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Abstract

Three different variants of the crossover Soave–Redlich–Kwong equation of
state are applied to describe the equilibrium behaviour of 72 common fluids
– 27 hydrocarbons (including the first 10 n-alkanes), 36 halogenated refriger-
ants, 5 cryogenics (fluorine, oxygene, nitrogene, argon and carbon monoxide)
and 4 other industrially important inorganic fluids (carbon dioxide, sulfur
dioxide, nitrous oxide and sulfur hexafluoride). The model contains six com-
pound dependent parameters; two of them (a0 and b of the classical part)
are adjusted to reproduce the critical temperature and the critical pressure.
Within the first approach (model A), the remaining four parameters – the
softness of dispersion interactions m and three parameters of the crossover
part (Gi, d1 and v1) — are optimized to reproduce the coexistence densities
and the saturation pressure over the whole vapor–liquid region and also the
pressure along the critical- and one supercritical isotherms. In the second
model (model B), mutual relation between two of the crossover parameters is
employed (v1 = v1(Gi)) and distersion softness m is expressed as a qudratic
function of acentric factor ω. Using these two constrains, the crossover pa-
rameter Gi (and also v1) becomes correlated to rectlinear diameter rd or

1



critical compression factor Zc. It is also found, that the crossover parame-
ter d1 has a minor effect on the equilibrium properties. In the third model
(model C), this parameter is omitted and the remaining parameters are es-
timated from knowledge of critical properties (a0 and b), acentric factor (m)
and rectlinear diameter (Gi). The overall quality of model C – which requires
only the knowledge of the critical properties, acentric factor and rectlinear
diameter – is worse compared to the two models with fitted parameters.
However, it is superior to classical cubic equations of state as for the liquid
coexistence densities and superior to equations optimized to reproduce the
liquid densities (PCSAFT, CPA) as for the description in the critical region.
The model C is applied to describe the equilibrium behaviour of two com-
pounds not included in the parametrization, hexafluoropropene (HFO1216)
and hexafluoropropene oxide (HFPO), with acceptable quality.

1 Introduction

An accurate description of the phase equilibria in the near critical region
is required in many industrial applications, such as in the natural gas- or
liquid air industries, or – the most prominent example – supercritical ex-
traction (SCE) by carbon dioxide, propane or similar compounds [1]. The
solubility of compounds that has to be extracted depends mainly on the
density of the supercritical solvent. Thus to optimize the SCE process, one
requires an equation of state that can accurately describes the pressure–
tempererature–volume (PVT) data and the phase behavior in near critical
regions. Another perspective application represents the transcritical Rank-
ine cycle with organic working fluids (ORC) for the conversion of the waste-,
solar- or geothermal heat [2]. The performance and efficiency of ORC can
be tuned by use of mixtures of fluids [3, 4]. Good thermodynamic model can
thus reduce the amount of experimental work similarly as in the case of SCE
optimization.

In the vicinity of critical point, the temperature dependence of the iso-
choric heat capacity is described by a power law

Cv ∝ kα0 + kα1τ
−α + . . . (1)

where τ = T/Tc − 1 is the reduced temperature. The critical exponent α is
found to have a universal value for all fluids (and for all systems belonging to
the 3D Ising model class), α = +0.110±0.003 [5]. An analysis of most of the
classical equation of state (EoS) leads to the classical value, α = 0. Similarly,
differences are observed for critical exponents describing the temperature
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dependence of coexistence densities (β), isothermal compressibility (γ), and
the density dependence of pressure at Tc (δ) [5].

ρL − ρV ∝ kβ1τ
β + . . . (2)

κT ∝ kγ1τ
−γ + . . . (3)

P − Pc ∝ kδ1ρ
δ + . . . (4)

The classical values are β = 1/2, γ = 1 and δ = 3 while the universal values
β = 0.326, γ = 1.237 and δ = 4.789 [5].

Because of the difference in the critical exponent β, classical equations of
state cannot accurately describe the temperature dependence of the coexis-
tence densities in the critical region and the temperature vs density vapor-
liquid curve calculated with a classical equation of state is sharper compared
to the experimental one.

For cubic EoS’s such as van der Waals, Soave-Redlich-Kwong (SRK),
Patel-Teja or Peng-Robinson the two pure compound parameters can be
determined from the critical temperature and pressure. Due to the shape
of the classical coexistence curve, the liquid densities are usually underpre-
dicted at low temperatures by classical cubic EoS’s. The pure component
parameters of an equation of state can also be determined by fitting vapor
pressures and saturated liquid densities, as well as PV T data. For this way
of parametrization, the incorrect shape of the coexistence curve results into
the overestimation of the critical temperature and pressure.

Two approaches that improve the description of fluids in the vicinity
of critical points have been suggested. The first one is based on the work
of White and coworkers [6, 7], who suggested a recursive procedure directly
based on the renormalization group theory. This method is rather demanding
in terms of computational time due to required numerical integrations. It
has been successfully applied to several cubic as well as non cubic equations
of state [8, 9, 10].

The other approach was developed by Kiselev and co-workers and it is
based on Chen and Tang crossover models [11, 12], The method incorporates
the asymptotic behaviour with the correct critical exponents and can be
applied to any classical equation of state. This approach was applied to
several equations of state for fluid and fluid mixtures [13, 14, 15, 16, 17, 18]
including equations for associating compounds [19, 20, 21, 22]. However,
most of these works suffer from the following drawbacks: (i) the crossover
schemes are continuously modified and improved and it is difficult to find
one crossover model applied to a large variety systems and (ii) each model
applied to relatively small ensemble of compounds, having usually rather
similar character.
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Our aim is to develop a crossover version of the cubic plus association
equation of state (CPA) [23, 24], that can treat a broad variety of species.
Already the optimization of the 5 parameters (for associating compounds)
of the classical CPA EoS is problematic as rather different sets of parame-
ters can be obtained depending on the definition of the objective function.
When a crossover procedure is applied to such an equation of state, two or
three additional pure component parameters must be optimized, leading to
different sets of parameters that can vary of several orders of magnitude or
have completely unphysical values. One way of reducing the total number
of parameters consists on treating many compounds and determining some
universal correlations between the parameters.

In this work, as the first step, we apply two different 3-parameter crossover
schemes to describe the phase behaviour of 72 selected non-associating com-
pounds, and investigate the sensibility of the crossover parameters and their
dependence on usual pure compound properties. We also analyse the pre-
viously suggested mutual relations between the parameters of the crossover
part and their dependence on the shape of VLE curve characterized by acen-
tric factor and/or rectilinear diameter.

