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Time series of pressure measured on the periphery of the central section of a circular

cylinder of aspect ratio 22 are used to investigate the dynamics of the local reattach-

ments during the drag crisis transitions. A succession of multi-stable dynamics are

identified and characterized through conditional statistical analysis as the Reynolds

number is increased. The first transition marking an abrupt weakening of the peri-

odic pressure fluctuations associated to the global shedding dynamics is accompanied

by the appearance of symmetric and bistable perturbations. Afterwards, two scenarii

of asymmetric and symmetric boundary layer reattachments are found. The asym-

metric scenario leads to two transitions. During the first transition the flow explores

randomly three stable states to eventually stabilizes on the state corresponding to

the permanent reattachment on one side of the cylinder. The second transition is

bistable and leads to the permanent reattachment on both sides. For the second

symmetric scenario, the boundary layer reattachments occur simultaneously on both

side of the cylinder. In that case, the flow explores randomly two stable states to

eventually stabilizes on the state of full reattachment. Pressure distributions of all of

these states are characterized as well as their corresponding probabilities during the

drag crisis transitions of the critical regime.

PACS numbers: 47.20.Ky,47.27.Cn,47.27.wb

Keywords: drag crisis, multi-stability, turbulent transition.
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I. INTRODUCTION

Boundary layer reattachment behind a cylinder placed in a uniform velocity field is one

of the most spectacular feature in fluid mechanics that can be observed when the Reynolds

number is increased. Due to the substantial drag reduction it causes, this effect called ”drag

crisis” has naturally motivated a lot of interest for many researches and applications in

aeronautics. Pioneering measurements dating from the beginning of the last century (see

for instance Wieselsberger1, Fage2) are reported by Roshko3 who compiled previous data

of mean drag, base pressure coefficient and Strouhal number for 104 < Re < 107. These

works, and many others, later allowed the establishment of different flow regimes that can

be found in the book of Zdravkovich4. These flow regimes are referred to as subcritical

Re < 105, critical 105 < Re < 5× 105, supercritical 5× 105 < Re < 5× 106 to transcritical

Re > 5 × 106. In the critical Reynolds number regime, the boundary layer transition from

laminar to turbulent flow is accompanied by the occurrence of asymmetric flow states5,6

producing a non zero mean lift. They are commonly called one bubble and two bubbles

transitions corresponding respectively to the reattachment on one side and both sides of the

cylinder. Although experiments of different origin always report transitions in roughly the

same range of Reynolds numbers, the discrepancies in the comparison of, for example, the

mean drag curves7 evidences the sensitivity of the phenomenon with the flow condition and

cylinder’s surface preparation. The influence of the free stream turbulence was character-

ized by Fage and Warsap8, Norberg and Sundén9, Blackburn and Melbourne10 and many

studies6,8,11–13 were devoted to the surface roughness effect on the drag crisis. Nonetheless,

the characterization of the different states are now well established (see Zdravkovich4).

On the other hand, the dynamics and the nature of the fluctuations associated with these

transitions still needs some investigations. Most of the studies about fluctuations during

the drag crisis focus on the global Kármán mode5,14, and especially the measurement of the

Strouhal frequency. Consequently, the dynamics of the transitions between the one bubble

and two bubbles states is less studied than the weakening of the shedding. From global

force11,15 and local pressure7 measurements, the existence of bistable behaviors in the criti-

cal range has been evidenced through hysteretic discontinuities in the Strouhal - Reynolds

number relationship. Schewe15 associated each discontinuity to a subcritical bifurcation

during which the energy of the force fluctuations is dominated by the contribution of a wide
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low frequency domain7,11,15. This domain belongs to lower frequencies than the nearly ex-

tinguished frequencies of the Kármán global modes. Recently Miau et al.16 and Lin et al.17

studied the pressure time series measured on the cylinder and noted that reattachments

might switch from one side to the other during the fluctuations as previously observed by

Farell and Blessmann7. Furthermore, the presence of reattachment on one side or on the

other was unpredictable in time. The characteristic time of the switch is much larger than

the periodic shedding, thus questioning the accuracy of results obtained by time averaging.

