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Abstract

We prove that there cannot exist square-integrable nonzero solutions to the Helmholtz equation

in an axisymmetric conical domain whose vertex angle is greater than π. This implies in particular

the absence of eigenvalues embedded in the essential spectrum of a large class of partial differential

operators which coincide with the Laplacian in the conical domain.

1 Introduction

The purpose of this note is to prove the following result.

Theorem 1. Let k > 0, θ ∈ (0, π/2) and Ω := {(x, y) ∈ R
d × R; y > −|x| tan θ} with d ≥ 1 (see Figure

1). If u ∈ L2(Ω) satisfies the Helmholtz equation

∆u+ k2 u = 0 in Ω (1)

in the distributional sense, then u = 0.

This theorem is optimal in the sense that it becomes false if θ = 0. Indeed it is easy to construct
solutions to the Helmholtz equation which are square-integrable in a half-plane (see Remark 5).

As the well-known Rellich’s uniqueness theorem [8] and succeeding results (see, e.g., [9]), this theorem
points out a forbidden behavior of solutions to the Helmholtz equation in an unbounded domain. In
particular, it is not related to boundary conditions (no assumption is made on the behavior of u near the
boundary of Ω). Most Rellich type results involve a particular Besov space related to the boundedness of
the energy flux and lead to the uniqueness of the solution to scattering problems. Our theorem involves a
more restrictive functional framework: the assumption u ∈ L2(Ω) rather expresses the boundedness of the
total energy in Ω, which leads to the absence of so-called trapped modes (or bound states) or equivalently,
the absence of eigenvalues embedded in the continuous spectrum of a large class of operators which
coincide with the Laplacian in Ω. For instance, if we consider the equation

∆u+ k2n2 u = 0 in R
d+1,

with a variable index of refraction n = n(x) (say, bounded) such that n = 1 in Ω, Theorem 1 together
with the unique continuation principle (see, e.g., [6]) shows that this equation has no square-integrable
nonzero solutions.
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Figure 1: The conical domain Ω in the two-dimensional case (d = 1).

Our initial motivation concerned the possible existence of trapped modes in waveguides. Such solutions
are known to occur for local perturbations of closed uniform waveguides, that is, cylindrical infinite pipes
with bounded cross-section (see [7] for a review). Trapped modes also appear in the case of curved closed
waveguides (see, e.g., [4] and more recently [3]). The situation differs singularly in the case of open
waveguides, that is, when the transverse section becomes unbounded, as for instance optical fibers or
immersed pipes. It is now understood that trapped modes do not exist in local perturbations of open
straight waveguides [1, 5], neither in straight junctions of waveguides [2]. The example above shows that
this result holds true for curved open waveguides provided that the core of the waveguide and other
possible inhomogeneities are located in R

d+1 \ Ω.
The proof of Theorem 1 is based on the two-dimensional case which is explained in sections 2 and 3.

Section 4 then shows how to deal with higher dimensions as well as some possible extensions of Theorem
1. Following [1, 2, 5] (inspired by the pioneering work of Weder [10]), the main ingredients of the proof are
on the one hand, a Fourier representation of a solution u to (1) in a half-plane and on the other hand, an
analyticity property. The Fourier representation consists in decomposing u as a superposition of modes,
which are either propagative or evanescent. Since we are only interested in square-integrable solutions,
the components associated with propagative modes must vanish. As in the above mentioned papers,
the fact that the components associated with evanescent modes also vanish results from the analyticity
property. Here the key idea to obtain this property is to reuse the Fourier representation in two oblique
directions.

2 Fourier representation in a half-plane

Let F denote the usual Fourier transform defined for a function ϕ ∈ L1(R) by

Fϕ(ξ) :=
1√
2π

∫

R

ϕ(x) e−ixξ dx for ξ ∈ R,

which can be classically extended to the Schwartz space of tempered distributions.

