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Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses

B. Beaurepaire, A. Lifschitz, and J. Faure
Laboratoire d’Optique Appliquée,

ENSTA-CNRS-Ecole Polytechnique,
UMR 7639, 91761 Palaiseau, France

Abstract
Using Particle-in-Cell simulations, we study the interaction of few mJ-few cycle laser pulses with an underdense plasma at

resonant density. In this previously unexplored regime, it is found that group velocity dispersion is a key ingredient of the
interaction. The concomitant effects of dispersion and plasma nonlinearities causes a deceleration of the wakefield phase velocity,
which becomes sub-relativistic. Electron injection in this sub-relativistic wakefield is enhanced and leads to the production of
a femtosecond electron bunch with picocoulomb of charge in the 5-10 MeV energy range. Such an electron bunch is of great
interest for application to ultrafast electron diffraction. In addition, in this dispersion dominated regime, it is shown that
positively chirped laser pulses can be used as a tuning knob for compensating plasma dispersion, increasing the laser amplitude
during self-focusing and optimizing the trapped charge.

I. INTRODUCTION

Recent advances in laser technology have enabled
the development of high repetition rate kHz laser sys-
tems delivering pulses with only a few optical cycles
[1]. The main application of such pulses has been
high harmonic generation in gases at modest intensity
(I ' 1014 W/cm2) and attosecond pulse generation [2].
Recently, 5 fs laser pulses at the multimillijoule level
have become available [3, 4] and intensities in excess of
1018 W/cm2 are becoming accessible with these compact
kHz laser systems. These progress have permitted to
perform high intensity laser plasma interaction experi-
ments at kHz repetition rate and hold the promise of high
repetition secondary sources from laser plasma interac-
tion. To date, experiments have mostly been performed
on solid targets for electron generation [5] or high har-
monic generation [6, 7] but little attention was given to
underdense laser plasma interaction and laser wakefield
acceleration. However, with the current laser parameters,
laser wakefield acceleration of electrons at kHz repetition
rate is within reach.

Currently, most laser wakefield experiments are per-
formed with joule level laser systems and electrons are
accelerated in the 100 MeV -1 GeV range [8, 9]. How-
ever, scaling laws [10, 11] indicate that a 5 fs-5 mJ laser
would be able to produce femtosecond electron bunches
at 5-10 MeV. Such an electron beam would be of great in-
terest for probing matter in ultrafast electron diffraction
experiments (UED) [12]. Indeed, laser wakefield acceler-
ators can provide electron bunches with femtosecond du-
rations [13] which are well-synchronized with the driving
laser in a jitter free fashion. Recently, a first proof-of-
principle experiment has shown that a few millijoule kHz
system could be used to drive a laser wakefield accelerator
and produce 100 keV electron beams [14]. After filtering
and transport, this electron beam was used to produce
clear diffraction patterns on an aluminum thin film [15].
In Ref. [15], the electron kinetic energy was limited to
100 keV because the experiment did not operate in the

blowout regime. In recent years, first attempts to reach
the blowout regime with mJ laser systems have been per-
formed. By using a 8 fs and 40 mJ laser pulse, electrons
bunches of energy > 20 MeV have been produced [16].
The electron energy was too high for a practical appli-
cation in UED. In this context, the next challenge is to
bring electron acceleration at kHz repetition rate using
about 10 times less laser energy with shorter pulses com-
posed of nearly a single cycle and targeting electron ener-
gies of 3-10 MeV, a range suitable for performing electron
diffraction [17–19].