An interesting aspect relates to the three dimensionality of the flow reattachments along

the span of the cylinder. Although its experimental investigation18,19 is a hard task, it is

now generally agreed that the reattachment process is not a two dimensional phenomenon

but involves sub-domains17,20 along the span in which the above scenario takes place. There

is then a succession of local transitions that leads to the global drag crisis. The question on

how these sub-domains interact remains an open issue.

From a numerical point of view, the full resolution of the transitions in drag crisis via

solution to Navier Stokes equations remains a challenge. Singh and Mittal21 carried out

a simulation of the two-dimensional Navier Stokes equation. They were able to reproduce

the general phenomenon of drag crisis through their 2D simulations. More recently, Behara

and Mittal22 performed a large eddy simulation (LES) of the 3D flow using a Smagorinsky

model. They also computed the flow in the presence of a roughness element that simulates

a trip wire placed at θ = 55◦ from the front stagnation point of the cylinder, with respect to

the free-stream direction. It was shown that for the clean cylinder, without any roughness

element, the time-averaged flow is symmetric for all situations and the time-averaged lift

coefficient remains close to zero during the drag crisis transitions. However, in the presence

of the roughness element, that simulates a possible geometric defect in the symmetry of the

set-up, the numerical simulation is able to retrieve the asymmetric states that are commonly

observed in experiments. Based on the results from their simulations, Behara and Mittal22

proposed a hypothesis for the chain of events during the transitions related to drag crisis. A

more recent effort of 3D LES simulation due to Rodriguez et al.23 also succeeded to retrieve

the one bubble and two bubbles states during the crisis.
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FIG. 1. Aerodynamic layout of the National Wind Tunnel Facility (NWTF).

The goal of our work is to investigate the dynamics of the flow reattachment inside one

of the sub-domains. We then focus on the boundary layers states in the central cross section

of the cylinder and explore slight variations of the Reynolds number around the transi-

tions. Long time recordings are performed in order to display the corresponding statistics.

The details of the experimental set-up are described in Section II. In subsection IIA we

first present the details of the wind-tunnel. The flow geometry along with the pressure

measurements are presented in subsection II B. The results are presented in section III.

This section has four parts. Part IIIA evidences the flow transitions for two experiments

presenting different scenarii: the asymmetric and symmetric scenario. Part III B is de-

voted to the weakening of the periodic fluctuations in the vicinity of the cylinder that is

observed in the same manner for both experiments. Subsections III C and IIID present the

statistics and the dynamics of the reattachment during the asymmetric and the symmet-

ric scenario respectively. Finally, discussions and conclusions are presented in the section IV.

II. EXPERIMENT

A. National Wind Tunnel Facility

The facility is a closed-circuit, continuous, atmospheric, low-speed wind tunnel. The

layout is shown in Fig. 1. The cross section of the test area is 3 m×2.25 m with a total length
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of 8.75 m. It is equipped with two turntables (indicated as dashed circle in Fig. 1), one on

the upper surface facing the other one in the lower surface. They can rotate synchronously.

The cylinder is fixed at the centre of the turntables, say 3.5 m downstream the beginning of

the test section. Upstream of this test section, the tunnel has a wide area contraction ratio

9 : 1. The maximum air speed is 80 m.s−1, which is produced by a single stage 12-bladed

axial flow fan powered by a 1000 kW variable speed DC motor. It has four anti-turbulence

screens placed downstream of the honeycomb which ensure a low turbulence intensity. The

spatial inhomogeneities of the incoming flow are estimated through measurements of the

vertical velocity profile obtained by means of a pitot tubes rack placed at the centre of

the turntables. Figure 2(a) shows two vertical profiles non dimensionalized as 100 ∗ u(z)−U
U

where U in the mean wind speed used to compute the flow Reynolds number. We can

see that the inhomogeneity is the largest for the lower velocity, but still remains very low.

