thepth eigenmode of eigenfrequencyωp. The
coefficientsgp

ij andhp
ijk arise from the projection of the non-linear terms of the PDE onto the linear modes.

Modal viscous damping terms of the form2ξpωpẊp have also been introduced.

2.2 Non-linear change of coordinates

A third-order asymptotic development is introduced, in a similar manner than what has already been done
in the undamped case [3]. The guidelines of the computation are the following. First, it is assumed that
no internal resonances between the eigenvalues are present(this assumption may be relaxed and its effect
on the results is easily obtained, see [3] and section 4). Secondly, a real formulation is kept throughout the
calculations, so that the normal form will be expressed withoscillators. This is contrary to the usual complex
formulation used in normal form computations (seee.g. [4, 5, 6]), and have important consequences for
structural systems. Finally, the velocityYp = Ẋp is used so as to set Eq. (1) into its first-order form.

The non-linear change of co-ordinates reads:

Xp =Rp +
N

∑

i=1

N
∑

j≥i

(ap
ijRiRj + bp

ijSiSj) +
N

∑

i=1

N
∑

j=1

cp
ijRiSj +

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

(

rp
ijkRiRjRk + sp

ijkSiSjSk

)

+

N
∑

i=1

N
∑

j=1

N
∑

k≥j

(

tpijkSiRjRk + up
ijkRiSjSk

)

, (2a)

Yp =Sp +

N
∑

i=1

N
∑

j≥i

(αp
ijRiRj + βp

ijSiSj) +

N
∑

i=1

N
∑

j=1

γp
ijRiSj +

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

(

λp
ijkRiRjRk + µp

ijkSiSjSk

)

+
N

∑

i=1

N
∑

j=1

N
∑

k≥j

(

νp
ijkSiRjRk + ζp

ijkRiSjSk

)

. (2b)

The full expressions of the introduced coefficients are not reported here for the sake of brevity. The interested
reader can find them in [7]. This non-linear change of coordinates leads to cancellation of all the quadratic
terms in the original dynamics, as these terms are non-resonant as long as no internal resonance relationship
exists. On the other hand, a number of the cubic coefficients introduced in Eq. (2) vanish since they cor-
respond to resonant cubic terms, which finally stay in the normal form. The normal dynamics can thus be
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explicitely written:∀p = 1...N :

R̈p+ω2
pRp + 2ξpωpSp +

(

hp
ppp + Ap

ppp

)

R3
p + Bp

pppRpS
2
p + Cp

pppR
2
pSp

+Rp

[ N
∑

j>p

[

(hp
pjj + Ap

pjj + Ap
jpj)R

2
j + Bp

pjjS
2
j + (Cp

pjj + Cp
jpj)RjSj

]

+
∑

i<p

[

(hp
iip + Ap

iip + Ap
pii)R

2
i + Bp

piiS
2
i + (Cp

pii + Cp
ipi)RiSi

]

]

+ Sp

[ N
∑

j>p

(

Bp
jpjRjSj + Cp

jjpR
2
j

)

+
∑

i<p

(

Bp
iipRiSi + Cp

iipR
2
i

)

]

= 0. (3)

The coefficients(Ap
ijk, Bp

ijk, Cp
ijk) arise from the cancellation of the quadratic terms, and reads:

Ap
ijk =

N
∑

l≥i

gp
ila

l
jk +

∑

l≤i

gp
lia

l
jk, (4a)

Bp
ijk =

N
∑

l≥i

gp
ilb

l
jk +

∑

l≤i

gp
lib

l
jk, (4b)

Cp
ijk =

N
∑

l≥i

gp
ilc

l
jk +

∑

l≤i

gp
lic

l
jk. (4c)

2.3 Reduced-order models

The dynamics, written with the introduced co-ordinates(Rp, Sp) (non-linearly related to the initial modal
coordinates), is now expressed within a curved invariant-based span of the phase space. Reduced-order models
(ROMs) are constructed by simply selecting the master coordinates, and setting all others to zero. Thanks to
the invariance property, these truncations may not produceerroneous results, since actual motions of the
complete phase space will be computed with the reduced equations. In the conservative case, it has already
been demonstrated in [3] that keeping a single NNM allows prediction of the correct type of non-linearity,
whereas keeping a single linear mode may produce erroneous results.