2 Theory

2.1 Classical Equation of State

The Soave-Redlich-Kwong (SRK) EoS is a modification of the Redlich-Kwong
EoS and can be written as [25]

P =
RT

v − b
−

a(T )

v(v + b)
(5)

where the temperature dependence of attraction parameter is expressed as

a(T ) = a0

[

1 +m(1−
√

Tr)
]2

(6)

where Tr = T/Tc is the reduced temperature and m a compound specific
parameter. Since at the critical temperature a(Tc) = a0, the parameters a0
and b are related to the critical temperature and critical pressure as

a0 =
0.4275R2T 2

c

Pc

(7)

and

b =
0.08664RTc

Pc

(8)
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Although the SRK EoS is a three-parameter equation of state, it always
predicts the same value of the compression factor at the critical point, Zc =
Pcvc/RTc = 1/3. As a result, the critical volume is usually overestimated.

The Helmholtz free energy of the SRK EoS is given by

A∗

SRK = ln
v

v − b
−

a(T )

RTb
ln

v + b

v
− ln v (9)

This expression includes also the ideal gas contribution, A∗

i.g. = − ln v = ln ρ.
Since the parameters a0 and b are determined from the critical properties,

the parameter m is the only parameter that can affect the shape of vapor–
liquid coexistence. This parameter can be expressed as a function of acentric
factor defined as ω = − log10 P0.7 Tc/Pc − 1. The original formula suggested
by Soave is [26]:

m = 0.480 + 1.574ω − 0.175ω2 (10)

As it will be shown later in this paper, this expression should be changed
when the SRK EoS is coupled with the crossover scheme to lead to a better
description of coexistence densities.

2.2 Crossover model

Kiselev suggested a method to incorporate the singular asymptotic behaviour
into any classical equation of state and minimize the differences between
the critical properties calculated from the classical EoS (critical temperature
Tc0, pressure Pc0 and volume vc0) and the corresponding experimental values
(Tc, Pc, vc). This approach is based on a separation of the Helmholtz energy
into two parts: the critical and the regular (background) contributions. The
critical part of Helmholtz energy is defined as

A∗

cr(T, v) = A∗(T, v)− A∗(T, vc0) + ∆vP ∗(T, vc0) =

= A∗

res(T, v)− A∗

res(T, vc0)− ln(∆v + 1) + ∆vP ∗(T, vc0) (11)

where ∆v = (v/vc0 − 1); the reduced pressure is defined as P ∗(T, vc0) =
P (T, vc0)vc0/RT . The critical part of the Helmholtz free energy has two
following properties: (i) it is zero along the critical isochore (v = vc0) and (ii)
its second derivative with respect to density is proportional to the isothermal
compressibility. The regular part is the sum of the remaining terms

A∗

reg(T, v) = A∗(T, v)− A∗

cr(T, v) =

= A∗

res(T, vc0)−∆vP ∗(T, vc0)− A∗

0(T )− ln vc0 (12)

5



where A∗

0(T ) is the temperature dependent part of the Helmholtz free energy
for ideal gas.

The critical contribution is reexpressed as a function of the reduced tem-
perature and volume distance from the critical point, τ = (T/Tc − 1) and
η = (v/vc−1), and expanded into the Landau expansion [11]. Suitable rescal-
ing of the temperature and volume variables in the critical part can enforce
the thermodynamic properties to obey the correct asymptotic behaviour.
Kiselev suggested the following form

τ̄ = τY (q)
−α
2∆ + (1 + τ)∆τcY (q)

2(2−α)
3∆ (13)

and
η̄ = ηY (q)

γ−2β
4∆ + (1 + η)∆vcY (q)

(2−α)
2∆ (14)

where ∆τc = (Tc/Tc0 − 1) is the reduced difference between the true critical
temperature Tc and the critical temperature calculated using the classical
EoS, Tc0, analogously ∆vc = (vc/vc0−1) for the difference in critical volumes.
The crossover function Y (q) of the reduced distance from the critical point,
q, is calculated from the main equation of parametric model, as we will show
at the end of this section (eq. 19).

Finally, the renormalized Helmholtz free energy is given as a sum of the
critical part calculated at the rescaled variables T̄ and v̄, and the background
part calculated at T and vc0

A(T, v) = A∗

cr(T̄ , v̄) + A∗

reg(T, vc0) =

= A∗

res(T̄ , v̄)− A∗

res(T̄ , vc0)− ln(η̄ + 1) + ∆vP ∗(T̄ , vc0) (15)

The rescaled variables T̄ and v̄ are calculated with respect to the classical
critical point, T̄ = Tc0(1 + τ̄) and v̄ = vc0(1 + η̄); at the experimental (true)
critical point, i.e. when T = Tc and v = vc, the temperature and volume
are equal to the classical values Tc0 and vc0, and the first and second volume
derivatives of pressure are equal to zero. Far from the critical point, the
crossover function Y (q) tends to unity and the rescaled temperature becomes
T̄ = T and v̄ = v.

The pressure is obtained from the volume derivative of the Helmholtz free
energy

P = −
RT

v

(

∂A∗

cr(T̄ , v̄)

∂v

)

T

+ P (T, vc0) (16)

where the second term is the only non-zero term from the regular part. Em-
ploying the chain rule, one can see that

∂A∗

cr(T̄ , v̄)

∂v
=

∂A∗

cr(T̄ , v̄)

∂T̄

∂T̄

∂q

∂q

∂v
+

∂A∗

cr(T̄ , v̄)

∂v̄

∂v̄

∂q

∂q

∂v
(17)
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Since the partial derivative ∂q/∂v is equal to zero, the method of Kiselev
requires the equality of the true critical pressure with that predicted by
the classical EoS, Pc0 = Pc. This condition is satisfied for cubic EoS’s,
when the parameters a and b are determined directly from the values of the
critical temperature and pressure (eq. 7 and 8 for SRK). When the pure
component parameters of a classical EoS are optimized to coexistence data
at low temperatures, the critical pressure is always overestimated, although
the temperature dependence of the vapor pressure is well described.

Consequently, it is not possible to use the Kiselev approach and keep the
parameters in the classical part of EoS unchanged, to get an accurate de-
scription of the data in the near critical region. When the Kiselev method is
applied to a non cubic EoS, the classical part has to be re-parametrized in
such a way that the condition Pc0 = Pc is satisfied [19, 20, 21, 22]. However,
the classical parameters are such that the classical part behaves in a similar
way as the classical SRK Eos: the predicted critical temperature and pres-
sure, Tc0 and Pc0, coincide with the experimental values but the coexistence
liquid densities are systematically underpredicted. One can note that the
second term in eq. 13 cancells for pure fluids as Tc = Tc0.

The crossover function Y (q) should approach unity far from the critical
point, i.e for q → ∞. For q → 0 it should vanish as q2∆. In this work, we
employ one of the most popular forms for the crossover function Y (q)

Y (q) =

(

q

q + 1

)2∆

(18)

The temperature change in case of this form is rather slow and the behaviour
of liquid close to the triple point is affected by the critical contribution.
However this is an advantage in our case, bacause this effect acts as a volume
translation over the whole coexistence region and corrects underprediction
of saturated liquid densities by the classical SRK EoS.