Actually, the root mean square value of the z-velocity profiles supplies an estimation of a

global spatial inhomogeneity as TH =

√
<(u(z)−U)2>

U
, where < .. > denotes an averaging

over all the measured velocities u(z) along the z-direction. In the worst case obtained for

the lowest wind speed of U = 20 m.s−1, TH = 0.05% and decreases to TH = 0.025% for

U = 60 m.s−1. The boundary layer velocity profiles have been measured at the centre of the

turntables by means of a pitot tubes rack. The boundary layers thickness is fairly constant

in the investigated range of velocities and worth δ99 ∼= 96 mm.

The turbulence intensity TU is estimated from single hot wire measurements at mid-

height. It is defined as the root mean square value of the measured velocity fluctuations

time series divided by the mean. To compute the fluctuating part of the velocity signal, a

cut off of 3 kHz for the low pass filter and 10 Hz for the high pass filter is used. We obtain

TU ∼ 0.05% as shown in Fig. 2(b). When the low pass filtering is 10 kHz, and no high pass

filtering is used, the measured turbulence intensity is increased by a factor 2 and TU ∼ 0.1%

in the explored range. In addition, for reasons of completeness and possible repetitions of

similar experiments in other facilities, Fig. 3 provides the rms fluctuations of the pressure

at the front head of the test cylinder (as defined in section II B, Fig. 4). The measurements

are reported for two different pressure scanners, the one used all through the present work

described in section II B having a full scale range of ±5 kPa (with a resolution of ±2 Pa)

and another one having a smaller range of ±1 kPa and a better accuracy of ±0.5 Pa. For

low noise wind tunnel, the fluctuating pressure coefficient is known to be close to twice the
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FIG. 2. Vertical mean velocity profiles in the test area for wind speeds of U = 60 m.s−1 and

U = 20 m.s−1 (a). Turbulent intensity at mid height TU and flow homogeneity TH measured from

the vertical mean velocity profiles (b).

turbulent intensity (see Surry24, Bruun and Davies25, Norberg26). The expected value of

the fluctuating pressure coefficient at the stagnation point of the cylinder should then be

about 0.1% on the basis of the turbulent intensity from velocity measurements. Even for

the more accurate pressure scanner, the value of 2.5% obtained at low velocities in Fig. 3

exceeds this prediction very significantly. The discrepancy is ascribed to some background

noise explained by the fact that the tunnel does not have anechoic treatments. For larger

velocities, the pressure coefficient fluctuations fall below 0.8%. In the case of the wide range

pressure scanner, it can be seen a large fluctuating pressure level of about 20 Pa on the

whole range of the explored velocities that increases significantly the pressure coefficient

fluctuations. The origin of the this large fluctuation is an electromagnetic noise, discovered

after the data of the present article were obtained. This noise has not been filtered in the

following since it only affects the pressure fluctuations in the vicinity of the stagnation point

where the fluctuations are the lowest. Except in this region, the fluctuations are much larger

than 0.1 (see Fig. 6b) and the electromagnetic noise that contribute by no more than 0.06

in the pressure fluctuation coefficient becomes negligible.

The temperature of the tunnel is not controlled. However, measurements are done when

heating due to the fan is compensated by the thermal losses. In that case, the air tem-

perature remains constant, and can take a value between 30◦C and 45◦C depending on the
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FIG. 3. Fluctuating pressure coefficient Cp′ as defined in Eq. 1 at the front head of the cylinder

(θ = 0o) as described in Fig. 4 vs. the velocity in the wind tunnel. Empty symbols refer to the

wide range pressure scanner which is used to obtain the result of the present work (section II B)

and filled symbols correspond to a more accurate pressure scanner but having a smaller range. The

inserted graphics display the corresponding pressure.

outdoor temperature. The kinematic viscosity of the air is thus simply corrected with the

air temperature and static pressure in the wind tunnel to compute the Reynolds number of

the flow.

