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The turbulent wake of a square-back body exhibits a strong bi-modal behavior. The wake ran-
domly undergoes symmetry breaking reversals between two mirror asymmetric steady modes (Re-
flectional Symmetry Breaking, RSB modes). The characteristic time for reversals is about 2 or
3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of
the proximity of a ground wall together with the Reynolds number, it is shown that the bi-modal
behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two
stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt
to stabilize the unstable symmetric wake is investigated using a passive control technique. Although
the controlled wake still exhibits strong fluctuations, the bi-modal behavior is suppressed, and the
drag reduced. This promising experiment indicates the possible existence of an unstable solution
branch corresponding to a reflectional symmetry preserved (RSP ) mode. This work is encouraging
to develop control strategy based on a stabilization of this RSP mode to reduce mean drag and
lateral force fluctuations.

PACS numbers: 47.20.Ky,47.15.Fe,47.27.Cn,47.27.wb

I. INTRODUCTION

In the Navier-Stokes equations, symmetry breaking
and bifurcations are the key ingredients for the laminar
to turbulent transition. They appear in the flow solutions
as the control parameter (i.e. the Reynolds number) is in-
creased. Normally, the strongest modifications in the flow
appear during the lowest part of the transitional range of
Reynolds numbers. The highest part of the transitional
range is reached when all the symmetries are restored in
the statistical sense [1]. However, there are some cases
for which such high Reynolds number flows may undergo
large scale symmetry breaking.

One of the most spectacular occurs during the drag
crisis transitions of smooth bluff bodies [2]. In the
critical Reynolds number regime of a circular cylinder
(105 < Re < 5 × 105), the laminar to turbulent transi-
tion of the free boundary layers is accompanied by the
occurrence of asymmetric wake flow states [3, 4] produc-
ing a non zero mean lift. They are commonly called one
bubble and two bubbles transitions corresponding respec-
tively to the reattachment on one side and both sides of
the cylinder. From global force [5, 6] and local pressure
[7] measurements, the existence of bistable behaviors in
this critical range has been evidenced through hysteretic
discontinuities in the Strouhal - Reynolds number rela-
tionship. Schewe [5] associated each discontinuity with
a subcritical bifurcation during which the energy of the
force fluctuations is dominated by the contribution of a
wide low frequency domain [5–7]. This domain belongs to
lower frequencies than the nearly extinguished frequen-
cies of the Kármán global modes. Recently, the examina-
tion of pressure time series measured on the cylinder [8, 9]
revealed that reattachments might switch from one side

to the other unpredictably in time during the drag crisis
fluctuations. Further analyses by Cadot et al. [10] con-
firmed that the strong fluctuations were the consequence
of the random exploration of few identified asymmetric
and symmetric metastable states.

Another case of large scale symmetry breaking was ev-
idenced more recently in a totally different flow configu-
ration [11–15]; the von-Kármán swirling flow geometry.
It is basically a closed turbulent flow forced between two
counter-rotating stirrers facing each other in a cylindrical
tank. The transition that occurs around Re=104, con-
sists in a bifurcation of the basic symmetric flow topology
toward two other flow topologies which break the sym-
metry of the driving geometry [11, 13]. In [12, 14, 15],
random switching between two metastable symmetry-
breaking states are observed. In that case, the symmetry
is restored in a statistical sense, but a state remains ob-
servable over durations much larger than the timescale of
the turbulence large scale. Another difference with the
drag crisis case, is that the symmetry breaking modes in
the von-Kármán swirling flow geometry are also observ-
able in the laminar regime during the transition scenario
to turbulence [16, 17] and the symmetry breaking in the
turbulent regime might be reminiscent of these modes.