Previously, several modifications have been suggested to make the crossover
function go more rapidly towards unity either by multiplication of the re-
duced distance q by a rapidly growing function of temperature [27] or by
choosing different functional form of Y (q) [28, 29]. These modifications were
used in connection with the Peng-Robinson or Patel-Teja EoS that lead to
more accurate predictions of saturated liquid densities at low temperatures
compared to the SRK EoS.

In this work, the distance from the critical point q is calculated iteratively
from the parametric sine model [30]

(

q2 −
τ

Gi

)

[

1−
p2

4b2

(

1−
τ

q2Gi

)]

=

{

bf(η, τ)

m0Giβ

}2

Y (1−2β)/∆ (19)
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The universal parameters p = b =
√
1.359 is adopted from the linear model.

The compound specific parameter Gi is called the Ginzburg number, m0

is another parameter than be considered as either universal or compound
specific.

The empirical function f(η, τ) is introduced to eliminate the symmetry
with respect to the order parameter η. In this work we employ the form used
in ’generalized cubic’ EoS of Kiselev and Ely [16, 31]

f(η, τ) = η(1 + v1e
−10η) + d1τ (20)

In their first work using the sine model [16], the authors considered m0 =
0.852 as universal parameter and supposed that the parameters v1 = v1(Zc),
d1 = d1(Zc) and Gi = Gi(ω, Zc,Mw) are compound dependent. With respect
to relatively small ensemble of studied compounds (11 alkanes, 10 alcohols, 6
refrigerants and 6 cryogenics), we are not very confident in the three-variable
correlation of the Ginzburg number. In the subsequent work, the crossover
EoS was employed to describe the thermodynamic and transport properties of
water, carbon dioxide, methane and ethane [31]. In that case, all 4 crossover
parameters (m0, Gi, d1 and v1) were treated as compound specific. The
same model later was used by Lee et al. [32] who described the equilibrium
behaviour of carbon dioxide and linear alkanes keepingm0 = 1 and fitting the
3 remaining parameters. However, none of the three fitted parameters could
be correlated to some common properties like molar mass or acentric factor.
In this work, we aim to find some trends for the crossover parameters and
thereby to reduce the number of independent compound specific parameters.

3 Results and discussion

In this work we study only compounds included in the Refprop database [33].
For such compounds, the pseudoexperimental VLE- and PVT- data can be
calculated from multiparameter Span–Wagner-like equations of state. This
restriction is motivated by the sensitivity of the crossover EoS parametriza-
tion to the quality (and amount) of the input data. The studied pure com-
pounds and their critical properties are listed in Tables 1 and 2. The reported
critical properties are calculated from the corresponding Span–Wagner EoS’s
and these values are usually within the uncertainity range of experimentally
measured critical properties.

The acentric factors and rectilinear diameters are given in Tables 3 and
4, together with the triple point temperatures Tt, the lowest temperature for
VLE data, T0, and the literature source for the particular Spar–Wagner EoS.
The VLE data used for the determination of the pure component parameters
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cover the interval between T0 and the critical temperature in regular steps
of 5 K. In addition to these VLE data we included also PvT -data along the
critical isotherm and along another isotherm above the critical temperature;
this temperature was the closest integer-multiple of 50 K which was more
than 35 K above Tc (e.g. T2 = 350 K for ethane with Tc = 305.32 K, but
T2 = 500 K for butane with Tc = 425.13 K). If the Span–Wagner EoS does
not allow calculations at such temperature, we took simply the maximal
limit of this EoS (e.g. in the case of long alkanes). These PvT -data were in
steps of 1 MPa up to 3× the value of critical pressure or up to the limit of
Span–Wagner EoS.

The rectlinear diameters reported in Tables 3 and 4 were approximated
as

rd = −
(

Tc

ρc

)

ρc − ρ̄0
Tc − T0

(21)

where ρ̄0 = 0.5(ρvap+ρliq) is the average of coexistence densities at the lowest
temperature T0; we notice that ρ

vap is usually negligible compared to ρliq. For
an arbitrary compound, the knowledge of critical temperature and critical
density and of one value of the coexistence density at low temperature is
required to determine the rectlinear diameter. Thus, for any compound for
which one knows Zc or ω, the rectlinear diameter can also be evaluated.

The systematic names of the studied halogenated refrigerants can be
found in Table 5. In the text we use the shorter abbreviations (used also
in Refprop) instead of the RCN codes in which the letters indicate the class
of refrigerant.

Since the parameters a0 and b are related to the critical temperature and
pressure irrespective of the employed crossover scheme, we calculated them
directly from the (pseudo)experimental Tc and Pc listed in Tables 1 and 2.

3.1 Model A

As the first step, we optimized the m-parameter and the three parameters of
the crossover part, Gi, d1 and v1, by minimizing the objective function defined
as a sum of quadratic relative deviations of saturated pressures, vapor- and
liquid densities and of the PvT data

Fobj =
∑

i

(

Ps(Ti)

PRefprop
s (Ti)

− 1

)2

+
∑

i

(

ρL(Ti)

ρRefprop
L (Ti)

− 1

)2

+

+
∑

i

(

ρV (Ti)

ρRefprop
V (Ti)

− 1

)2

++
∑

jPV T

(

Pj

PRefprop
j

− 1

)2

(22)
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The results of this optimization of 4 parameters will be called ’Model A’.
For most compounds, Model A provides an excellent description of the

Refprop data. The average absolute deviations are listed in the first columns
of Tables 6 and 7. Generally, larger deviations can be found for fluids with
highly nonspherical and/or polar molecules. Large deviations can be seen
for toluene (polar molecule and broad coexistence region) and propylcyclo-
hexane (nonspherical molecule and broad coexistence region). We can also
observe an increase of AAD’s for the liquid density of linear alkanes of higher
molecular weight. The strongest deviations are observed for fluoroethane
(R161) and perfluoropentane.

The optimal values of the dispersion softness m are plotted against the
acentric factor ω in Figure 1. These values are systematically higher com-
pared to the Soave’s correlation for classical SRK EoS [26] (eq. 10) which is
shown as the dashed line in Figure 1. The m parameter for crossover model
can be correlated as a quadratic function of the acentric factor

m = 0.5188 + 1.4705ω + 0.5181ω2 (23)

Few compound slightly deviate from the correlation curve. Besides the six
refrigerants highlighted in Figure 1, systematic deviations are observed for
higher linear alkanes (the three right-most black circles corresponding to n-
octane, n-nonane and n-decane). Taking into account only the n-alkanes, we
obtain correlation

m = 0.5084 + 1.6860ω − 0.16407ω2 (24)

which is shown as the dotted line in Figure 1. Although the quality of this
n-alkane correlation seems to be for most compounds the same or better
compared to the global fit (except for R161, R236ea and perfluoropentane),
in next steps we employed the first one, eq. 23.