B. Geometry and pressure measurements

The cylinder has a diameter d = 10 cm and a length L = 2.25 m. The Reynolds number

of the flow Re = Ud
ν

is varied in the range 1.2× 105 and 3.8× 105. The cylinder is made out

of aluminium in only one piece. It has been machined on its whole length after the holes

for pressure measurements have been drilled. Thereafter, it is polished to obtain surface

with a smooth finish. The relative roughness is estimated as k/d < 10−5, where k is the

particle size of the polishing mixture. The cylinder can be considered smooth as per the

classification due to Achenbach and Heinecke6. However, in the present study it has to

be kept in mind that the pressure holes are introducing singular surface roughness that is

much larger that the polished surface. Except these holes, residual geometric defects of the

cylinder are no more than 0.1% of its diameter d for either the diameter variation at the

mid section or along the exposed span of the cylinder. The cylinder is placed vertically in
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the wind tunnel, flush mounted at the centre of the top and bottom turntables (the centre

of the dashed circle in Fig. 1). During the experiments, no vibrations of the cylinder have

been noticed. There are 30 pressure ports on the periphery of the cylinder at a section at

the mid span to measure p(θ) as sketched in Fig. 4. The turntables allow the change of the

angle of attack of the cylinder. The origin of the angular coordinate θ is always taken at

the center of the front side of the cylinder whatever the angle of attack of the cylinder is.

The static pressure p0 measured at the entrance of the test section is used to compute the

pressure coefficient as follows :

cp(θ, t) =
p(θ, t)− p0

1
2
ρU2

(1)

The pressure ports are connected via flexible tubes to a pressure scanner (model ESP 32HD)

that acquires data at each port at a sampling frequency of 500 Hz. The measurements

are naturally low pass filtered due to the tubing and the design of pressure probe. The

resolution of pressure scanner is ±2 Pa. The estimated uncertainty on cp is of the order

of 0.01. The corresponding cut off frequency has been evaluated to be fc = 150 Hz on the

basis of the spectral analysis of pressure time series (not shown here) that display a strong

cut-off frequency at this value irrespective to the main velocity U . The consequence is that

our dynamic pressure measurements are limited to non dimensional frequencies lower than

St = fcd
U
, or equivalently to St = 0.75 at the lowest velocity U = 20 m.s−1 and St = 0.25 at

the larger explored wind speed. The periodic Kármán shedding dynamics observed around

St = 0.2 is then resolved. On the other hand, the effect of frequency doubling5 associated

with the two bubbles transition is not. The pressure range of the scanner is limited to,

approximately, -7000 Pa. This, unfortunately, limits our investigation to U ≤ 65 m.s−1.

The corresponding saturated values of cp will be indicated on the relevant plots. For a given

mean flow velocity, the pressure time series are recorded for a duration of 120 s. To explore

the effect of the Reynolds number on the flow transitions, measurements have always been

performed by increasing the wind velocity. For any quantity a, A denotes the time averaged

value and A′ the standard deviation.

The sectional form drag cD and lift cL coefficients are computed as :

cD(t) =
1

2

∮
cp(θ, t)cos(θ)dθ

cL(t) =
1

2

∮
cp(θ, t)sin(θ)dθ. (2)
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FIG. 4. Central section of the cylinder. Each tick symbolizes a hole of 1 mm dedicated for wall

pressure measurements. The side 0◦ < θ < 180◦ will be referred as the top side in the text, the

side 180◦ < θ < 360◦ as the bottom side.

The times series are utilized to calculate the time-averages CD, CL and standard deviations

C ′
D, C

′
L. The force coefficient in Eq. 2 are calculated with a trapezoidal integration of the

angular distribution cp(θ). The absolute uncertainty in the force coefficients is estimated to

be about ±0.02.