As a consequence of the behaviour of the(Ap
ijk, Bp

ijk, Cp
ijk) terms with respect to the damping, a first-

order damping development (limited toO(ξi) terms for lightly damped systems) shows that onlyCp
ijk is

affected. For higher values of the damping, the three coefficients are affected, see section 3 where the focus
is set on the variations of coefficients(Ap

ijk, Bp
ijk), which govern the type of non-linearity. The main effect

of keeping the linear damping terms in the normal form computation is the occurrence ofCp
ijk, which gathers

them together so as to define a more precise decay of energy along the invariant manifolds. These new
terms may be interpreted as non-linear dampers since they are linked to dynamical monoms of the form
{R♭R♭Ṙ♭}♭=i,j,p.

Application of the proposed ROMs to real situations leads toconsider external forces applied to the struc-
ture. In this study, the ROM will be obtained by adding the external force directly to the normal form. The
main advantage is that the calculation derived in section 2.2 is intrinsical to the structure, whereas rigor-
ous computations including the external force must be done for each type of forcing studied. Secondly, the
perturbation brought by the external force onto the normal form is at least a second-order effect [8].

Finally, real normal form theory allows derivation of simple ROMs with the main advantage that no
specific numerical effort is needed. All the computations presented in the paper are immediate on a standard
computer. However, two approximations are used. First, thenormal form is computed via an asymptotic
development, so that a validity limit, in terms of amplitudeof vibration, exists. Secondly, when external forces
are taken into account, the time-dependent manifold is approximated by the time-invariant NNMs computed
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without external force. This second approximation sets a second limitation in terms of the amplitude of the
forcing. In section 4, these validity limits will be numerically assessed, showing that the ROMs are valid for
a very large range of parameters values.

3 Type of non-linearity

In this section, an important result is derived concerning the type of non-linearity for an assembly of
oscillators defined by Eq (1). Thanks to real normal form theory, it is shown that the damping may have a
strong influence on the type of non-linearity and may turn thebehaviour from the hardening to the softening
type.

3.1 Single NNM motion

A single master coordinate, sayp, is retained in the normal form, Eq. (3). With a first-order perturbative
method, the dependence of the frequency of free oscillations on the vibration amplitude may be expressed as:
ωNL = ωp(1 + Tpa

2), wherea is the vibration amplitude. Analytical expression ofTp reads:

Tp =
3(hp

ppp + Ap
ppp) + ω2

pB
p
ppp

8ωp
. (5)

Hardening behaviour is obtained forTp > 0, whereasTp < 0 implies softening behaviour. SinceAp
ppp and

Bp
ppp gathers the conjugate influences of all the linear modes ontothe NNM motion and depends on all the

linear damping coefficients{ξi}i≥1, this simple analytic formula shows that the type of non-linearity depends
on the whole damping present in the structure, and not only onthe conservative problem, as it is generally
admitted. In order to study the effects of the neglected linear modes onto the type of non-linearity of thepth

mode, a simple two-degrees-of-freedom (dofs) system is introduced in the next subsection.

3.2 A two dofs example

An extension of the simple mass-spring system selected in [3, 9] is here considered, where modal damping
have been added to each equation. The dynamics reads:

Ẍ1 + ω2
1X1 + 2ξ1ω1Ẋ1+

ω2
1

2
(3X2

1 + X2
2 ) + ω2

2X1X2 +
ω2

1 + ω2
2

2
X1(X

2
1 + X2

2 ) = 0 (6a)

Ẍ2 + ω2
2X2 + 2ξ2ω2Ẋ2+

ω2
2

2
(3X2

2 + X2
1 ) + ω2

1X1X2 +
ω2

1 + ω2
2

2
X2(X

2
1 + X2

2 ) = 0 (6b)

All the subsequent analysis will consider the case where thefirst oscillator play the role of a central manifold,
thus small values ofξ1 will be selected. The second oscillator will play the role ofa damped manifold, the
dynamics of which will be enslaved in the first NNM. The effectof increasing values ofξ2 is studied. As a
consequence of the dependence ofA1

111 andB1
111 on the damping terms(ξ1, ξ2), the sign ofT1 may change

for increasingξ2. This is illustrated for example in Fig. 1.
Another result is shown in Fig. 2, where the type of non-linearity is now represented as a function ofω1,