This paper presents a numerical investigation, by
means of Particle-In-Cell (PIC) simulations, of the inter-
action of few-cycle laser pulses at the mJ level with an
underdense plasma, with the goal of downscaling a laser
wakefield accelerator to the MeV energy range. These
few-cycle laser pulses are rather exotic for laser-plasma
interaction: (i) the usual averaging of the ponderomo-
tive force over the optical cycle is no longer valid, (ii) the
carrier envelope phase (CEP) starts to matter [20], (iii)
group velocity dispersion (GVD) in the plasma can no
longer be neglected. In this paper, we show that the dy-
namics of electron trapping and acceleration is mainly de-
termined by the fast and dramatic evolution of the pulse
temporal profile and spectrum due to the complex inter-
play of GVD and nonlinear effects. The concomitant ef-
fects of dispersion and plasma nonlinearities causes a de-
celeration of the wakefield phase velocity, which becomes
sub-relativistic. Electron trapping in this sub-relativistic
wakefield is enhanced and leads to a massive injection of
electrons. This is in contrast with the classical picture,
valid for longer pulses, in which the smooth evolution of
the laser pulse under self-focusing and self-steepening de-
termine the physics of injection and acceleration. Finally,
our study confirms the scaling laws of Ref. [10] and shows
that by choosing the right parameters, pC of charge in
the MeV range can be produced using only few millijoule
few-cycle laser pulses. The paper is organized as follows:
section II is an overview of the basic mechanisms such as
nonlinear effects and dispersion. Section III presents the
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results of PIC simulations showing the trapping of elec-
trons in sub-relativistic wakefields. Finally, section IV
points out that in this dispersion dominated regime, the
laser chirp has large effects and can be used to optimize
and tune the interaction.

II. BASIC PHYSICAL MECHANISMS: DISPER-
SION AND NONLINEAR EFFECTS

In order to introduce the basic phenomena, we follow
the simplified description of Ref. [21]. The refractive in-
dex of an underdense plasma in which a linearly polarized
laser pulse propagates is given by:

η = 1− 1
2
ω2
p

ω2
0

(
1 + δn

n
− 〈a〉

2

2 − 2δω
ω0

)
(1)

where ω0 is the laser central frequency, ωp =
√
ne2/meε0

the plasma frequency (n is the electron density, e and me

are the electron charge and mass), δn is the perturbation
to the electronic density due to plasma waves and 〈a〉 is
the normalized vector potential averaged over an opti-
cal cycle. The first term represents the perturbation due
to the plasma wave, the second one represents the per-
turbation due to relativistic nonlinearities and the third
one modulations of the index of refraction due to the
spectral bandwidth δω/ω0, i.e. it is the term responsible
for GVD. Note that this expression results from a linear
development and is only valid in the weakly relativistic
regime, a2 � 1, in tenuous plasmas ωp/ω0 � 1, and for
long enough pulses so that the envelop approximation is
valid: ω0∆t � 1, i.e. it is not valid for few-cycle laser
pulses. However, it will suffice for our heuristic discus-
sion. Equation 1 is the basis for understanding various
nonlinearities such as relativistic self-focussing [22, 23],
self-modulation [24–26], self-steepening [27, 28] or self-
compression [29, 30].

In the short pulse limit (i.e. ∆t . λp), the first two
terms can explain spectral broadening as well as the self-
compression that occurs during the interaction. Spectral
broadening originates from local changes of the index of
refraction: δω0/ω0 ∝ −∂η/∂ζ, where ζ = x − vgt is the
moving frame coordinate along the propagation axis x,
and vg is the laser group velocity. In equation 1, the term
−〈a〉2/2 is responsible for relativistic self phase modula-
tion (SPM) which cause the front (rear) of the pulse to be
red-shifted (blue-shifted). This effect causes a symmetric
broadening of the spectrum. The term δn/n is responsi-
ble for local frequency changes due to the plasma waves,
and causes the frequency to decrease in regions where
the refractive index gradient is negative. This results in
asymmetric broadening of the spectrum and in the case
of laser pulses that are sufficiently short compared to
λp it mainly causes a red shift of the laser central fre-
quency. Both red shifting and spectral broadening have
been observed experimentally [31, 32]. Thus, the com-
bined effect of the plasma wakefield and SPM typically

results in red shifting at the front of the pulse and blue
shifting at the rear. The varying group velocity along the
plasma wave can then cause the self-compression of the
pulse which can reach durations shorter than the initial
transform limit, as measured in Ref. [31] and [32]. Note
that these nonlinear effects can also be described in the
framework of photon kinetic theory, in which redshifting
(blueshifting) is also referred to as photon deceleration
(acceleration) [33, 34].