Eventually, to characterize the symmetry of the flow we measured the mean pressure

distributions for two cases of angle of attack of the cylinders (that will be studied in the

following) for the subcritical regime at Re = 1.85 × 105. We can observe in Fig.5 a slight

defect of symmetry. Since this asymmetry is identical for angle of attacks, we conclude that

the cylinder is not the cause but rather the lateral main flow inhomogeneity (’lateral’ refers

to the direction perpendicular to the incoming flow in the mid-span cross sectional plane).

In addition, we can see very little difference in the pressure coefficient level around θ = 60◦

between the two angles of attack. This small difference remains close to the experimental

uncertainties.

III. RESULTS

A. Transitions

Fig. 6(a) shows the mean pressure coefficient Cp(θ, Re). This figure identifies the Reynolds

number for which reattachments of the flow occur on the central section of the cylinder. In

the subcritical regime , the pressure coefficient is typically27 equal to −1 near the separation

region on the cylinder (θ ∼ 80◦). However, after the reattachment of the boundary layer
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FIG. 5. Comparison of the angular distribution of the pressure coefficient for the subcritical regime

at Re = 1.85× 105 obtained for both angles of attack 0◦ and 84◦ of the cylinder.

the pressure coefficient decreases below −2.5 in the same region. The first reattachment is

observed around Re = 3.3 × 105 on the top side of the cylinder (as defined in Fig. 4) and

then the second reattachment at about Re = 3.6× 105 on its bottom side. Same effects on

the pressure distribution can be found in Raeesi, Cheng, and Ting20; this is the scenario of

successive reattachments which are referred to as one bubble and the two bubbles transition

(see Zdravkovich4). The variation of the fluctuation of the pressure coefficient, C
′
p, with Re

and θ is shown in Fig. 6(b). C
′
p increases significantly before each reattachment in the zone

of separation (between 60◦ and 120◦ on the top side and 240◦ and 300◦ on the bottom side).

For lower Re, the fluctuation globally decreases gradually from Re = 105 to Re = 2.5× 105.

Figure 7 shows another experiment but for which the cylinder has been rotated by an angle

of 84◦. The sensitivity of the drag crisis11 to geometrical defects is then evidenced since

the scenario of reattachments is now quite different. Drastic changes after a rotation of

the cylinder was also reported by Batham28. The interesting feature in our case is the

appearance of a simultaneous reattachment on both sides of the cylinder (two bubbles tran-

sition) around Re = 3.6× 105 as observed in Fig. 7(a). Such a symmetric scenario has also

been observed by Norberg and Sundén9 for a free stream turbulence intensity of 1.4%. As

noted in the previous scenario case, reattachments are preceded by significant increase in

fluctuations around the separation region. This is seen clearly in Fig. 7(b).
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In (a) the exterior iso-Cp line is 0.8 with intervals of 0.2. In (b) the exterior iso-C ′
p line is 0.1 with

intervals of 0.1.

The consequences on the sectional drag and lift of these pressure distributions are dis-

played in Fig. 8 and 9 for the two observed scenario. Both cases, in Fig. 8(a) and 9(a), lead

to the same reduction in drag and achieve CD = 0.6 at Re = 3.8 × 105. The lift fluctua-

tion in Fig. 8(b) and 9(b) indicates a very sharp transition common to both experiments at

Re = 2.6× 105. For Reynolds numbers lower than 2.6× 105, both drag and lift coefficients

evolution are comparable for both scenarii. It should be mentioned that the lift coefficient

of the second scenario (Fig. 9b) is lower than that of the first one (Fig. 8b). This is due

to the slight difference in the pressure distribution measured for both angles of attack as
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The only difference with the experiment in Fig. 6 is that the cylinder has been rotated by an angle

of 84◦.

displayed in Fig. 5 and related to experimental uncertainties as mentioned in section II B.