No reasonable correlation can be proposed between the crossover param-
eters and some pure compound properties. This is illustrated by the depen-
dence of optimized parameter Gi on acentric factor, rectlinear diameter or
critical compression factor shown in the upper parts of Figures 2, 3 and 4.
The values of v1 and d1 are also rather scattered.

3.2 Model B

The crossover parameters have a smaller influence on the VLE behaviour
compared to the parameters of the classical part. This is illustrated in Fig-
ure 5 where two isotherms for n-butane according to Model A are compared
with calculations using different values of v1 or Gi parameters – one half or
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twice the optimal values; we notice that taking twice higher the value of the
classical parameters a0 or b results into twice higher value of critical temper-
ature and pressure. The parameters v1 and Gi have opposite effect on the
isotherms – the decay of pressure caused by increase of Gi can be compen-
sated by decrease of v1 and vice versa. For the mutual relation between these
two parameters we decided to use a relation suggested by Kiselev [21]

v1 = v
(1)
1 +

v
(2)
1

Gi

(25)

where v
(1)
1 = −4.9× 10−2 and v

(2)
1 = +0.5× 10−2.

Using these two constrains (eqs. 23 and 25) we reoptimized the crossover
parameters Gi and d1 for all pure compounds on the same set of VLE and
PVT data. The new set of parameters is denoted as ’Model B’. The Gi

parameters for Model B are plotted in the lower parts of Figures 2, 3 and
4. One can see that the correlation between parameters Gi and v1 restricts
the Ginzburg numbers into considerably narrower interval, 0.05 < Gi < 0.10.
Moreover, linear trend is observed for the dependence on rectlinear diameter,
rd, or critical compression factor, Zc.

The parameter d1 for Model B remains rather scattered, for most com-
pounds being of the order of 10−2; for about 10 compounds the absolute value
of d1 was found larger that 1. This parameters is multiplied by reduced tem-
perature distance τ in eq. 20 and thus its role is small in the vicinity of
critical point. In Figure 6 we compare four different isotherms for n-butane
modeled by Model B with crossover parameters Gi = 0.0770 and d1 = −3.68
(solid red lines) and by the same model but with d1 = 0 (dashed green lines).
Except the isotherm at the highest temperature T = 500 K the difference is
hardly observable.

3.3 Model C

Based on the previous observations we formulate our final model, denoted
as ’Model C’, which is purely predictive. The parameter m is related to the
acentric factor according to eq. 23. Ginzburg number Gi is approximated as
linear function of rectilinear diameter as

Gi = 0.07358rd + 0.00762 (26)

and vi is calculated through the relation 25, while d1 = 0. It should be
notices that expressing Gi as function of critical compression factor Zc would
constitute to a model of roughly the same quality.
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The average absolute deviations for Model C are listed in the last columns
of Tables 6 and 7. As it may be expected from Figure 6, neglecting the
d1 parameter leads mainly to increase of the deviations in the equilibrium
pressures.

The comparison between models B and C and the classical SRK EoS is
presented in Figures 7 and 8 for n-butane, which is one of the compounds
with a high value of parameter d1 in model B and thus one can expect big
difference between models B and C. The classical SRK EoS is used with
two sets of parameters. The first one are the parameters determined from
the critical point – a0 = 1.40702 MPa/(L/mol)2, b = 0.0806767 L/mol –
and from the Soave’s relation – m = 0.78930 (green double-dash–dotted
lines, denoted as ’SRK’ in the Figures). The second set – a0 = 1.2902
MPa/(L/mol)2, b = 0.072082 L/mol and m = 0.72358 – was optimited to
describe the coexistence densities and saturated pressures well below the
critical temperature [24] (blue dash–dotted lines, denoted as ’CPA’ although
no association contribution is not considered for n-butane of course).

All models describe perfectly the saturation pressures in the whole tem-
peratures range. The coexistence curve continues for CPA parameters slightly
above the experimental critical temperature (T exp

c = 425.13 K vs. TCPA
c =

436.32 K) and consequently the critical presure is overpredicted (P exp
c = 3.796

MPa vs. PCPA
c = 4.3604 MPa) as it can be seen in the detailed inset in Fig-

ure 7 or in the P − ρ projection of the coexistence diagram in the lower part
of Figure 8. The liquid densities are well represented by both the crossover
models at high and moderate temperatures, but deviations are observed close
to the triple point.

The phase digram for 2,3,3,3-tetrafluoropropene (R1234yf) is shown in
Figure 9. Model C is compared with classical SRK EoS with parameter
set a0 = 1.1019 MPa/(L/mol)2, b = 0.069694 L/mol and m = 0.81122,
which enables perfect description of coexistence liquid densities (AAD∆ρL =
0.88%) and saturated pressures (AAD∆Ps = 0.15%) for 230 K < T < 340 K.
The classical EoS again overpredicts the critical temperature, Tc0 = 377.40
K, and critical pressure, Pc0 = 3.901 MPa (compared to refprop values Tc =
367.85 K and Pc0 = 3.3822 MPa). Outside of the critical region – more
than 30 degrees above the critical temperature, the classical EoS provides
good description; even along the critical isotherm the pressure is predicted
correctly for densities twice higher than the critical one. The coexistence
densities directly measured by Tanaka and Hagashi [34] agree well with the
refrop values.

The phase diagrams for perfluoropentane according to Models A and C
are compared in Figure 10. Perfluoropentane is one of the compounds for
which the Model C does not work optimally. This is expectable, since in both
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employed correlations (eq. 23 and 26) the optimal value for perfluoropentane
is deviated (see Figs. 1 and 3).

The largest deviation at all are found for fluoroethane, R161. The phase
diagram for this compound is shown in Figure 11. Systematic differences
in liquid densities (and of the densities of compressed fluid) are observed
between Model C and the Refprop data. Fluoroethane belongs between
about 8 compound for which the Refprop EoS was not published yet. This
is probably because of low number of available experimental data. In Figure
11 we show also coexistence densities meassured recently by Han et al [35];
these data differ considerably from the Refprop values. We are not able to
decide, whether there is a problem in parametrization of the Refprop EoS
because of small number of data, because of low quality of data or whether
the data of Han et al are errorneous.

Finally, in Figures 12 and 13 we show the phase diagrams for hexafluoro-
propene (R1218) and for hexafluoropropene oxide (HFPO), two compounds
not included in Refprop 9. Model C is compared with classical SRK EoS
(adjusted to Tc and Pc) and with the experimental data [36, 37]. The quality
of description of HFPO is slightly worse compared to crossover Patel–Teja
EoS developed in [37] however the Model C does not include any fitted pa-
rameters.