Proposition 2. For given ε > 0 and k > 0, let u be a solution to the Helmholtz equation (1) in the
half-plane Πǫ := R× (−ε,+∞) such that u ∈ L2(Πǫ). Then

u(x,y) =
1√
2π

∫

|ξ|>k

ϕ̂(ξ) eixξ−y

√
ξ2−k2

dξ for all (x,y) ∈ Π0, (2)

where ϕ̂ := Fu(· , 0) has the following properties:

ϕ̂(ξ) = 0 if |ξ| < k and
ϕ̂(ξ) eε|ξ|

|ξ2 − k2|1/4 ∈ L2(R). (3)

Remark 3. Formula (2) appears as a modal representation of u (analogous to the plane wave spectrum
representation of Fourier optics) in the sense that it can be interpreted as a superposition of the modes

exp(ixξ−y

√
ξ2 − k2) where ϕ̂(ξ) stands for the modal amplitude. These modes are propagative in the x-

direction and evanescent in the y-direction, since |ξ| > k in (2). The first property in (3) expresses actually
the absence of propagative modes in the y-direction, which results from the assumption u ∈ L2(Πǫ).
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Remark 4. The domain Πǫ in which u is supposed to satisfy the Helmholtz equation is larger that
the domain Π0 where the representation (2) is written. This allows us to avoid the consequences of a
possible poor regularity of u at the boundary of Πǫ and yields a strong decay of ϕ̂(ξ) as |ξ| tends to ∞,
which is expressed by the exponential term in the second property of (3). Note that by Cauchy–Schwarz
inequality, this property implies that ϕ̂ ∈ L1(R), which shows that the integral in (2) makes sense.

Remark 5. Using the arguments of the proof below, it is readily seen that conversely to the statement
of Proposition 2, if ϕ̂ satisfies (3), then the function u defined by (2) belongs to L2(Π0) and is a solution
to the Helmholtz equation (1) in Π0. This shows that Theorem 1 is no longer true for θ = 0.

Proof. As u ∈ L2(Πǫ), we know that for almost every y ∈ (−ε,+∞), function u(· ,y) belongs to L2(R)
so that we can define its Fourier transform û(ξ,y) := F{u(· ,y)}(ξ). By the Parseval’s identity,

û(· ,y) ∈ L2(R) and ‖û(· ,y)‖L2(R) = ‖u(· ,y)‖L2(R).

As a consequence

û ∈ L2(R× (−ε,+∞)) and ‖û‖L2(R×(−ε,+∞)) = ‖u‖L2(Πǫ). (4)

Applying the Fourier transform to the Helmholtz equation yields

∂2û

∂y2
+ (k2 − ξ2) û = 0 in D′(−ε,+∞) for a.e. ξ ∈ R.

Hence
û(ξ,y) = Â(ξ) e−(y+ε)

√
ξ2−k2

+ B̂(ξ) e+(y+ε)
√

ξ2−k2

,

for some functions Â(ξ) and B̂(ξ), where
√· denotes a given determination of the complex square root

such that
√
z ∈ R

+ if z ∈ R
+. From (4), we have û(ξ, ·) ∈ L2(−ε,+∞) for almost every ξ ∈ R, which

implies that on the one hand, Â(ξ) = B̂(ξ) = 0 if |ξ| < k, on the other hand, B̂(ξ) = 0 if |ξ| > k.
Therefore

û(ξ,y) = Â(ξ) e−(y+ε)
√

ξ2−k2

where Â(ξ) = 0 if |ξ| < k. (5)

Noticing that

‖û‖2L2(R×(−ε,+∞)) =

∫

|ξ|>k

|Â(ξ)|2
∫ +∞

−ε

e−2(y+ε)
√

ξ2−k2

dy dξ =

∫

|ξ|>k

|Â(ξ)|2 dξ

2
√

ξ2 − k2
,

we infer that |ξ2 − k2|−1/4 Â(ξ) ∈ L2(R). Setting ϕ̂(ξ) := Â(ξ) e−ε
√

ξ2−k2

and using the inverse Fourier
transform of (5), the conclusion follows.

The following corollary plays an essential role in the proof of Theorem 1.

Corollary 6. For any half-line Λα := {(t cosα, t sinα) ∈ R
2; t > 0} where α ∈ (0, π), a solution

u ∈ L2(Πǫ) to the Helmholtz equation (1) in Πǫ is such that u|Λα
∈ L1(Λα).