For larger Reynolds numbers in Fig. 8(b), the one bubble transition is associated with a

strong positive lift production and the two bubbles transition to a small negative lift. How-

ever, we do not reach a sufficiently high Reynolds number to observe a return to symmetric

flow with zero lift (supercritical regime). In the case of symmetric reattachment scenario in

Fig. 9(b), only a small negative lift is observed because the one bubble transition has been

bypassed.

Next, we study the flow dynamics via space-time series of the pressure cp(θ, t) for Re <
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FIG. 8. Sectional mean and fluctuations drag and lift vs. Re computed from the data of the

asymmetric reattachments in Fig. 6.

2.6 × 105. This is followed by a study of the two different reattachment scenarii: the

asymmetric and symmetric reattachments.

B. Weakening of the shedding activity

The periodic pattern observed in the space-time diagrams cp(θ, t) in Fig. 10 indicates

alternate vortex shedding. As can be seen from the periodic pressure variation, the activity

at Re = 1.22 × 105 (Fig. 10a) is more intense than at Re = 2.45 × 105 (Fig. 10b). This is

made clearer in Fig. 11, by looking at the corresponding time series of the lift coefficient.

This attenuation is the cause of the continuous reduction of the lift fluctuations observed

for Re < 2.5 × 105 in Figs. 8(b) and 9(b). In this range of Re, it is noteworthy that the
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FIG. 9. Sectional mean and fluctuations drag and lift vs. Re computed from the data of the

symmetric reattachments in Fig. 7.

pressure distribution upstream of the separation remains unaltered as shown in Fig. 10(c).

As the shedding gets weaker the base pressure rises. This correlation can be observed in the

space-time diagram in Fig. 10(a) where, on an average, the base pressure is larger when the

vortex shedding activity is less intense. As a consequence, the corresponding drag is lower

during low intensity shedding as can be seen in Fig. 11(a).

At Re = 2.56× 105, a new feature characterized by durations of absence of periodic fluc-

tuations appears. An abrupt end of the vortex shedding activity seen by the pressure taps is

observed at tU/d ≃ 5300 in the space-time diagram in Fig. 10(c) and in the corresponding

lift coefficient in Fig. 11(c). It is even better quantified in Fig. 13 which shows the same

time series but for the pressure coefficients at θ = 60◦ and 300◦ only and for a very long time

15



0 50 100 150 200
0

60

120

180

240

300

360

tU/d

 θ
 (

°)

(a)

 

 

c
p

−3

−2

−1

0

1

0 50 100 150 200
0

60

120

180

240

300

360

tU/d

 θ
 (

°)

(b)

 

 

c
p

−3

−2

−1

0

1

5200 5250 5300 5350
0

60

120

180

240

300

360

tU/d

 θ
 (

°)

(c)

 

 

c
p

−2

−1

0

1

FIG. 10. Space time diagrams of the pressure distribution cp(θ, tU/d) for (a) Re = 1.22× 105, (b)

Re = 2.45× 105 and (c) Re = 2.56× 105.

duration (tU/d = 104). The flow switches between high fluctuations due to intense shedding,

and low fluctuations with weak shedding related activity. The time duration between these

switches is about 2 or 3 order of magnitudes larger than the time period of vortex shedding

(a periodicity of tU/d ∼ 5 is observed in Fig. 11 when tU/d < 5300). It is clear from

Fig. 13(a) that this long time dynamics is associated with symmetric perturbations since

the low pass filtered time series extracted from the two symmetric angular positions ±60◦

are in phase.