4 Conclusions

We applied the sine parametric crossover model to 72 fluids included in Ref-
prop database. Two parameters of the classical part are related to the crit-
ical temperature and critical pressure; third classical parameter describing
the temperature dependence of dispersion interactions can be expressed as a
function of acentric factor. As for the parameters of the crossover part, it was
found that their influence on the equilibrium behaviour is a less important
compared to the three parameters of classical part. More important effect
on the quality of phase diagram than the three fitted crossover parameters,
Gi, v1 and d1, has the critical volume shift ∆vc appearing in eq. 14, which
is a compound specific parameter following from the experimental critical
properties.

Using consecutive reduction of the number of fitted parameters, we ar-
rived at a model in which two of the crossover parameters are expressed as a
function of the rectlinear diameter and the third one is neglected (d1). This
’predictive’ model enables for most studied compounds description of coexis-
tence densities and saturation pressure which is of moderate quality. Despite
of the strongest employed approximation – neglecting of parameter d1 in the

13



final model – good quality is reached at temperatures close to the critical
one.
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Table 1: Critical properties of studied compounds. Part A.

Compound Tc [K] Pc [MPa] vc [L/mol] ρc [mol/L] Zc

methane 190.56 4.5992 0.0986 10.1390 0.2863
ethane 305.32 4.8722 0.1458 6.8569 0.2799
propane 369.89 4.2512 0.2000 5.0000 0.2765
n-butane 425.13 3.7960 0.2549 3.9228 0.2738
n-pentane 469.70 3.3700 0.3110 3.2156 0.2684
n-hexane 507.82 3.0340 0.3696 2.7059 0.2656
n-heptane 540.13 2.7360 0.4319 2.3153 0.2632
n-octane 569.32 2.4970 0.4863 2.0564 0.2565
n-nonane 594.55 2.2810 0.5525 1.8100 0.2550
n-decane 617.70 2.1030 0.6098 1.6400 0.2497
benzene 562.02 4.9063 0.2563 3.9020 0.2690
toluene 591.75 4.1263 0.3156 3.1689 0.2740
cyclopropane 398.30 5.5797 0.1628 6.1429 0.2743
cyclopentane 511.69 4.5150 0.2618 3.8200 0.2778
cyclohexane 553.64 4.0750 0.3083 3.2438 0.2729
methylcyclohexane 572.20 3.4700 0.3677 2.7200 0.2681
propylcyclohexane 630.80 2.8600 0.4854 2.0600 0.2647
isobutane 407.81 3.6290 0.2578 3.8797 0.2759
isopentane 460.35 3.3780 0.3057 3.2710 0.2698
isohexane 497.70 3.0400 0.3683 2.7150 0.2706
neopentane 433.74 3.1960 0.3058 3.2700 0.2710
ethene 282.35 5.0418 0.1309 7.6371 0.2812
propene 364.21 4.5550 0.1833 5.4570 0.2757
butene 419.29 4.0051 0.2359 4.2400 0.2710
cisbutene 435.75 4.2255 0.2356 4.2439 0.2748
transbutene 428.61 4.0273 0.2374 4.2130 0.2683
isobutene 418.09 4.0098 0.2398 4.1700 0.2766
sulfurhexafluoride 318.72 3.7550 0.1968 5.0823 0.2788
fluorine 144.41 5.1724 0.0641 15.6031 0.2761
oxygen 154.58 5.0430 0.0734 13.6295 0.2879
nitrogen 126.19 3.3958 0.0894 11.1844 0.2894
carbonmonoxide 132.86 3.4940 0.0922 10.8495 0.2915
carbondioxide 304.13 7.3773 0.0941 10.6247 0.2746
argon 150.69 4.8630 0.0746 13.4066 0.2895
sulfurdioxide 430.64 7.8840 0.1220 8.1947 0.2687
nitrousoxide 309.52 7.2450 0.0974 10.2701 0.2741
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Table 2: Critical properties of studied compounds. Part B – halogenated
compounds.

Compound Tc [K] Pc [MPa] vc [L/mol] ρc [mol/L] Zc

Perfluorobutane 386.33 2.3234 0.3968 2.5200 0.2871
Perfluoropentane 420.56 2.0450 0.4726 2.1160 0.2764
R11 471.11 4.4076 0.2480 4.0331 0.2790
R113 487.21 3.3922 0.3346 2.9887 0.2802
R114 418.83 3.2570 0.2947 3.3932 0.2757
R115 353.10 3.1290 0.2513 3.9799 0.2678
R116 293.03 3.0480 0.2250 4.4440 0.2815
R12 385.12 4.1361 0.2140 4.6729 0.2764
R123 456.83 3.6618 0.2781 3.5963 0.2681
R1234yf 367.85 3.3822 0.2398 4.1700 0.2652
R1234ze 382.52 3.6363 0.2331 4.2900 0.2665
R124 395.43 3.6243 0.2437 4.1032 0.2687
R125 339.17 3.6177 0.2093 4.7790 0.2685
R13 302.00 3.8790 0.1792 5.5800 0.2769
R134a 374.21 4.0593 0.1993 5.0171 0.2601
R14 227.51 3.7500 0.1407 7.1093 0.2789
R141b 477.50 4.2120 0.2550 3.9210 0.2706
R142b 410.26 4.0550 0.2253 4.4379 0.2679
R143a 345.86 3.7610 0.1950 5.1285 0.2550
R152a 386.41 4.5168 0.1795 5.5717 0.2524
R161 375.30 5.0910 0.1592 6.2798 0.2598
R21 451.48 5.1812 0.1957 5.1109 0.2701
R218 345.02 2.6400 0.2994 3.3400 0.2756
R22 369.30 4.9900 0.1651 6.0580 0.2683
R227ea 374.90 2.9250 0.2861 3.4950 0.2685
R23 299.29 4.8320 0.1330 7.5199 0.2582
R236ea 412.44 3.5020 0.2701 3.7030 0.2758
R236fa 398.07 3.2000 0.2758 3.6259 0.2667
R245ca 447.57 3.9250 0.2560 3.9059 0.2701
R245fa 427.16 3.6510 0.2597 3.8500 0.2670
R32 351.26 5.7820 0.1227 8.1500 0.2429
R365mfc 460.00 3.2660 0.3125 3.2000 0.2669
R41 317.28 5.8970 0.1075 9.2997 0.2404
RC318 388.38 2.7775 0.3226 3.0994 0.2775
CF3I 396.44 3.9530 0.2257 4.4307 0.2707
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Table 3: Acentric factors ω, rectilinear diameters rd, triple point tempera-
tures Tt, and lowest temperatures for the VLE data used in the optimization,
T0. The last column is the reference of the corresponding Span–Wagner Eos
(a: unpublished or preliminary results). Part A.