and for different values ofξ2. As already noticed by several studies [10, 11, 12, 13], a discontinuity is observed
in these kind of non-linearity map, when a 2:1 internal resonance occurs (here we haveω2 = 2ω1). This is
the logical effect of a small denominator, indicating that the calculation, realized under the assumption of no
internal resonance, breaks down in the vicinity of the resonance. Here, it is shown that taking into account
the whole damping of the structure smoothens the discontinuity. For increasing values ofξ2, Figure 2 shows
that the region of hardening behaviour after the 2:1 internal resonance decreases, and can even disappear,
which happens here forξ2 = 0.1. From this study, it can be concluded that a careful prediction of the type
of non-linearity must include the damping in the analysis. Further analysis on this point may be found in [7],
where it is concluded that the effect of damping is generallyto enhance and favour the softening behaviour.
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Figure 1: Type of non-linearityT1, defined by Eq. (5), for increasing values ofξ2. The behaviour turns from
hardening to softening type forξ2 = 0.081. Other selected values are:ω1 = 3, ω2 = 5.4, andξ1 = 0.001.
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Figure 2: Type of non-linearity for different values ofξ2, illustrating the fact that the discontinuity at the 2:1
internal resonance is smoothened by increasing the dampingof the slave oscillator.ω2 = 2 andξ1 = 0.001.

4 Non-linear vibrations of circular cylindrical shells

4.1 Equations of motion

A water-filled perfect circular cylindrical shell, simply supported, and harmonically excited in the neigh-
bourhood of the fundamental frequency, is selected in orderto derive a NNM-based ROM for a continuous
structure. A detailed discussion on the model can be found in[14, 15], so that only the important results with
regard to the reduction process, are recalled. Donnell’s non-linear shallow-shell theory is used to take into
account large amplitude motions, so that in-plane inertia,transverse shear deformation and rotary inertia are
neglected. The equation of motion for the transverse deflection w(x, θ, t) writes:

D∇4w + chẇ + ρhẅ = f − p +
1

R

∂2F

∂x2
+

1

R2

[

∂2F

∂θ2

∂2w

∂x2
− 2

∂2F

∂x∂θ

∂2w

∂x∂θ
+

∂2F

∂x2

∂2w

∂θ2

]

, (7)

whereD is the flexural rigidity,E Young’s modulus,ν Poisson’s ratio,h the shell thickness,R the mean shell
radius,ρ the mass density,c the coefficient of viscous damping,p the radial pressure applied to the surface of
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the shell by the contained fluid, andf is a point excitation, located at(θ̃, x̃) :

f = f̃ δ(Rθ − Rθ̃)δ(x − x̃) cos(ωt). (8)

F is the usual Airy stress function, which satisfies the following compatibility equation:

1

Eh
∇4F = −

1

R

∂2w

∂x2
+

[(

∂2w

R∂x∂θ

)2

−
∂2w

∂x2

∂2w

R2∂θ2

]

. (9)

A circumferentially closed circular cylindrical shell of lengthL is considered. Mathematical expressions of
boundary conditions are given in [14, 15]. The contained fluid is assumed to be incompressible, inviscid and
irrotational. The expression ofp, which describes the fluid-structure interaction, is givenin [14].

The PDE of motion is discretized by projection onto the natural modes basis. The reference solution,
whose convergence has been carefully verified in [12, 14], iscomputed by keeping 16 natural modes. The
transverse deflection is thus expanded via:

w(x, θ, t) =
3

∑

m=1

k=1

[Am,kn(t) cos(knθ) + Bm,kn(t) sin(knθ)] sin(λmx) +
4

∑

m=1

A(2m−1),0(t) sin(λ(2m−1)x),

(10)
wheren is the number of circumferential waves,m the number of longitudinal half-waves (for symmetry
reasons, only odd values are retained),λm = mπ/L; Am,n(t) andBm,n(t) are the generalized coordinates.
By use of the Galerkin method, 16 second-order differentialequations are obtained. They are in the form
of the general equations used as the starting point of this study, Eq. (1), by simply adjusting theXp and
postulating modal damping.

The reference solution is obtained for the following shell:L = 520 mm,R = 149.4 mm,h = 0.519 mm,
E = 2.06.1011 Pa,ρ = 7800 kg.m−3, ρF = 1000 kg.m−3 (water-filled shell), andν =0.3. The excitation
frequencyω is set in the vicinity of the fundamental mode (n=5, m=1), whose eigenfrequency is 79.21 Hz.
Modal dampingξ1,n = 0.0017 is assumed. The harmonic point excitation is locatedat x̃ = L/2 andθ̃ = 0,
and two different magnitudes will be used to obtain numerically the frequency-response curves : 3N and 8N.

In the next subsections, two different ROMs will be used and compared. The first one is obtained with the
real normal form procedure described in the precedent sections. The second one is obtained by application of
the POD method. Detailed comments on the construction of thePOD-based ROM are not provided here for
the sake of brevity, the interested reader can find them in [15, 16].