Most experiments operate in the nonlinear regime
where a2 > 1 and δn/n ∼ 1. In addition, pulse durations
are usually greater than 30 fs, so that δω0/ω0 < 0.1.
Thus, in state-of-the-art experiments, the effect of dis-
persion is usually discarded because it can be neglected
compared to nonlinear effects. On the contrary, with
few-cycle laser pulses, the bandwidth is very broad:
δω0/ω0 ∼ 1/4 for 5 fs pulse at 800 nm and dispersion
can no longer be neglected.

In the linear theory of dispersion of plasmas (see Ap-
pendix), an ultrashort pulse stretches as it propagates
according to ∆t(x) = ∆t0(1 + x2/L2

p)1/2, where ∆t0 and
∆t are respectively the r.m.s. transform limited duration
and the chirped duration. Here Lp is the characteristic
plasma length over which the pulse duration changes. Lp
is given formally by

Lp = 2c∆t0
ω2
p

〈(
1
ω2 −

〈 1
ω2

〉)2
〉−1/2

(2)

where 〈 〉 represents the average over the intensity dis-
tribution. This expression is valid for arbitrary broad-
band pulses and includes only the second order dispersion
term. A somewhat more compact expression for Lp can
be obtained assuming a narrow bandwidth δω � ω0, al-
though this is not strictly valid for few-cycle laser pulses.
The result gives

Lp = 2c∆t20
ω3

0
ω2
p

(3)

This expression clearly shows that GVD increases greatly
with laser bandwidth, plasma density and also for longer
laser wavelengths: Lp ∝ λ−3

0 . According to this analyti-
cal study, the duration of a 5 fs transform limited pulse is
increased by a factor

√
2 after propagating only 111 µm in

a homogeneous plasma electronic density 8.7×1019cm−3.
After some propagation in the plasma (x > 0), the laser
pulse becomes negatively chirped, with the high frequen-
cies at the front of the pulse and the low frequencies at the
rear. This chirp manifests itself in Fourier space by ex-
amining the phase of the field E(ω) = |E(ω)| exp[iφ(ω)].
For a negative chirp, the spectral phase φ(ω) has a neg-
ative quadratic behavior. In the next section, we will
study on the next section the effect of dispersion and
nonlinearities in full 3D PIC simulations.
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FIG. 1: Propagation of a 5 fs laser pulse. a) - d) - g) - j) snapshots of the laser field |E/E0|2 at various positions
along propagation. b) - e) - h)- k) corresponding electron density n/nc showing wakefield excitation. c) - f) - i) - l)

corresponding on-axis laser spectrum (full blue line) and spectral phase (full green line); the dashed blue line
represents the initial laser spectrum.

III. PIC SIMULATIONS OF THE PROPAGA-
TION OF FEW-CYCLE 5 FS LASER PULSES

We have simulated laser-plasma interaction using the
fully electromagnetic PIC code Calder-Circ [35]. We
ran simulations with realistic experimental parameters,
namely a 5 fs Full Width at Half Maximum(FWHM)
pulse centered around λ0 = 800 nm and with an energy
of 4.1 mJ. The pulse is propagating in an underdense
plasma, whose longitudinal density profile consists of a
203µm plateau preceded and followed by a 63µm ramp.
The electronic density on the plateau is n = 0.05×nc =
8.7×1019cm−3. By focusing this laser beam at the be-
ginning of the plateau, down to a waist of 4.3µm, the
laser intensity is I = 2.6x1018 W/cm−2. The correspond-
ing values of the normalized vector potential and laser
power are respectively a0 = 1.1 and Plaser = 0.76 TW.
Note that the power is greater than the critical power
for relativistic self-focusing P > Pc = 17.4ω2

0/ω
2
p, so that

self-focusing should occur during the interaction. The
simulation box is a window moving at the laser linear

group velocity vg = 0.97c, with Lorentz factor γg = 4.1.
The box is composed of 1500x200 cells with 220 particles
per cell. The longitudinal cell size is 0.125 c/ω0 and the
radial cell size is 0.628 c/ω0.

