%0 Journal Article %T Intrinsic Finite Element Methods for the Computation of Fluxes for Poisson's Equation %+ City University of Hong Kong [Hong Kong] (CUHK) %+ Propagation des Ondes : Étude Mathématique et Simulation (POEMS) %+ Institut für Mathematik [Zürich] %+ Department of Computer Science, University of Chicago %A Ciarlet, Philippe G. %A Ciarlet, Patrick %A Sauter, Stefan %A Simian, C %< avec comité de lecture %@ 0029-599X %J Numerische Mathematik %I Springer Verlag %P 30 %8 2015 %D 2015 %R 10.1007/s00211-015-0730-9 %K elliptic boundary value problems %K conforming and non-conforming finite element spaces %K intrinsic formulation %Z 2000 Mathematics Subject Classification: 65N30 %Z Mathematics [math]/Numerical Analysis [math.NA]Journal articles %X In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved. %G English %2 https://inria.hal.science/hal-01160896/document %2 https://inria.hal.science/hal-01160896/file/CCSS-HAL%20%281%29.pdf %L hal-01160896 %U https://inria.hal.science/hal-01160896 %~ ENSTA %~ CNRS %~ INRIA %~ INRIA-SACLAY %~ INSMI %~ INRIA_TEST %~ TESTALAIN1 %~ UMA_ENSTA %~ INRIA2 %~ TDS-MACS %~ UNIV-PARIS-SACLAY %~ INRIA-SACLAY-2015 %~ GS-COMPUTER-SCIENCE %~ INRIA-ETATSUNIS