4.2 Frequency-response curves

The response of the shell in the vicinity of an asymmetric mode is investigated. As a consequence of the
rotational symmetry displayed by the shell, asymmetric modes appears by pairs, and 1:1 internal resonance
exists between each pair of companion modes. Hence, the minimal model which could capture accurately
the dynamics is composed of two NNMs, and is simply written from Eq. (3), by keeping the two master
coordinates corresponding to the driven and the companion mode, and cancelling all the others.

The POD model is computed from time series obtained by directtime-integration of the full order model.
A great care must be observed in the choice of these time series, as reported in [15]. The minimal model found
is composed of three proper orthogonal modes (POMs), as any POD model with two POMs were unable to
detect a crucial bifurcation point, leading to coupled solutions and travelling waves.

The frequency-response curves for excitation amplitude of3 N are reported on Fig. 3. The reference
solution is composed of two branches. The main branch corresponds to zero amplitude for the companion
modeB1,5, and has two pitchfork bifurcations (BP) atω/ω1,5= 0.9714 and at 1.0018, where the second
branch appears. This new branch corresponds to participation of bothA1,5 andB1,5, giving a travelling wave
response. The second branch undergoes two Neimark-Sacker (torus) bifurcations (TR), atω/ω1,5= 0.9716
and 0.9949. Betwen these two values, amplitude-modulated (quasi-periodic) responses are found to exist.
The two ROMs gives very satisfactorily results for this case. Both predict finely the bifurcations points, and
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Figure 3: Frequency-response curves for (a): the driven mode A1,5 and (b): the companion modeB1,5, for
the shell model, harmonically excited in the vicinity ofω1,5. Black line is the reference solution, computed
with 16 eigenmodes. Green line is the POD solution computed by keeping three POD modes. Blue line is the
NNM ROM, computed by keeping two NNMs. Stability is indicated with dotted and dash-dotted lines.

every solutions, as well as their stability type, are recovered. The only difference being that the NNM ROM
needs only two dofs, whereas three POD modes have been necessary to recover the second branch.

The two ROMs have also been tested for a higher value of the forcing amplitude, which have been set
at 8N: the responses are reported on Fig. 4, where the following comments are worth mentionable. First of

BP
BP

BP

ω/ω1,5

1,
5

A
   

  /
h

BP BP BP

ω/ω1,5

1,
5

B
   

  /
h

Figure 4: Frequency-response curves for (a): the driven modeA1,5 and (b): the companion modeB1,5, for the
shell model, harmonically excited in the vicinity ofω1,5, excitation amplitude at 8N. Thick line : reference
solution, thin line : POD solution, dashed line : NNM.

all, the POD model seems to behave better than the NNM model, as solution branches of the POD ROM are
closer to the original solution than the solution branches provided by keeping 2 NNMs. However, the branch
switching (BP) on the second branch predicted by the POD model are shifted to the right of the branch, hence
overpredicting the range of stable periodic solutions, so that a slight change in the qualitative predictions are
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given by the POD model. On the other hand, the qualitative predictions of the NNM-based ROM are still very
good, but in this case the softening behaviour is overpredicted.

It can be observed here that the POD model could be improved byusing a time response computed for
excitation of 8 N to find the proper orthogonal modes; howeverit has been found more interesting here to
investigate the robustness of a reduced order model to changes in the system parameters, so that the POD
model built with the response at 3N was used here for excitation amplitude of 8N. On the other hand, the
NNM model is built once and for all, and may not been changed when varying the amplitude of the forcing.
The observed differences with the reference solution are the consequences of the two approximations used to
build it: asymptotic development and time-invariant manifold.

−1 −0.5 0 0.5 1
−0.005
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0.005
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0.3 0.4 0.5 0.6
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Figure 5: Poincaré section in(A1,5, A1,0). Clouds of points : section of the orbits generated by case b
(perdiodic coupled response) and case c (quasiperiodic coupled response). POD axis differs very few from
the original x- and y-axis, whereas the cut of the 4-dimensional invariant manifold used to construct the
NNM-based ROM goes right in-between the points.