We first simulated the propagation of an unchirped
pulse. Figure 1 shows snapshots of the laser field |E/E0|2
(where E0 = mecω0/e), the on-axis laser spectrum and
phase as well as the corresponding wakefield excitation,
at different positions in the plasma. As can be seen
in the figure, the pulse first undergoes transverse self-
focusing, see panels 1(a) and 1(d), along with strong
spectral broadening and redshifting due to nonlinear ef-
fects and plasma wave excitation, see panels 1(c) and
1(f). In addition, the curvature of the spectral phase φ(ω)
(green curves) indicates that the pulse has a negative
chirp as soon as it reaches the plateau at x = 65µm, see
panel 1(c). This is evidence that GVD is acting from the
start and that it is overwhelming the frequency changes
caused by nonlinear effects: even though the plasma wave
redshifts the front of the pulse, red wavelengths quickly
slip backward because of GVD and blue wavelengths re-
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FIG. 2: a) Dashed green line: electronic density profile.
Full blue line: on-axis FWHM pulse duration as a
function of propagation . b) Full blue line: on-axis

average laser frequency. Dashed green line: r.m.s. laser
spectral width as a function of propagation.

main at the front. This scenario is even more accentuated
later in the propagation: in panel 1(g) at x = 140µm,
the pulse has stretched by an important amount and
the red wavelengths are clearly at the back of the pulse,
while the blue part at the front of the pulse is diffracting
away. In addition, a giant redshifting has occurred and
the pulse central frequency is now ω0/2. An important
consequence of these effects is that the pulse centroid
is slipping backward which causes the plasma wakefield
to slow down by an important amount. Comparison of
panel 1(e) and 1(h) clearly shows the wakefield decelera-
tion which is also accompanied by trapping of electrons.
Finally, at x = 180µm, the laser pulse cannot sustain
self-focusing: it diffracts away while GVD is continuously
stretching the pulse duration.

This behavior is even clearer when looking at the var-
ious on-axis physical quantities in Fig. 2. Fig 2a) shows
the evolution of the on-axis FWHM duration of the pulse
as a function of position in the plasma. Fig. 2b) shows
the evolution of the r.m.s. spectral width σω/ω0 as well
as the average frequency 〈ω〉/ω0 of the distribution in
Fourier space. In Fig. 2a, one can see that the FWHM
duration does not change while the pulse is propagating
in the ramp: nonlinear effects are still small and linear
dispersion in the ramp can be neglected, as predicted by
the linear theory presented in the previous section. As
the pulse enters the high density plateau, x > 70µm non-
linear effects become more important: Fig. 2b) shows
large spectral broadening (the bandwidth is multiplied
by 2) and large redshifting of the whole spectrum. In
the middle of the plateau, x ' 150µm, the average laser
frequency has been divided by a factor of 2. This com-
plex spectral dynamics explains why the laser pulse dura-
tion experiences a lengthening at a rate much faster than
(1 + x2/L2

p)1/2, with Lp = 111µm as computed in the
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FIG. 3: Full blue line: evolution of the position of the
back of the first plasma bucket (∆x) relative to the

front of the moving window. Dashed green line:
longitudinal size of the first plasma bucket. Black

dashed line: electron density profile.

previous section. In fact, taking into account that after
propagation in the plateau, the pulse central frequency
shifts toward ω0/2, Eq. 3 gives Lp(ω0/2) = 15µm. In
consequence, linear dispersion theory predicts that the
redshifted pulse should lengthen by a factor of 6.5 after
a 100µm propagation, which is close to the behavior of
Fig. 2a.

The striking feature of these results is that the pulse
does not undergo self-compression, as observed in experi-
ments and simulations at lower densities and using longer
pulses [29, 31, 32]. On the contrary the laser pulse ac-
quires a negative chirp and stretches as it propagates.
Thus dispersion becomes a key ingredient of the inter-
action and even dominates over nonlinear effects. The
importance of dispersion is enhanced by the fact that (i)
nonlinear effects broaden the bandwidth even more, (ii)
dispersion is more important for the redshifted radiation,
(iii) even after self-focusing has occurred, a0 < 2 and the
plasma wake is not nonlinear enough to trap the laser
radiation and compress it. In fact, in this regime, it is
clear that the sustained propagation of a self-focused and
self-compressed laser pulse is not possible.