Proof. By the Fourier representation (2) of u, we have

∫ +∞

0

|u(t cosα, t sinα)| dt =
1√
2π

∫ +∞

0

∣∣∣∣∣

∫

|ξ|>k

ϕ̂(ξ) eiξ t cosα−
√

ξ2−k2 t sinα dξ

∣∣∣∣∣ dt

≤ 1√
2π

∫ +∞

0

∫

|ξ|>k

|ϕ̂(ξ)| e−
√

ξ2−k2 t sinα dξ dt

≤ 1√
2π

∫

|ξ|>k

|ϕ̂(ξ)|√
ξ2 − k2 sinα

dξ,

using Fubini’s theorem. We deduce from the Cauchy–Schwarz inequality that

∫ +∞

0

|u(t cosα, t sinα)| dt ≤ 1√
2π

∥∥∥∥
ϕ̂(ξ) eε|ξ|

|ξ2 − k2|1/4
∥∥∥∥
L2(R)

(∫

|ξ|>k

e−2ε|ξ|

√
ξ2 − k2 sin2 α

dξ

)1/2

,

where the right-hand side is bounded, according to (3).
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3 Proof of Theorem 1 in the two-dimensional case (d = 1)

The proof is based on three uses of Proposition 2. In order to simplify the presentation as regards the role
of ε in this proposition, we redefine the domain Ω of Theorem 1 as Ω := {(x, y) ∈ R

2; y+ ℓ > −|x| tan θ}
for some ℓ > 0 (which amounts to a simple change of variable).

In the first use of Proposition 2, we simply notice that u is a square-integrable solution to the Helmholtz
equation in the half-plane {y > −ℓ}. Hence, the conclusions of the proposition hold true with (x,y) =
(x, y) and ε = ℓ. In particular,

ϕ̂ := Fu(· , 0) is such that ϕ̂(ξ) = 0 if |ξ| < k. (6)

The key argument consists in proving that ϕ̂(ξ) extends to an analytic function in a complex vicinity of
the real axis. As ϕ̂ vanishes on the interval (−k,+k), analyticity implies that it must vanish everywhere,
that is, ϕ̂(ξ) = 0 for all ξ (recall that the zeros of an analytic function are isolated). The Fourier
representation (2) then tells us that u vanishes in the half-plane {y > 0}, so also in the whole domain Ω
by virtue of the unique continuation principle, which completes the proof of Theorem 1.

It remains to prove the analyticity of ϕ̂(ξ). To do this, the trick is to split the definition ϕ̂ := Fu(· , 0)
in the form

ϕ̂(ξ) =
1√
2π

∫ 0

−∞

u(x, 0) e−ixξ dx+
1√
2π

∫ +∞

0

u(x, 0) e−ixξ dx (7)

and to express u(· , 0)|R+ and u(· , 0)|R− by using again Proposition 2 in two half-planes contained in Ω
defined respectively by the equations y > −x tan θ and y > +x tan θ. Using both changes of variables

(
x

y

)
=

(
cos θ ∓ sin θ
± sin θ cos θ

)(
x
y

)

which map respectively the half-planes {y > ∓x tan θ} to Π0, we obtain the following Fourier represen-
tations:

u(x, y) =
1√
2π

∫

|η|>k

ϕ̂±(η) eiη(x cos θ∓y sin θ)−
√

η2−k2 (±x sin θ+y cos θ) dη if y > ∓x tan θ,

where ϕ̂± both satisfy (3) with ε = ℓ cos θ. Taking y = 0 yields u(· , 0)|R± . Note that Corollary 6 tells us
that u(· , 0)|R± ∈ L1(R±). This justifies equation (7) which becomes

ϕ̂(ξ) =
1

2π

∑

±

∫

R±

∫

|η|>k

ϕ̂±(η) ex(iη cos θ∓
√

η2−k2 sin θ) dη e−ixξ dx.

Using the same argument as in the proof of Corollary 6, it is readily seen that the integrands of the above
integrals belong respectively to L1(R± × {|η| > k}). Hence, Fubini’s theorem yields

ϕ̂(ξ) =
1

2π

∑

±

∫

|η|>k

ϕ̂±(η)

∫

R±

ex(i(η cos θ−ξ)∓
√

η2−k2 sin θ) dx dη =

∫

|η|>k

F (η, ξ) dη,

where

F (η, ξ) :=
1

2π

∑

±

ϕ̂±(η)

∓i(η cos θ − ξ) +
√

η2 − k2 sin θ
.