Even more recently, the three-dimensional wake of a
generic square-back body has been shown to switch ran-
domly between two asymmetric metastable states over a
wide range of Reynolds numbers from 300 to 107 [18–20].
Their observation in the laminar regime [18] excludes the
possibility of an origin associated with turbulent bound-
ary layer reattachment as for those present during the
drag crisis transition. The authors referred to this as
a bistable behavior of the wake, unpredictable in time
with a long time dynamics, 2 or 3 orders of magnitude
larger than the time dynamics for vortex shedding. The
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metastable states break the reflectional symmetry of the
set-up, and will be referred to in the following as RSB
modes (Reflectional Symmetry Breaking modes). On the
theoretical background, RSB modes of three dimensional
wakes are actually known to be bifurcated states of the
basic symmetric state observed in the laminar regime (see
the stability analysis of Pier [21] for a sphere or a disk and
very recently, Marquet and Larsson [22] for rectangular
plates of different aspect ratio). In the work of Grande-
mange et al. [20], the bistability was found to be inhib-
ited when the body was approaching the ground wall at a
Reynolds number of 4.5×104 leading to a high Reynolds
number transition.

The present work aims at characterizing this transi-
tion in the turbulent wake using independently two con-
trol parameters: the ground clearance C (distance from
the ground wall to the body), and the Reynolds num-
ber Re. A global quantity giving a topological indica-
tor of the wake will be used as the order parameter of
the transition. The questions we would like to address
are the following. Does the turbulent wake flow have an
unstable symmetric solution when it explores randomly
the metastable RSB modes ? The answer might have
relevant applications for flow control strategies at indus-
trial scale (i.e. large Reynolds number flow). Secondly
from a more general perspective, what are the similari-
ties between this transition and those of the von-Kármán
swirling flow geometry ?

The article is organized as follow. Section II (Experi-
mental set-up) is in two parts and describes the geometry
and the measurements. The Results section III is pre-
sented in five parts. Part III A defines and characterizes
the global quantity that is used as the order parameter to
describe the transition. Part III B shows that the tran-
sition does not depend on the yaw angle of the body.
Part III C evidences the existence of a pitchfork bifur-
cation and sets the phase diagram of the bifurcation vs.
ground clearance and Reynolds number. In Part III D we
attempt to stabilize the turbulent symmetric wake flow
and part III E illustrates the main result with some flow
visualizations in a water tunnel at a comparable Reynolds
number. Finally, conclusive remarks end the paper in
section IV.

II. EXPERIMENTAL SET-UP

A. Geometry and measurements

The experimental set-up is illustrated in Fig. 1. A
ground plate is placed in an Eiffel type wind tunnel hav-
ing a turbulent intensity less than 0.3%. The homogene-
ity of the velocity over the 390 mm× 400 mm section is
0.4%. The wake is generated by the square-back geom-
etry first used in the experiments of [23] as a simplified
model to study ground vehicle aerodynamics. The to-
tal length of the body is L = 261.0 mm, the height H
and width W of the base are respectively 72.0 mm and

97.2 mm. The four supports are cylindrical with a di-
ameter of 7.5 mm. The blockage ratio is less than 5%.
The coordinate system is defined as x in the streamwise
direction, z normal to the ground and y forming a direct
trihedral. The Reynolds number of the flow is defined
as Re = U0H/ν where U0 is the uniform flow velocity
ranging from 3.7 m·s−1 to 33 m·s−1 and ν the air kine-
matic viscosity. The explored range of Reynolds numbers
is thus comprised within 1.7× 104 to 1.6× 105.

The body is fixed on a turntable to allow side slip
conditions with a yaw angle β (see Fig. 1b). The ro-
tation mechanism is driven by a displacement controlled
by a Newport Motion Controller ESP301; the precision
of the robot is better than 0.02◦. Another displacement
also controlled by the ESP301 allows adjustment of the
ground clearance in the range 0 < C < 12.5 mm. The
precision is better than 10 µm. In the following ex-
periments, the ground clearance is increased in steps of
250µm.