Compound ω rd Tt T0 T red
0 Ref.

methane 0.0114 0.7389 90.694 100 0.52 [38]
ethane 0.0995 0.8243 90.368 100 0.33 [39]
propane 0.1521 0.8617 85.525 90 0.24 [40]
n-butane 0.2010 0.8965 134.9 140 0.33 [41]
n-pentane 0.2510 0.9254 143.47 150 0.32 [42]
n-hexane 0.2990 0.9746 177.83 180 0.35 [42]
n-heptane 0.3490 1.0165 182.55 190 0.35 [42]
n-octane 0.3930 1.0096 216.37 220 0.39 [42]
n-nonane 0.4433 1.0656 219.7 220 0.37 [43]
n-decane 0.4884 1.0705 243.5 250 0.40 [43]
benzene 0.2110 0.9263 278.67 280 0.50 [44]
toluene 0.2657 0.9572 178 180 0.30 [43]
cyclopropane 0.1305 0.8973 273 280 0.70 [45]
cyclopentane 0.1950 0.9004 179.72 180 0.35 a
cyclohexane 0.2093 0.9086 279.47 280 0.51 [46]
methylcyclohexane 0.2300 0.9097 146.7 150 0.26 a
propylcyclohexane 0.3300 0.9832 178.2 180 0.29 a
isobutane 0.1840 0.8905 113.73 120 0.29 [41]
isopentane 0.2274 0.8874 112.65 120 0.26 [43]
isohexane 0.2797 0.9552 119.6 120 0.24 [43]
neopentane 0.1961 0.8147 256.6 260 0.60 [43]
ethene 0.0866 0.8353 103.99 110 0.39 [47]
propene 0.1460 0.8863 87.953 90 0.25 a
1-butene 0.1920 0.9096 87.8 90 0.21 [48]
cis-2-butene 0.2020 0.9527 134.3 140 0.32 [48]
trans-2-butene 0.2100 0.9188 167.6 170 0.40 [48]
isobutene 0.1930 0.9351 132.4 140 0.33 [48]
sulfurhexafluoride 0.2100 0.8555 223.56 230 0.72 [49]
fluorine 0.0449 0.6922 53.481 60 0.42 [50]
oxygen 0.0222 0.7678 54.361 60 0.39 [51]
nitrogen 0.0372 0.7662 63.151 70 0.55 [52]
carbonmonoxide 0.0497 0.8184 68.16 70 0.53 [43]
carbondioxide 0.2239 0.9539 216.59 220 0.72 [53]
argon -0.0022 0.7301 83.806 90 0.60 [54]
sulfurdioxide 0.2557 1.0044 197.7 200 0.46 [43]
nitrousoxide 0.1613 0.9013 182.33 190 0.61 [43]
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Table 4: Acentric factors ω, rectilinear diameters rd, triple point tempera-
tures Tt, and lowest temperatures for the VLE data used in the optimization,
T0. The last column is the reference of the corresponding Span–Wagner Eos
(a: unpublished or preliminary results). Part B – halogenated compounds.

Compound ω rd Tt T0 T red
0 Ref.

perfluorobutane 0.3740 1.0103 189 190 0.49 [55]
perfluoropentane 0.4230 1.1077 148.36 200 0.48 [55]
R11 0.1888 0.9118 162.68 170 0.36 [56]
R113 0.2525 1.0216 236.93 270 0.55 [57]
R114 0.2523 0.9299 273.15 280 0.67 [58]
R115 0.2500 0.8225 173.75 180 0.51 a
R116 0.2566 0.9443 173.1 180 0.61 [43]
R12 0.1795 0.8849 116.1 120 0.31 [57]
R123 0.2819 0.9582 166 170 0.37 [59]
R1234yf 0.2760 0.9890 220 230 0.63 [60]
R1234ze 0.3130 0.9621 168.62 170 0.44 [61]
R124 0.2881 0.9399 120 130 0.33 [62]
R125 0.3052 0.9655 172.52 180 0.53 [63]
R13 0.1723 0.8622 92 100 0.33 [64]
R134a 0.3268 1.0147 169.85 170 0.45 [65]
R14 0.1785 0.8068 120 130 0.57 [58]
R141b 0.2195 0.9333 169.68 170 0.36 [43]
R142b 0.2321 0.9599 142.72 150 0.37 [43]
R143a 0.2615 1.0216 161.34 170 0.49 [66]
R152a 0.2752 1.0364 154.56 160 0.41 [67]
R161 0.2170 0.9023 130 140 0.37 a
R21 0.2061 0.9034 200 210 0.47 [58]
R218 0.3172 0.9411 125.45 130 0.38 [43]
R22 0.2208 0.9366 115.73 120 0.32 [68]
R227ea 0.3570 0.9532 146.35 150 0.40 a
R23 0.2630 1.0186 118.02 120 0.40 [69]
R236ea 0.3794 1.0016 242 250 0.61 [55]
R236fa 0.3772 1.0140 179.52 180 0.45 [70]
R245ca 0.3536 0.9713 200 210 0.47 [55]
R245fa 0.3776 0.9987 171.05 210 0.49 [43]
R32 0.2769 1.1223 136.34 140 0.40 [71]
R365mfc 0.3800 0.9430 239 240 0.52 a
R41 0.2004 1.0057 129.82 130 0.41 [43]
RC318 0.3553 0.9935 233.35 240 0.62 [58]
CF3I 0.1800 0.8387 120 130 0.33 a
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Table 5: Systematic names of studied halogenated refrigerants.

Refprop abbreviation RCN abbreviation Systematic name
R11 CFC11 trichlorofluoromethane
R113 CFC113 1,1,2-trichloro-1,2,2-trifluoroethane
R114 CFC114 1,2-dichloro-1,1,2,2-tetrafluoroethane
R115 CFC115 chloropentafluoroethane
R116 FC116 hexafluoroethane
R12 CFC12 dichlorodifluoromethane
R123 HCFC123 2,2-dichloro-1,1,1-trifluoroethane
R1234yf HFO1234yf 2,3,3,3-tetrafluoropropene
R1234ze HFO1234ze trans-1,3,3,3-tetrafluoropropene
R124 HCFC124 1-chloro-1,2,2,2-tetrafluoroethane
R125 HFC125 pentafluoroethane
R13 CFC13 chlorotrifluoromethane
R134a HFC134a 1,1,1,2-tetrafluoroethane
R14 FC14 tetrafluoromethane
R141b HFC141b 1,1-dichloro-1-fluoroethane
R142b HCFC143b 1-chloro-1,1-difluoroethane
R143a HFC143a 1,1,1-trifluoroethane
R152a HFC152a 1,1-difluoroethane
R161 HFC161 fluoroethane
R21 HCFC2 1 dichlorofluoromethane
R218 FC218 octafluoropropane
R22 HCFC22 chlorodifluoromethane
R227ea HFC227ea 1,1,1,2,3,3,3-heptafluoropropane
R23 HFC23 trifluoromethane
R236ea HFC236ea 1,1,1,2,3,3-hexafluoropropane
R236fa HFC236fa 1,1,1,3,3,3-hexafluoropropane
R245ca HFC245ca 1,1,2,2,3-pentafluoropropane
R245fa HFC245fa 1,1,1,3,3-pentafluoropropane
R32 HFC32 difluoromethane
R365mfc HFC365mfc 1,1,1,3,3-pentafluorobutane
R41 HFC41 fluoromethane
RC318 FC318 octafluorocyclobutane
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Table 6: Average absolute deviations in % of vapor pressure/liquid den-
sity/vapor density/ equilibrium pressure (PV T data) for different models of
parametrization. Part A.