For almost every η, this function extends to an analytic function of ξ in any complex domain in which
both denominators do not vanish. The complex values of ξ for which there exists a η ∈ R\ (−k,+k) such
that one of the denominators vanishes is the hyperbola defined by the equation

(Re ξ)2

cos2 θ
− (Im ξ)2

sin2 θ
= k2

represented in Figure 2. Hence, for almost every η, F (η, ξ) is an analytic function of ξ in the three
connected components of the complex plane delimited by this hyperbola. By the Lebesgue’s dominated
convergence theorem (recall that ϕ̂± ∈ L1(R), see Remark 4), we deduce that the same holds true for
ϕ̂(ξ). In fact, we are interested in the analyticity of ϕ̂(ξ) in the components colored in gray in Figure
2. Indeed, as we already know that ϕ̂ vanishes on (−k,+k) (see (6)), the analyticity in these gray
components implies that ϕ̂(ξ) also vanishes for ξ ∈ R \ (−k,+k), which is the desired result.
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Figure 2: Domains of analyticity of ϕ̂

4 Higher dimensions and other extensions

The above proof of Theorem 1 is specific to the two-dimensional case, since it cannot be extended directly
to higher dimensions (more precisely, Proposition 2 can readily be extended, but not the arguments of
section 3). Fortunately, the case d > 1 is easily derived from the case d = 1 as follows. Suppose that
u ∈ L2(Ω) satisfies the Helmholtz equation (1) in Ω. We split the coordinate x ∈ R

d as x = (x1, x
′)

where x′ := (x2, . . . , xd) ∈ R
d−1 so that the Fourier transform F in the x variable appears as the product

of the partial Fourier transforms in the x1 and x′ variables, denoted by F1 and F ′ respectively. Define
u′(x1, ξ

′, y) := F ′{u(x1, · , y)}(ξ′) and û(ξ, y) := F{u(· , y)}(ξ) where ξ′ ∈ R
d−1 and ξ = (ξ1, ξ

′) ∈ R
d are

the Fourier variables associated respectively with x′ and x. By the Parseval’s identity, for a.e. ξ′ ∈ R
d−1,

u′(· , ξ′, ·) is square-integrable in the cone Ω2D := {(x1, y) ∈ R
2; y > −|x1| tan θ} and satisfies

(
∂2

∂x2
1

+
∂2

∂y2
+ k2 − |ξ′|2

)
u′(· , ξ′, ·) = 0 in Ω2D.

Hence Theorem 1 for d = 1 applies provided |ξ′| < k : in this case, we thus know that u′(· , ξ′, ·) vanishes
in Ω2D. As û(ξ1, ξ

′, y) = F1{u′(· , ξ′, y)}(ξ1), this shows that for all y ≥ 0, û(· , y) vanishes in the cylinder
{(ξ1, ξ′) ∈ R

d; |ξ′| < k}. This conclusion actually remains true for any axisymmetric cylinder of radius
k whose axis contains the origin, since in the above lines, one can replace the particular direction x1 by
any direction of the x-space using a rotation. Therefore û(ξ, y) = 0 for all ξ ∈ R

d and y ≥ 0. Applying
F−1 yields u = 0 in R

d × R
+ and we conclude again by the unique continuation principle.

Theorem 1 also applies in an anisotropic medium described by the equation

div(Agradu) + k2 u = 0 in Ω,

where A is a constant real symmetric positive definite d × d matrix. Indeed this equation can be trans-
formed into our original Helmholtz equation using first the new coordinate system corresponding to a
unitary matrix which diagonalizes A, then a suitable dilation in each direction. This process trans-
forms Ω into a new conical domain that is no longer axisymmetric in general, but that still contains an
axisymmetric cone with vertex angle greater than π, which allows us to conclude.

Another application concerns the time-harmonic Maxwell’s equations

curl curlU− k2 U = 0 in Ω ⊂ R
3.

In this case, we simply have to notice that, thanks to the relation ∆ = −curl curl + grad div, if
U ∈ L2(Ω)3 satisfies this equation, then each of its components Ui belongs to L2(Ω) and satisfies the
Helmholtz equation (1).

Theorem 1 can also be extended to some situations which involve non-homogeneous media, using a
generalized Fourier transform instead of the usual one, as shown in [1, 2, 5]. Works on this subject are
in progress.
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