However, an important side effect of these phenomena
is that the laser pulse group velocity slows down consid-
erably as the laser spectrum becomes redshifted, result-
ing in a concomitant deceleration of the wakefield. The
deceleration of the wakefield, already visible in Fig. 1,
is quantitatively analyzed in Fig. 3. Fig. 3 shows the
evolution of the plasma bucket longitudinal size (dashed
green line) as a function of propagation. The figure also
shows the position of the back of the first plasma bucket
∆x relative to the front of the moving window. In the
gradient, i.e. x < 60µm, the plasma bucket shortens and
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FIG. 4: Full blue line: evolution of the normalized
vector potential a0 during propagation. Dashed green
line: evolution of the beam charge for electrons with

γ > 6 and located within 2.5µm of the x-axis.

moves forward, as expected from the rising electron den-
sity. The behavior in the plateau is more surprising: in
the region 70− 100µm the bucket slightly expands while
it slightly contracts for x > 100µm. The slight expan-
sion of the bucket size is due to the fact that the wakefield
nonlinearity increases as the laser pulse self-focuses in the
region 70−100µm. However, the general trend is that the
bucket size does not evolve a lot in the plateau, it varies
only slightly around 3.5µm. A much larger effect is the
deceleration of the wake: the wakefield slips backward by
about 10µm in only 100µm of propagation. This deceler-
ation occurs in two stages: for x = 70−110µm, the phase
velocity is vp1/c = βp1 = βg −∆β1 = 0.9, corresponding
to γp1 = 2.3. For x > 110µm, as the laser gets massively
redshifted, the wake slows down even more, as indicated
by the change of slope in Fig. 3. The wake phase velocity
then decreases to βp2 = 0.727, i.e. γp2 = 1.45. Clearly,
at this point, the wakefield has a sub-relativistic phase
velocity. Note that the group velocity of the redshifted
laser pulse with central wavelength vg(ω0/2) = 0.89, i.e.
γg = 2.2. Thus, it seems that the wake is even slower
than the linear group velocity of the red shifted laser
pulse γp2 < γg(ω0/2), possibly because of etching effects
[10, 36]. This effect is very fortunate because it consid-
erably lowers the threshold for self-injection even though
the wakefield amplitude and a0 are modest.

We now turn to electron trapping and acceleration in
the nonlinear wake. In the simulation, we observe that
a large amount of electrons are trapped and further ac-
celerated. To illustrate this, the evolution of the number
of electrons with a gamma factor γ > 6 (i.e. an energy
ε > 3 MeV) is represented in Fig. 4. The evolution of
the maximum of the normalized vector potential is also
shown on the same graph. We observe that trapping oc-
curs in two stages: a first bunch is trapped in the region
x = 75 − 100µm which corresponds to the maximum
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various positions in the plasma. Full green line: on-axis

plasma longitudinal electric field.

of laser intensity, a0 = 1.6. Here, the wakefield ampli-
tude is high because the laser is at its peak intensity,
which facilitates trapping. Most importantly, trapping is
also enhanced by the slowdown of the back of the wake.
The slowdown has two main causes: (i) the elongation of
the plasma bucket which facilitate trapping [37] (ii) the
overall slowdown of the plasma wake at γp1 = 2.3. In the
second trapping stage, the injection mechanism is differ-
ent because the laser amplitude is modest (a0 ' 1.1) and
the plasma buckets are now shrinking instead of elongat-
ing. Yet, the second trapping stage, which occurs in the
region x = 130 − 150µm, injects twice as much charge,
up to ' 15 pC. This is because this region also corre-
sponds to the maximum redshift of the laser pulse, i.e.
the region where the laser pulse and the wakefield are
the slowest: γp2 = 1.45. Therefore, we interpret this en-
hanced trapping by the large deceleration of the plasma
wakefield induced by the laser pulse giant redshifting.