Model A Model B Model C
Name ∆Ps/∆ρL/∆ρV /∆P ∆Ps/∆ρL/∆ρV /∆P ∆Ps/∆ρL/∆ρV /∆P
methane 1.3/2.8/3.0/0.8 1.6/1.4/3.3/5.4 1.5/1.9/3.2/18.2
ethane 1.2/1.3/2.1/0.6 1.2/0.5/2.3/3.2 1.2/0.8/2.2/9.8
propane 0.7/1.2/1.6/0.8 2.9/0.8/3.8/3.1 2.9/0.9/3.8/8.4
n-butane 0.8/1.5/1.8/0.8 2.6/1.3/3.8/2.3 2.2/1.4/3.0/3.6
n-pentane 1.0/1.9/1.8/0.5 2.9/2.2/3.7/1.9 2.9/2.2/3.7/2.1
n-hexane 0.6/2.3/1.4/0.6 0.6/2.4/1.4/3.4 0.6/2.3/1.4/3.8
n-heptane 1.2/2.5/1.9/0.4 2.0/3.2/2.8/2.9 2.1/2.9/2.9/3.3
n-octane 1.2/2.6/1.8/0.4 1.7/3.6/2.7/3.0 2.2/3.2/3.1/7.9
n-nonane 1.3/3.2/2.1/0.6 6.2/3.2/8.9/2.5 8.1/3.2/8.9/2.5
decane 1.0/3.5/1.5/0.4 9.6/4.0/10.0/2.8 10.1/3.6/10.7/36.6
benzene 0.8/1.3/1.9/0.6 3.2/1.3/4.6/1.7 3.2/1.3/4.6/1.8
toluene 2.1/2.6/2.5/2.7 4.8/2.7/5.0/1.4 4.9/3.1/5.1/2.4
cyclopropane 0.6/1.5/2.4/0.5 1.7/1.2/3.6/1.7 1.7/5.2/3.6/2.6
cyclopentane 0.8/1.1/1.1/2.5 2.7/1.5/2.6/1.2 2.6/1.3/2.6/2.2
cyclohexane 0.6/1.1/1.2/0.6 2.4/1.1/2.0/1.7 2.4/1.2/1.9/1.8
methylcyclohexane 1.5/1.6/2.0/0.8 8.2/2.1/8.9/2.2 8.2/2.0/8.9/2.3
propylcyclohexane 2.0/2.4/2.6/0.3 1.7/3.3/2.1/1.4 1.7/3.0/2.1/2.7
isobutane 1.2/1.5/2.1/0.6 4.5/1.5/5.4/1.8 4.5/1.4/5.4/2.7
isopentane 0.9/1.5/2.0/0.6 3.5/1.5/4.6/1.8 3.5/1.5/4.6/2.3
isohexane 0.9/1.6/1.4/0.4 0.8/1.7/1.4/1.5 0.9/1.7/1.4/1.7
neopentane 0.5/0.9/2.3/0.6 2.0/0.7/4.3/1.2 2.0/0.7/4.3/1.2
ethene 0.6/1.5/1.8/0.5 1.8/1.5/3.1/1.4 1.8/0.9/3.1/1.9
propene 0.8/1.3/1.9/0.6 4.0/1.3/5.1/1.8 4.0/1.1/5.1/2.3
1-butene 1.1/1.6/1.9/0.4 3.8/2.2/4.0/1.1 4.8/1.6/5.5/1.7
cis-2-butene 1.8/1.8/2.6/0.6 5.2/1.8/5.6/1.5 5.3/1.8/5.7/1.9
trans-2-butene 1.3/1.5/1.9/0.4 2.5/1.6/3.3/1.8 2.6/1.8/3.4/2.9
isobutene 0.4/1.4/2.1/0.8 3.0/1.5/3.2/1.3 3.1/1.4/3.3/2.2
sulfurhexafluoride 0.7/1.6/2.6/0.8 2.0/1.2/4.5/2.2 1.9/1.4/4.5/2.2
fluorine 1.3/2.4/1.2/0.9 2.7/2.2/4.2/2.0 2.7/2.3/4.2/2.0
oxygene 1.4/2.7/2.4/0.5 2.9/2.9/3.9/1.5 2.9/2.6/3.9/2.0
nitrogene 0.9/2.8/2.2/0.9 1.1/3.5/2.1/1.2 1.0/2.8/2.2/1.7
carbonmonooxide 0.6/2.4/2.1/0.9 0.9/2.1/2.3/2.0 0.9/2.9/2.2/2.7
carbondioxide 0.4/1.5/2.1/0.6 0.7/1.4/2.7/1.9 0.7/1.6/2.7/2.1
argon 0.9/2.8/2.6/0.6 1.1/2.9/2.8/1.6 1.1/2.3/2.8/2.5
sulfurdioxide 0.5/1.8/1.6/0.5 1.7/1.9/2.1/1.3 1.7/1.9/2.1/1.3
nitrousoxide 0.4/1.1/1.7/0.5 2.0/1.0/3.4/1.9 2.0/0.8/3.4/2.2
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Table 7: Average absolute deviations in % of vapor pressure/liquid den-
sity/vapor density/ equilibrium pressure (PV T data) for different models of
parametrization. Part B – halogenated compounds.