The pressure on the body is measured at 21 locations
at the body base (see blue dots in Fig. 1c). The taps are
distributed symmetrically referring to the planes y = 0
and z = 0, the latter plane corresponding to the mid-
height of the geometry. The pressure is obtained using a
ZOC22 pressure scanner and a GLE/SmartZOC-100 elec-
tronic for data acquisition using an ethernet connection
to the PC. The high cut-off frequency of each transducer
is larger than 250 Hz. It is acquired at a sample rate
of 500 Hz per channel, with an accuracy of ±3.75 Pa.
The pressure scanner is located inside the model; it is
denoted ”P scan” in Figs. 1(a,b). It is linked to each tap
with less than 100 mm of vinyl tubes to limit the filter-
ing effect of the tubing. In that case, the high cut-off
frequency falls to 150 Hz. This device is connected to
the electronic GLE/SmartZOC-100 using a connection
cable going through one of the four cylindrical supports
of the model so that, apart from these supports, nothing
disturbs the underbody flow. The pressure coefficient is
calculated as follows:

Cp =
p− p0
1
2ρU

2
0

, (1)

where p0 is the static pressure in the tunnel just before
the test section, the dynamic pressure 1

2ρU
2
0 is measured

from a Pitot tube at the entrance of the test section.
In the following, the use of an asterisk for a∗ denotes

the non-dimensional value of any quantity a(x, y, z, t)
made dimensionless by a combination of the height H
and the inlet velocity U0.

B. Free stream characterization

In order to control the constant flow conditions, the
ground plate (floor) is placed at 10 mm above the bot-
tom side of the inlet (see Fig. 1a) and triggers the bound-
ary layer at its leading edge, without any separation,
140 mm upstream of the fore-body. The boundary layer
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FIG. 1: Experimental setup: side view (a), top view (b) and
perspective view (c); the point O at the centre of the body
base sets the origin of the coordinate system. The blue dots
locate the visible pressure taps; P scan refers to the pressure
scanner.
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FIG. 2: Free stream characterization at the location of the
Ahmed body, boundary layer profile on the floor(a), lateral
velocity profile at z∗ = 1/2 (b), right to left asymmetry (see
text) of the lateral velocity profile vs. the main velocity (c).

on the floor of the free stream at the body location
(say X = 260 mm from the leading edge of the ground
plate and without the body) is shown in Fig. 2 for the
two extreme main flow velocities of the explored range.
The boundary layer profile at the lowest velocity has
a Reynolds number based on the development length
ReX = 0.75 × 105 and suggests that it is laminar at the
lowest velocity. At the largest velocity, ReX = 5.72×105

and the shape suggests a turbulent boundary layer. For
both cases, the thickness never exceeds δ∗0.99 = 0.1. The
laminar-turbulent transition occurs around 14 m·s−1, say
ReX = 2.42×105. However, this transition has no mean-
ing considering the flow around the Ahmed body whose
presence produces pressure gradients at the ground wall
that modifies drastically the boundary layer history com-
pared to a development on the flat floor alone.
The spanwise spatial homogeneity is characterized
through the velocity measurements in Fig. 2(b). Al-
though the spatial inhomogeneity still remains below
0.4% in rms quantities, the streamwise velocity displays
a small but significant shear whose sign depends upon
the mean flow velocity. Figure 2(c) shows the difference
between the mean velocity computed from the right hand
side of the tunnel (y > 0) and the left hand side of the
tunnel (y < 0). There is a velocity excess on the left hand
side of the free stream of about 1% for mean flow veloc-
ities larger than 20 m·s−1. These symmetrical defects
in the free stream have to be acknowledged considering
their induced bias in the onset of a symmetry breaking
instability.

III. RESULTS

A. Global quantities for the near wake

The pressure distribution at the base of the body has
been shown to be a relevant indicator [19, 20, 24, 25] of
the large scale wake topology. As in [25], we will use the
instantaneous barycentre of the base pressure distribu-
tion, that we define as :

~rb(yb, zb) =

∫∫
Base

~r Cp(~r)dydz∫∫
Base

Cp(~r)dydz
, (2)