The probability density functions of the low pass filtered pressure time histories of cp(60
◦, t)

(Fig. 13b) and cp(300
◦, t) (Fig. 13c) display a discontinuity when Re is increased. In the

regime Re = 2.56 ∼ 2.58 × 105, there are two most probable values for the pressure coef-

ficient. This shows that the flow is a combination of two states. Subsequent to this first

transition for Re > 2.6 × 105, the pressure distribution shown in Fig. 6 and Fig. 7 is little
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the filtered time series of pressure (b) cp(60
◦) and (c) cp(300

◦) vs. Re.

affected by Re until reattachments appear around Re = 3.3 × 105 for the asymmetric sce-

nario and Re = 3.6× 105 for the symmetric scenario.

In summary, there is a gradual reduction of the pressure fluctuations on the cylinder

that is due to a weakening of the periodic shedding with Re. This is followed by an abrupt

reduction in C
′
L due to a transition to a bistable state. In a more quantitative manner, it

is useful to use the joint probability density function of the pressure coefficients measured

at two symmetrical angles as introduced by Norberg26. In our case, we chose θ = ±84◦ (we

note that θ = −84◦ corresponds to θ = 276◦). At these angular locations the pressure is

very sensitive to the periodic shedding and reattachment process. The statistical analysis

is performed on the entire acquisition of 120 s of the pressure time series. The joint PDFs

are shown in Fig. 14 for three typical Reynolds numbers that are characteristic of the flow

prior to the reattachments. The antisymmetric coherent periodic shedding activity at Re =

1.22 × 105 in Fig. 14(a) is revealed by the -1 slope correlation26. The very significant
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FIG. 14. Joint probability density function of cp(84
◦) and cp(276

◦) for (a) Re = 1.22 105, (b)

Re = 2.59 105 and (c) Re = 2.99 105.

weakening of the periodic vortex shedding activity at Re = 2.59× 105 leads to the absence

of any correlation in Fig. 14(b). For larger Re, and before the reattachment process, a

small but significant tendency to a positive correlation of slope +1 is observed as shown

in Fig. 14(c) for Re = 2.99 × 105. Then, after the abrupt transition of the periodic lift

extinguishment observed around Re = 2.6 × 105, the flow dynamics undergoes coherent

symmetric perturbations. Next, we study the dynamics in the asymmetric reattachments

scenario.

C. Asymmetric reattachments

An overview of the experiment associated with asymmetric reattachments is presented

in Fig. 6. Space-time diagrams of the pressure distribution for a duration of tU/d = 2000,

at different stages of the reattachments, are shown in Fig. 15. The symmetric perturbations

presented above are clearly observable in Fig. 15(a) for Re = 2.99 × 105. They correspond

to the light vertical stripes affecting the whole pressure distribution and with typical time

durations of tU/d ∼ 100. The intermittent appearance of low pressure (as dark patches)
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in Fig. 15(b) at Re = 3.37× 105 on either side of the cylinder is associated with boundary

layer reattachment. At Re = 3.49 × 105, only the reattachment on the top side remains

permanent in Fig. 15(c). In Fig. 15(d), the reattachment on the bottom side appears inter-

mittently. Finally, full reattachment on both sides of the cylinder is observed in Fig. 15(e)

at Re = 3.78× 105.

Correspondingly, the joint PDFs of the pressure coefficients measured at θ = 84◦ and

276◦ are presented in Fig. 16. During the reattachment process from Re = 2.99 × 105 to

Re = 3.78×105, the joint PDFs evidence four most probable states via existence of four local

maxima. These states belong to each quadrant defined by the two frontiers cp(84
◦) = −2 and

cp(276
◦) = −2 and denoted by #0, #1b, #1t and #2 in Fig. 16(a). The state #0 is ascribed

to no reattachment. The states #1b and #1t are ascribed to bottom side reattachment only

and top side reattachment only, respectively. The state #2 corresponds to full reattachment

on both sides of the cylinder. States #1b and #1t might be called one bubble states and

#2, the two bubbles state. From Fig. 16(a), we can see that the flow explores the three

states #0, #1b, #1t with different probabilities. By increasing the Reynolds number, only

the reattachment on the top is present (state #1t in Fig. 16(b)). Again, during the second

reattachment in Fig. 16(c) both states #1t and #2 are present with different probabilities.