The dynamics of trapping and acceleration is illus-
trated through phase space plots in Fig. 5. The elec-
tron density is represented in the (x, px/mc) phase space.
Panel (a) shows that at x = 100µm, corresponding to
the first injection stage, a large fraction of charge has
been trapped in the second plasma bucket (bunch I in
Fig. 5a). The charge in this bunch reaches 3.7 pC, i.e.
about 70 % of the total injected charge. In panel (b),
at x = 120µm, the second injected stage has started
and bunch II is injected in the first plasma bucket. As
explained earlier, bunch II is injected because of the
strong wakefield deceleration. Note that at this point,
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bunch I has completely dephased and enters a decelerat-
ing phase. Finally, at x = 150µm, both bunches have
outrun the wakefield and are now propagating ballisti-
cally. Note that bunch II has energies in the 5 MeV
range whereas bunch I has electrons in excess of 10 MeV.
This can simply be explained by dephasing: bunch II
is trapped in a slower wakefield in which dephasing oc-
curs much quicker, thus the energy gain is lower. Simple
estimates can be obtained by computing the maximum
electron energy gain in a linear plasma wave with Lorentz
factor γp: ∆γ = 4γ2

p(E/E0)ω0/ωp. Thus, the ratio of en-
ergy gain between bunch I and bunch II should scale as
(γp1/γp2)2 ' 2.5, which is in agreement with the PIC
simulation, see Fig. 5c. Note that the injection of bunch
II, which occurs in the sub-relativistic wakefield, accel-
erates electrons toward 5 MeV, a range better suited for
application to electron diffraction [17–19].

IV. INFLUENCE OF THE CHIRP ON PROPA-
GATION AND ELECTRON TRAPPING

Since dispersion is such an important ingredient of the
interaction, it is natural to think of introducing some
chirp in the laser pulse in order to pre-compensate lin-
ear dispersion and attempt to control the pulse prop-
agation. The use of chirped pulses in relativistic laser
interaction has been explored in previous work, first for
studying or trying to enhance the self-modulation insta-
bility [38, 39]. It was found that the sign of the chirped
has little influence on the growth of instabilities. In Ref.
[39], chirped pulses could cause an increase of the trapped
charge but it was found that the modification of the pulse
envelope due to high order dispersion terms was the rea-
son why trapping increased and not really the chirp itself.
More recent work has focused on using chirped pulses in
the blow out regime [40, 41]. Large effect of the chirp
was only found when comparing a unchirped pulse and
a chirped pulse with the same duration and a0, i.e. with
different bandwidths. In other words, simply chirping a
laser pulse with a given bandwidth has usually little ef-
fect on the interaction other than lengthening the pulse
duration and lowering a0. In Ref. [40], the authors use
a negative chirp and a broad bandwidth to slow down
laser pulse evolution caused by nonlinear effects: the
idea is that a negative chirp has a blue front which gets
redshifted, resulting in a slower spectral broadening and
overall redshifting. On the contrary, a pulse with a pos-
itive chirp will evolve faster because its red front gets
even more redshifted by the plasma [41]. In this context,
we have decided to explore interaction with positively
chirped laser pulses for two reasons (i) pre-compensate
the negative dispersion of the plasma (ii) enhance the ef-
fects of plasma nonlinearities in order to increase electron
trapping.

In the simulations, the chirp is included in the phase of
the laser field as φ = ωt+ bt2 where the chirp parameter
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FIG. 6: Evolution of the normalized vector potential a0
during propagation for various chirped pulses. Full blue
line: unchirped pulse. Full green, red and purple lines
are for pulses positively chirped to 7 fs, 9 fs and 13.7 fs.

Green dashed curve: electron density profile.

b is defined as

b = ± 1
4∆t2

√
∆t2
∆t20
− 1 (4)

Where ∆t0 and ∆t are the r.m.s. transform limited and
chirped duration respectively. The ± sign stands for pos-
itive or negative chirp respectively. We have studied the
effect of a positive chirp for a 5 fs transform limited pulse
chirped to FWHM duration of τ= 7 fs, 9 fs and 13.7 fs.
The stricking effect of the positive chirp is that it per-
mits to tune the laser pulse temporal focus in the plasma
and to enhance the amplitude of the laser field. This is
illustrated in fig. 6 which represents the evolution of the
normalized vector potential a0 during propagation. The
figure clearly shows that when the pulse is stretched to
7 fs and 9 fs, the laser field reaches a0 = 2 which is higher
than the unchirped case for which a0 < 1.6. In addi-
tion, it is also clear that the position of maximum a0 is
shifting with the chirp. This increase of the laser field
amplitude, which is due to the effect of GVD, is quite
original and has not been observed for longer pulses and
smaller plasma densities.