It should be noted that for a massively separated wake
flow as in the present case, the pressure of the base is
always lower than the static pressure of the free stream
meaning that the denominator in Eq. 2 is non-zero and al-
ways negative. Figure 3(a,b) shows the two components
of the base pressure barycentre. Its horizontal compo-
nent in Fig. 3(a) clearly exhibits the bi-modal behavior.
The two most probable horizontal positions observed at
y∗b ' ±0.05 are associated with the two deflected wakes
fully characterized in [19]. They correspond to the two
mirror RSB modes breaking the reflectional symmetry
with respect of the plane y = 0 of the set-up. As it has
already been shown in [19] the characteristic timescale to
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switch between these modes is 2 to 3 orders of magnitude
larger than the natural timescale T ∗ = 1 in non dimen-
sional units, (i.e. T = H

U0
). For the remainder of this

study, time series are low-pass filtered to focus on this
long time dynamics, with a cut-off frequency f∗c = 1

250

(say fc = 0.22 Hz at U0 = 4 m·s−1 to fc = 1.83 Hz at
U0 = 33 m·s−1). The filtered data are shown for the
barycentre coordinates in Fig. 3(c).

The most probable positions of the pressure barycentre
are extracted from probability density functions (PDFs)
such as the one presented in Fig. 4. The statistics are
performed over a duration fixed to 50 s, (τ∗ = 27500 at
U0 = 33 m·s−1 and τ∗ = 3300 at U0 = 4 m·s−1). The
choice of recording duration is a compromise between an
accurate estimation of the position of the most proba-
ble events and the high cost of time due to a parametric
study involving changes in yaw angle, ground clearance
and Reynolds number. As we can attest from Fig. 4,
the most probable event positions are sufficiently well
defined to investigate the parametric study of the stable
branch solutions. Note that the chosen recording time
that evolves in the range τ∗ ∼ 3000 − 27500 leads un-
avoidably to weakly converged PDFs because of the long
time dynamics associated with the RSB modes having a
characteristic timescale in the range τ∗ ∼ 100−1000 [19].
Hence, the weak convergence does not allow an accurate
estimate of the value of the corresponding probability
density.

Another global quantity of interest is the base suction
−Cpb, where :

Cpb =
1

S

∫∫
Base

Cp(~r)dydz. (3)

The base suction is directly related to the form drag (see
[26], [27] and references therein), the larger the base suc-
tion, the larger the form drag. Note that the discrete
pressure taps distribution at the base (Fig. 1c) will not
lead to an exact measurement of the base suction but
rather to a drag indicator.

B. Wake mode sensitivity to a yaw angle β and
ground clearance C∗

Figure 5 shows the PDFs of the statistical variable
y∗b , for 10 sets of experiments performed for the same
Reynolds number Re=146800. The grey levels of the
PDFs allow the most probable positions of the barycen-
tre, which contains the main information, to be located.
For each set, the ground clearance C∗ is fixed and the
yaw angle is varied within the range −1◦ < β < +1◦

in step of 0.1◦. By looking at the PDFs at the top of
Fig. 5 obtained for the ground clearance C∗ = 0.153, we
notice that two distinguished most probable positions,
symmetrically located at y∗+b ' 0.05 and y∗−b ' −0.05
are observable. These two positions are associated with
the two stable mirror states and the values of y?±b do not
depend upon the yaw angle. When the ground clearance
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FIG. 3: Time series of the base pressure barycenter coordi-
nates (y∗b , z

∗
b ), y∗b (a), z∗b (b) and filtered in (c).
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FIG. 4: Probability density function (PDF) of the horizontal
coordinate y∗b of the base pressure barycenter computed from
the time serie in Fig. 3(c).

is decreased to C∗ = 0.09, similar observations can be
made except that now the two positions are not symmet-
rically located anymore. It emphasizes the sensitivity
to symmetry defects in the setup, especially related to
the non-uniformity of the incoming flow as described in
Fig. 2.

For slightly smaller C∗, the two states become hardly
distinguishable and instead, a continuous change in the
pressure barycentre coordinate is observed.