Model A Model B Model C
Compound ∆Ps/∆ρL/∆ρV /∆P ∆Ps/∆ρL/∆ρV /∆P ∆Ps/∆ρL/∆ρV /∆P
perfluorobutane 0.8/2.9/1.2/1.4 7.7/2.6/8.3/2.3 7.6/1.8/8.2/3.1
perfluoropentane 2.1/1.8/3.2/1.4 2.3/1.8/3.6/2.1 2.4/3.6/3.7/11.5
R11 0.9/1.1/1.8/0.6 2.2/1.1/3.0/1.6 2.2/1.3/3.0/2.1
R113 0.6/1.0/2.1/0.8 1.1/1.5/2.4/1.6 1.0/1.6/2.4/2.5
R114 0.7/1.0/2.5/0.8 0.7/0.8/2.9/1.7 0.6/1.4/2.9/2.5
R115 0.9/0.9/3.2/0.9 1.1/1.8/2.9/1.9 1.7/1.2/4.1/3.7
R116 0.8/1.3/2.6/0.7 1.0/1.0/2.6/2.3 1.0/2.4/2.7/4.1
R12 1.4/1.5/2.4/0.6 4.2/1.4/5.2/1.9 4.2/1.5/5.2/1.8
R123 0.8/1.5/2.0/0.6 1.5/1.6/2.5/2.1 1.6/1.6/2.5/2.3
R1234yf 0.8/1.0/1.9/0.5 1.2/1.1/2.4/2.2 1.2/1.1/2.4/2.1
R1234ze 0.8/1.5/1.7/0.5 1.3/1.6/2.7/2.1 1.3/1.6/2.6/2.3
R124 1.6/2.1/2.5/0.6 2.6/2.2/3.4/2.4 2.6/2.2/3.4/2.5
R125 0.4/1.2/1.5/0.6 0.6/1.2/1.9/2.2 0.6/1.3/1.9/2.3
R13 1.3/1.3/2.7/0.7 4.8/1.3/6.1/1.9 4.8/1.3/6.1/1.9
R134a 0.5/2.1/1.4/0.4 0.5/2.4/1.7/2.2 0.5/2.4/1.6/2.6
R14 0.8/2.0/2.5/0.9 1.2/1.8/3.4/2.3 1.2/2.1/3.4/2.4
R141b 1.0/1.9/2.1/0.5 6.7/1.8/8.1/1.7 6.7/1.8/8.1/1.6
R142b 2.1/1.6/3.4/0.7 4.3/2.0/5.2/1.8 4.4/2.1/5.3/2.8
R143a 1.1/2.0/1.5/0.6 3.0/2.4/3.6/2.7 3.3/3.0/3.8/4.7
R152a 1.2/2.6/1.4/0.5 3.2/3.1/3.7/2.1 3.7/4.1/4.2/5.0
R161 1.3/4.7/1.8/2.0 3.3/7.8/3.3/2.7 7.0/6.0/7.2/20.2
R21 0.6/1.3/2.2/0.6 3.5/1.3/4.8/1.4 3.6/1.2/4.9/2.8
R218 0.8/1.4/1.8/1.2 2.9/1.6/4.4/0.9 3.5/2.2/4.4/3.2
R22 1.3/2.1/2.1/0.5 5.6/2.4/6.2/2.0 5.7/2.5/6.3/2.4
R227ea 0.9/1.7/2.1/0.6 3.1/1.7/4.2/2.5 3.1/1.8/4.3/3.1
R23 1.2/2.5/0.8/0.4 2.6/2.9/2.6/2.4 2.9/3.7/2.9/3.9
R236ea 1.4/2.4/3.6/2.0 4.0/2.5/6.8/1.8 4.0/3.1/6.8/2.9
R236fa 0.8/1.9/1.1/0.3 3.4/2.0/3.8/1.5 3.6/2.4/4.0/3.7
R245ca 0.8/1.7/0.9/0.2 3.7/1.9/4.5/1.9 3.8/2.1/4.6/2.4
R245fa 1.1/1.8/2.4/0.8 3.4/2.0/4.7/4.3 3.6/2.0/4.9/9.7
R32 2.2/3.2/2.1/0.6 3.4/3.8/3.3/2.6 4.0/4.7/3.8/3.7
R365mfc 1.5/1.2/2.6/0.6 4.3/1.3/5.7/2.4 4.3/1.8/5.8/4.1
R41 2.7/2.9/1.8/0.3 6.6/3.8/6.4/2.3 7.3/6.4/7.1/5.4
RC318 0.6/0.8/2.3/1.2 2.8/1.8/3.8/1.4 2.7/3.2/3.8/6.5
CF3I 2.6/1.3/3.2/0.5 2.9/1.4/3.9/1.7 2.9/1.4/3.9/1.8
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Figure 1: Dependence of the parameter m on the acentric factor. The dashed
line shows the correlation of Soave for classical SRK EoS [26]. The symbols
correspond to the values ofm obtained from the optimization of 4 parameters
of crossover SRK EoS (Model A). The solid- and dotted line- represent two
different quadratic correlations of these points.
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Figure 2: Ginzburg number Gi obtained by simultaneous optimization of 4
parameters (Model A) as a function of the acentric factor (upper part). The
results for Model B are shown in the lower part.
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Figure 3: The same as in Figure 2 plotted vs. rectilinear diameter rd.
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Figure 5: Influence of parameter v1 (upper part) and of parameter Gi (lower
part) on the isotherms at T = 425.13 K and T = 500 K for n-butane.
The solid black lines correspond to the optimal parameters of Model A —
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Figure 6: Isotherms for n-butane calculated with full Model B, with d1 =
−3.68 (solid red lines) and with parameter d1 set to zero (green dashed lines).
The symbols denote the Refprop data [33].
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Figure 7: Saturated pressure for butane. The models B (solid black) and C
(dashed red) of this work are compared with the CPA (blue dash–dotted)
and SRK (green double-dash-dotted line) EoS’s. Symbols are the Refprop
data [33].

32



200

300

400

500

T
 [

K
]

Refprop
Model B
Model C
CPA
SRK

0 3 6 9 12 15
ρ [mol/L]

0

1

2

3

4

P 
[M

Pa
]
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and C (dashed red) of this work and CPA (blue dash–dotted) and SRK (green
double-dash-dotted line) EoS’s. Symbols are the Refprop data [33].
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Figure 9: Phase diagram for 2,3,3,3,-tetrafluoropropene (R1234yf). Model C
of the crossover SRK EoS (solid black lines) is compared with classical SRK
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Figure 10: Phase diagram for perfluoropentane. Model C of the crossover
SRK EoS (dashed blue lines) is compared with Model A (solid red lines).
Symbols are the Refprop data [33].
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denote the Refprop data while the blue triangles are experimental liquid
densities of Han et al. [35].
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Figure 12: Phase diagram for hexafluoropropene (R1216). Model C of
crossover SRK EoS (solid black lines) is compared with classical SRK EoS
with parameters adjusted to reproduce the critical temperature and pressure
(green dashed lines). Symbols are the experimental data [36].
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Figure 13: Phase diagram for hexafluoropropene oxide (HFPO). Model C of
crossover SRK EoS (solid black lines) is compared with classical SRK EoS
with parameters adjusted to reproduce the critical temperature and pressure
(green dashed lines). Symbols are the experimental data [37].
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