In order to confirm that the increase of a0 is a purely
temporal effect, we have plotted in fig. 7 the on-axis laser
temporal profile at the maxima of a0 for the different
cases. Pulses initially chirped to 7 fs and 9 fs, see panels
7c) and 7e), have turned into a single cycle field whereas
the initially unchirped pulse is longer and has acquired a
negative chirp, see panel a). This clearly illustrates that
dispersion compensation using positive chirp works. In
the case of a pulse initially chirped to 13.7 fs, the posi-
tive chirp was initially too large and the pulse does not
recompress in the plasma: it still has a positive chirp
at the maximum of self-focusing resulting in a smaller
value of a0, see panels g) and h). Note that for negative
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FIG. 7: a) - c) - e) - g) On-axis laser field Elaser/E0 at
the maxima of a0 for various initial chirps. b) - d) - f)-
h) corresponding on-axis laser spectrum (full blue line)

and spectral phase (full green line).

chirps (not shown here), the pulse duration never short-
ens and self-focusing is less efficient. Therefore negative
chirps, as expected, are not adapted for enhancing the
interaction. Finally our analysis also indicates that the
transverse dynamics is similar for the various chirps: the
transverse laser size does not depend on the chirp. There-
fore one can conclude that the field dynamics is mostly
governed by longitudinal effects.

Fig. 7 b),d),f) and h) also shows the laser spectra
at the maxima of a0. The spectral shapes are very dif-
ferent according to the initial chirps, indicating the im-
portance of the chirp in the nonlinear pulse evolution.
The data shows that the shorter the pulse, the more red
shift. On the other hand, the longer chirped pulses expe-
rience a more symmetric spectral broadening with more
blue shift. This can be explained simply: the shorter
pulses reside more at the front of the plasma bucket and
thus experience a negative gradient of the index of refrac-
tion, resulting mostly in red shifting. The longer chirped
pulses, on the other hand, also experience the back of
the bucket, where the index of refraction has a positive
gradient, leading to blue shifting at the laser trail, and
eventually to a more symmetric spectral broadening.

These results indicate that the chirp can be used as
a tuning knob for the interaction. It permits to com-
pensate the plasma negative GVD, adjust the temporal
focus of the laser pulse and increase the laser field ampli-
tude. The results in fig. 8 show that the chirp can also
be used to optimize the injected charge. Fig. 8a) rep-
resents the trapped charge during propagation and for
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FIG. 8: Effect of the chirp on the trapped charge
(γ > 6). Blue line: the unchirped pulse, the green, red

and purple lines: positive chirps with 7 fs, 9 fs and
13.7 fs; the black line is for a pulse negatively chirped to
7 fs. b) Electron energy distribution for the case of an
unchirped pulse. Blue line: spectrum at x = 123µm;

green line: spectrum at x = 137µm. c) Electron density
in transverse phase space for the case of an unchirped

pulse.

various chirps. When using a 7 fs chirped pulse, the in-
jected charge in the first bunch can be multiplied by two
compared to the unchirped case. Similarly, the overall
beam charge, including first and second injection, can
be increased by 30%. The figure also shows that when
the positive chirp is too high (purple line), no trapping
occurs. Similarly, no trapping occurs for a negatively
chirped pulse (black line).