The role of the underbody flow as a function of the
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PDF(y∗b ) in grey levels (the darker, the larger the PDF) for
U0 = 30.58 m·s−1 with the yaw angle β and for different
ground clearances C∗.

ground clearance is now investigated. Velocity profiles
are then measured 2 mm behind the body using a clas-
sical hot wire probe, in the mid plane y = 0 for different
ground clearances C∗. They are all presented in Fig. 6 as
z/C vs. the velocity with a vertical shift for clarity. For
large ground clearances, C∗ > 0.04, velocity profiles are
well established and present a relatively parabolic shape.
The velocity fluctuations are maximum (Fig. 8b) on the
top side of the profiles which corresponds to the free mix-
ing layer, and on the bottom side that corresponds to
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z/
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FIG. 6: Characterization of the underbody flow using hot
wire anemometer measurements, 2 mm behind the body in
the y = 0 plane. The hot wire is oriented to be sensitive to
the longitudinal velocity u(t). (a) : z/C vs. the time averaged
non-dimensional velocity U∗ = u∗. (b) Fluctuating velocity

defined as U∗
rms =

√
(u∗ − U∗)2.

the boundary layer on the floor. For ground clearances
smaller than C∗ < 0.04, there is no established under-
body flow and a transition with high velocity fluctuations
is observed for C∗ = 0.021.

To study the two stable solutions of the bifurcated
states, we chose to explore the wake positions for the
two yaw angles β = −0.4◦ in Fig. 7(a) and β = +0.4◦ in
Fig. 7(b). The negative (resp. positive) yaw angle allows
exploration of the branch y∗+b (resp. y∗−b ) correspond-
ing to the positive (resp. negative) part of PDF(y∗b ). As
can be seen, the system explores preferentially the y∗+

branch near the bifurcation point which is an evidence
for an imperfect bifurcation. In addition, we never no-
ticed any hysteretic effect by working with increasing or
decreasing control parameters, which reinforces the su-
percritical character of the bifurcation. For both PDF
branches, the position of the local maxima are extracted
(plotted as white lines in Fig. 7a and b). This technique
of extraction will be repeated in the following to study
the Reynolds number effect on the bifurcation diagram.
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with the yaw angle β = −0.4◦ and (b) with a yaw angle β =
+0.4◦. The white lines represent the most probable position
and correspond in (a, continuous line) to the stable branch
y∗+b and in (b, dashed line) to the other stable branch y∗−b .
In (c) are reported the maximum of the profiles measured in
Fig. 6, mean velocity U∗ (empty circles) and fluctuation U∗

rms

(black filled circles).

Figure 7(c) displays the maximum values of the pro-
files measured in Fig. 6. It is clear from these results that
the underbody flow is already well established, about U0

at the pitchfork point of the bifurcation observed around
C∗ ∼ 0.075. Hence, the large velocity fluctuations ob-
served at C∗ = 0.021 occurs at a too small ground clear-
ance to be associated with the instability threshold of the
RSB states.

C. Bifurcation threshold with Reynolds number

Nine experiments with different Reynolds numbers
have been conducted with exactly the same protocol as
for the previous experiment. All of the bifurcation di-
agrams obtained by superimposing the branch y∗+ and
y∗− are shown in Fig. 8. We can see clear imperfect
pitchfork bifurcations due to some symmetry defects be-
fore and at the bifurcation point. As said above, these
imperfections are likely to be explained by the free stream
properties characterized in Fig. 2. The bifurcation point,
defines as the crossing point between the two branches,
appears to depend on the Reynolds number, and its de-
pendency is shown in Fig. 9. The uncertainty about C∗

c

is estimated to be ±0.0025 reflecting the measurements
displayed in Fig. 8(a).

The critical ground clearance C∗
c is a slow decreasing

function of the critical Reynolds number Rec, similar to

the power law Re
−1/6
c in the range of our experiments.