In order to get a geometrical interpretation of the frequency-response curves shown in the precedent sec-
tion, a Poincaré section of the 32-dimensional phase space is proposed in Fig. 5. Two clouds of points,
corresponding to time series computed from the full-order model, are represented by points. The Poincaré
section is the plane(A1,5, A1,0), each point corresponding to a cut through that section. Thefirst time series
(case b) has been computed from a periodic coupled solution,whereas the second one (case c) corresponds
to the quasiperiodic regime found on the second branch, and is exactly the time series that has been used
to construct the POD model. This figure illustrates clearly why 3 POD modes are necessary to recover the
dynamics: as a significant contribution onto theA1,0 coordinate is found, the corresponding POD axis must
be mandatory kept. This can also be connected to the fact thatthe POD method is linear, as it furniches the
best orthogonal axis that contains most information. On theother hand, the NNM method is non-linear, and
construct a curved invariant manifold to approximate the dynamics. That’s why in this case, only 2 NNMs
allows recovering the dynamics.

4.3 Bifurcation diagram with varying amplitude of forcing

The three models are now investigated for a fixed excitation frequency, and by using the excitation am-
plitude as bifurcation parameter. The objective are twofold: first to detect more complex behaviours and test
the robustness of the reduced models over a wide range of variation where mutliple states are found to exist,
from periodic to chaotic responses. Secondly, it is a way to find the validity limits of the asymptotic NNM,
computed with two approximations, in terms of amplitude of vibrations and amplitude of forcing.

The result of the computation, for the ROM composed of 2 NNMs,is shown on Fig. 6. Direct numerical
integration is performed with the Gear’s BDF method, and hasfound to be very slow and difficult to obtain for
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Figure 6: Bifurcation diagram of Poincaré maps and maximum Lyapunov exponent for the shell under increas-
ing harmonic load with frequencyω=0.92ω1,5 for the NNM ROM with two dofs. (a): generalized coordinate
A1,5(t), driven mode. (b): generalized coordinateB1,5(t), companion mode. (c): maximum Lyapunov expo-
nent.

large values of the forcing amplitude. More precisely, it has been found impossible to perform the integration
over the right-end point shown in Fig. 6 at about 240 N. This indicates that the validity limit of the ROM is
reached. For values of the forcing amplitude below 240 N, qualitative and quantitative comparison with the
full-order model, is found to be reasonably good.

Results for the POD models are not reported here, the interested reader can find them in [16]. It shows
that the model composed of 3 POD modes gives poor results, as compared to the original one, but without the
problem mentioned before for the NNM model : integration waspossible, but qualitative discrepancies were
found. A model composed of 5 POD modes, with time series obtained in the chaotic regime, has been found
to recover satisfactorily the main features of the bifurcation diagram [16].

5 Conclusion

A normal form procedure for an assembly ofN non-linear oscillators, including a non-conservative per-
turbation brought by a modal viscous damping term, has been derived. It allows construction of simple NNM
reduced-order models, with applications to geometricallynon-linear vibrations of structures, with the limita-
tion that an asymptotic approach to the invariant manifold is given. With a second approximation, external
forces can be taken into account, by using the time-invariant manifold constructed from the normal form
procedure instead of the time-dependent ones.

With this methodology, a result concerning the influence of the damping on the type of non-linearity, has
been obtained. It shows that the damping generally flavours the softening type non-linearity, and large values
of damping of neglected modes may change the behaviour of theselected one from hardening to softening.

Finally, the method has been applied so as to derive ROMs of a fluid-filled circular cylindrical shell,
harmonically excited in the neighbourhood of the fundamental mode. Numerical results shows that the NNM-
based ROM gives perfect results for low values of forcing amplitude (3N of amplitude of excitation, which
results in a displacement of approximately 1.5 times the thickness of the shell). For larger values (8N of
amplitude of excitation, which results in a displacement of3 times the thickness of the shell), results are still
qualitatively in close agreement, with a slight overprediction of the softening type behaviour. The validity
limit, in terms of amplitude of forcing, has been assessed with numerical integration: it has been found that
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up to 240 N of excitation, the model was useable. This clearlypoints out that these reduced models, which
are very easy to compute, without a special numerical effort, gives very satisfactorily results for a large range
of parameters values, i.e. for vibration amplitude up to 3 times the thickness, and forcing amplitude up to
240 N.

Comparison with the POD method have also been drawn. The results can be interpreted as consequences
of the way the models are built. POD method is in essence linear, so that for low amplitudes of forcing, a better
reduction is provided by the NNM method, which is non-linear, and allows projection onto curved subspaces.
The NNM method used here, relies on a local theory (normal form procedure), so that the obtained results are
not valid everywhere. This is not the case for the POD method,which is global, and allows recovering the
bifurcation diagrams with varying the force amplitude, provided a robust model (here with 5 POD modes),
built in the chaotic regime, has been established. Further comparisons between the two methods with regard
to the results presented in this paper are provided in [17].
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