Thus, the effect of the positive chirp is mainly to in-
crease injection in the first bucket, in conjunction with
the enhancement of a0. On the other hand, injection
in the second bucket is optimized for the shortest pulse.
Fig. 8b) shows the electron energy distribution in the
case of an unchirped laser pulse, i.e. the charge is opti-
mized for the second injection. The blue curve represents
the energy distribution of the first bunch at x = 123µm.
Energies extend to 20 MeV but the distribution is rather
flat. At x = 137µm, the second bunch has been injected
and it has a peaked energy distribution at 7 MeV, with
a relative energy spread ∆E/E = 12.6%. The charge in
the peak is ' 8.5 pC. Fig. 8c) shows the electron density
in transverse phase space showing that the beam is well

7



defined. Its divergence is larger in the laser polarization
direction because of the interaction with the transverse
laser field as the bunch is rapidly dephasing. The FWHM
beam divergence is 12 (90) mrad in the direction perpen-
dicular (parallel) to the laser polarization. The normal-
ized emittance obtained from the usable phase space den-
sity (i.e. containing 50% of the charge) is εn = 6× 10−3

mm.mrad (0.2 mm.mrad) in the direction perpendicular
(parallel) to the polarization direction.

While the beam energy is in a range suitable for ap-
plication to UED, it would be necessary to reduce the
energy spread by (i) using another injection scheme [20]
or (ii) using an energy filter, as in Ref. [42]. For instance,
limiting the relative energy spread to 2% would keep the
beam charge to a relatively high value of 1.1 pC. The
electron bunch duration of this filtered beam could be as
short as ' 14 fs. Future work will focus on the design
of an actual beamline for filtering and transporting the
electron beam while preserving the bunch duration.

V. CONCLUSION

To conclude, we have performed PIC simulation of
the interaction of 5 fs few-cycle, few millijoule laser
pulses with underdense plasmas at resonant density
(n/nc = 5%). We found that in this particular regime,
dispersion cannot be neglected and plays an important
role in the interaction. Giant redshifting of the laser
pulse leads to the excitation of sub-relativistic wakefields
which can trap copious amounts of electrons in the 5-10
MeV range. While experiments in this particular regime
still needs to be developed, the electron bunches pro-
duced in this manner could become useful for ultrafast
electron diffraction, provided that transport and filtering
improve the energy spread. Our analysis also shows that
in this dispersion dominated regime, the chirp can be
used as an extra knob to tune the interaction, adjust
the position of the temporal focus, increase the laser
amplitude, or improve the amount of accelerated charge.

Appendix A: Plasma dispersion for arbitrarily
broadband pulses

Here, we present a brief theory for linear dispersion
which is valid for arbitrarily broadband pulses. In the lin-

ear regime, i.e. if the normalized potential vector a0 � 1
and the perturbation of the electronic density δn/n� 1,
the refractive index can be written η = 1 − ω2

p/2ω2 for
tenuous plasmas. In order to estimate the effect of dis-
persion, we calculate the duration of the pulse propa-
gating in the plasma by evaluating the variance of the
intensity distribution ∆t2(x) = 〈t2−〈 t〉2〉, where 〈 〉 rep-
resents the average over the intensity distribution. Let
E(ω) = |E(ω)| exp[iφ(ω)] be the laser electric field in the
frequency domain and φ(ω) the spectral phase. Using
the properties of Fourier Transform, one can write

〈t2〉 = A

∫ +∞

−∞
t2|E(t)|2 dt = A

∫ +∞

−∞

∣∣∣∣dE(ω)
dω

∣∣∣∣2 dω
2π

=
∫ +∞

−∞

d|E(ω)|
dω

2 dω
2π +

∫ +∞

−∞

(
dφ

dω

)2
|E(ω)|2 dω

2π

= 〈t2〉φ=0 +
〈(

dφ

dω

)2〉
where A is a normalization factor. Obviously, one can
identify the transform limited pulse duration ∆t0 as
∆t0 = 〈t2〉φ=0. We apply a similar analysis for calcu-
lating 〈t〉 in order to finally express the r.m.s. pulse
duration ∆t(x) =

√
∆t20 + ∆τ2

g (x) where τg = dφ/dω

is the group delay which we compute from the spectral
phase φ = ω

c

∫ x
0 η dx. The evolution of the pulse du-

ration can then be rewritten in a more convenient way:
∆t(x) = ∆t0

√
1 + x2/L2

p with

Lp = 2c∆t0
ω2
p

〈(
1
ω2 −

〈 1
ω2

〉)2
〉−1/2

(A1)

This expression is valid for arbitrary broadband pulses
and includes only second order dispersion.
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