D. Toward a stabilization using passive control

We now investigate the possibility for the existence of
an unstable branch solution, corresponding to the prolon-
gation of the symmetric state after the bifurcation point.
The idea is to apply the passive control technique first in-
troduced by [28] to stabilize the Kármán instability in the
laminar wake of a circular cylinder. It has been shown for
the present configuration in [24] to efficiently eliminate
the bi-modal behavior of the turbulent wake. It consists
in a steady disturbance technique by introducing inside
the recirculating bubble a vertical cylinder, having the
same height as the body with a diameter d∗ = 0.083. We
placed the control cylinder at the best location obtained
in [24], say y∗ = 0 and x∗ = 0.52. Two thin rods, as
depicted in Fig.10(b), support the control cylinder. In
order to characterize the effect of the control cylinder
only, a bifurcation diagram has been performed with the
body and the two thin rods as a function of the ground
clearance. It is shown in Fig.10(a). Because of the thick-
ness of the rod under the body, the ground clearance is
limited for low values to C∗ = 0.035. The observed bi-
furcation, very similar to the one obtained without the
rods (Fig.7), attests from the neutrality of the support-
ing system. Furthermore, it has to be mentioned that
the bifurcation in Fig.10(a) is obtained for only one yaw
angle. It has been especially adjusted in order to have
the best equiprobable exploration of the two states at
the largest ground clearance. In this condition, we see
that both branches are randomly explored after the bi-
furcation point, leading to the bistable dynamics of the
wake.

When the control cylinder is placed between the two
rods, the bifurcation diagram before the pitchfork point
remains unaltered compared to that of the reference,
while after the pitchfork point the two branches are re-
placed by a continuum of uniform density probability
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FIG. 8: Bifurcation diagrams vs. the ground clearance ob-
tained with different Reynolds numbers, from bottom to top :
Re=1.78×104, 2.89×104, 3.95×104, 5.05×104, 6.1×104, 8.27×
104, 1.04× 105, 1.32× 105, 1.6× 105. For each Reynolds num-
ber, the branches are extracted from the most probable posi-
tion of the barycentre obtained from β = −0.4◦ (blue circles)
and β = +0.4◦ (white circles) as in Fig. 7(a) and (b).

over values of y? included within y?±b , yet excluding y?±b .
At this point it is difficult to argue whether the system is
actually stabilized since there is no most probable posi-
tion around y∗ = 0. However the system is definitely not
bi-modal anymore. This simple experiment is promising
since passive control can be considerably improved using
active control. We are confident that the latter will be
the good strategy to stabilize the wake.

Although the suppression of the lateral force can be
achieved by stabilizing the flow, it remains interesting to
look at the effect of a stabilization on the base suction
and hence the drag. The base suction as defined in Eq.3
is shown in Fig.11. The dashed line refers to the refer-
ence case, it displays large variations of the base suction

Cc
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104 105Rec

FIG. 9: Threshold of the bifurcation, critical ground clearance
vs. critical Reynolds number.
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FIG. 10: Probability density functions, PDF(y∗b ) in grey levels
for U0 = 30.58 m·s−1 vs. the ground clearance C∗, for (a)
with the yaw angle β = −0.4◦ and (b) with a yaw angle β =
+0.4◦. The white lines represent the most probable position
and correspond in (a, continuous line) to the stable branch
y∗+b and in (b, dashed line) to the other stable branch y∗−b .

coefficient due to the development of the underbody flow
as already described in [20] and characterized in Fig. 6.
However, the abrupt change observed for C∗ ∼ 0.09 is
clearly ascribed to the pitchfork point, indicating that
the presence of the RSB modes are creating additional
base suction and then drag. By stabilizing the wake, one
would expect the base suction coefficient to decrease in
the continuity of its evolution before the pitchfork point.
It is actually what is observed when the control cylinder
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FIG. 11: Base pressure suction vs. the ground clearance for
(dashed line) the reference case of Fig. 10(a) and for (contin-
uous line) the controlled case of Fig. 10(b).

is added, the base suction follows the same variations as
for the reference case. After the instability threshold,
a significant reduction is observed. This passive control
experiment is encouraging as a new strategy for drag re-
duction of 3D turbulent wakes.

E. Flow visualizations

We turn now to an illustrative experiment of flow visu-
alization realized in a water tunnel. The model is a 1:2.66
scale of the one used above. The test section of the tun-
nel is 80 × 150 mm and the flow speed 6 m·s−1. The
Reynolds number is 216000, and the ground clearance is
set to C∗ = 0.1. The yaw angle is accurately adjusted
to obtain the bistable dynamics of the two RSB states.
We present in Fig. 12, some pictures extracted from a
long time movie showing the random switching between
the y+b stable solution shown in (a) and the y−b stable
solution shown in (b). The two wake states present a
mirror symmetry, with an intense circular recirculation
clearly visible on the right hand side in Fig. 12(a) and
symmetrically on the left hand side in Fig. 12(b). The
low pressure barycentre position is on the same side as
this intense recirculation. These flow visualizations are
in total agreements with the velocity field measurements
of the RSB modes in [19]. When a vertical control cylin-
der is added as in paragraph III D, a symmetric wake is
observed without any intense recirculations.

IV. CONCLUSIVE REMARKS

The wake of a square-back body at the proximity of a
ground wall undergoes a pitchfork bifurcation in the tur-
bulent regime from a symmetric turbulent wake toward
two asymmetric turbulent wakes. The phase diagram in
Fig. 9 indicates that the critical ground clearance is a
slow decreasing function of the critical Reynolds num-
ber. Thus, the bifurcation is also observable for a given

(a) (b)

(c)

o

FIG. 12: Flow visualization performed in a water tunnel using
bubbles appearing white against a black background. The
flow Reynolds number is Re = 216000 at a ground clearance
C∗ = 0.1. The drawing shows the visualization area depicted
by a dashed rectangle at the rear of the Ahmed body. The
obturation time of the camera is τ∗ = 3, say 3 times larger
than the convective time H/U0 and captures the dynamics
at this timescale. In (a), RSB mode of the branch y+b , in
(b) its mirror counterpart: the RSB mode of the branch y−b .
Wake controlled with a vertical control cylinder (diameter
d∗ = 0.107).

ground clearance as the Reynolds number is increased.
The smaller the ground clearance the larger the Reynolds
number for the transition. At the threshold of the in-
stability (pitchfork point), the underbody flow magni-
tude is approximately U0 (see Fig. 7c) indicating that
the bifurcation is not related to a flow transition in the
ground clearance. Following the idea of Grandemange
et al. [20], the crucial ingredient for the symmetry break-
ing is the ratio between the separating distances of the
vortex sheets produced by the separation at the rectan-
gular base (it is also the result of the stability analysis by
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Marquet and Larsson [22] for a rectangular plate facing a
uniform flow in the laminar regime). The inviscid condi-
tion at the ground wall, that can be justified for large Re
flow, is equivalent to a mirror flow. In the absence of the
underbody flow, the top vortex sheet emerging from the
square-back body is then facing its symmetric counter
part at a distance that is the double of the body height,
2H. In the case of an underbody flow, a second vortex
sheet emerges from the bottom trailing edge of the body
and the separating distance with the top vortex sheet is
now H. For the primary case, the aspect ratio is twice
the second case and does not allow the symmetry break-
ing instability at the given width W of the base [20].
Hence the large Reynolds number bifurcation appears to
be related to a stabilizing geometrical parameter. One
may wonder if an equivalent explanation can be tested
on the transition obtained with the von-Kármán swirling
flow geometry.

There are some interesting applications for flow control
of 3D turbulent wakes. For instance, the pioneering tech-
nique of Strykowski and Sreenivasan [29] to stabilize the

periodic laminar Kármán instability toward the steady
state is also efficient to stabilize the turbulent RSB mode
toward a symmetric wake mode. In addition to the flow
studied here, it is known that the turbulent wake of ax-
isymmetric bodies develops symmetry breaking modes as
well [25, 30]. Thus the stabilization toward the symmet-
ric unstable mode might be a relevant strategy for drag
and lateral force reduction in many applications with po-
tentially a low energetic cost and offers promising future
development.
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