Finally, only the state #2 prevails in Fig. 16(d) for the full reattachment.

The quantification of the proportion of states visited during the reattachment dynamics

is carried out by plotting conditional statistics in the four quadrants as a function of the

Reynolds number. We present the probability of each states estimated from the integral of

the joint PDF in each quadrant. The proportion of states is plotted in Fig. 17 in a semi-log

representation. Conditional statistics performed on the states also provide the associated

pressure distribution. For the following analysis, we define the boundary layer separation

location around the strong curvatures present on both sides of the base pressure plateau of

the pressure distribution.

We first look at the primary reattachment that occurs on the top side of the cylinder in the

Reynolds number range 3×105 < Re < 3.45×105. The pressure distributions corresponding

to the conditional statistics of state #0 are displayed in Fig.18(a). Whatever its proportion in

Fig.17 during the reattachment dynamics, the distributions are fairly identical. This implies

that there is no significant dependance on the Reynolds number. State #0 corresponds to a
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FIG. 15. Space time diagrams of the pressure distribution cp(θ, tU/d) for (a) Re = 2.99× 105, (b)

Re = 3.37× 105, (c) Re = 3.49× 105, (d) Re = 3.59× 105 and (e) Re = 3.78× 105.

separation located at around 96◦ that is delayed compared to the subcritical flow depicted

in Fig. 12. Conditional pressure distribution describing state #1t is shown in Fig.18(b).

21



c
p
(84°)

c p(2
76

°)

(a)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5
#0

#1b

#1t

#2

c
p
(84°)

c p(2
76

°)

(b)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

c
p
(84°)

c p(2
76

°)

(c)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

c
p
(84°)

c p(2
76

°)

(c)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5
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show the saturated value introduced by the higher limit of the pressure scanner.

All the pressure distributions indicate a separation around 120◦. This suggests that state

#1t is a reattached boundary layer on the top side of the cylinder. A clear dependency

with the Reynolds number is observed; as it is increased, the lowest pressure decreases

and the separation location is displaced slightly beyond 120◦. On the other side of the

cylinder, the separation is not affected and remains at the same location as for state #0. As

already evidenced in the joint PDF (Fig. 16a), even if primarily the top side is reattaching,

a few events of reattachment (less that 1.5%) on the bottom side are also observed at

Re = 3.3 × 105. The pressure distribution corresponding to the conditional statistics of

state #1b in Fig. 18(c) proves the existence of the reattachment on the bottom side. The

state #1b is the antisymmetric of state #1t.

We turn now to the second reattachment dynamics which is produced in the Reynolds

number range 3.5 × 105 < Re < 3.8 × 105 on the bottom side of the cylinder. During

this transition the states #1t and #2 are the most probable states. The corresponding

pressure distribution for the states are shown in Figs. 19(a) and 19(b), respectively. All

the Cp curves superimpose satisfactorily on the top side (0 < θ < 180◦) in both figures
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FIG. 17. Probability of the conditional statistics of states #0, #1b, #1t and #2 during the

asymmetric reattachment process.

meaning that the reattached flow does not depend on the Reynolds number for these states.

The Cp distribution in the range 0◦ < θ < 180◦ is affected by the condition whether there

is a reattachment or not of the boundary layer on the bottom side (180◦ < θ < 360◦).

In state #1t (Fig. 19a), the separation on the bottom side is located within the range

252◦ − 264◦ which is comparable to a non-reattached boundary layer. In this case, the

permanently attached boundary layer, on the top side, produces a very low pressure with

Cp around −2.8 at 84◦ as for Re = 3.45 × 105 in Fig. 18(b). For state #2, the separation

located in the range 228◦−240◦ indicates a reattachment. Correspondingly, the permanently

attached boundary layer, on the top surface, produces a higher pressure with Cp around

−2.6 at 84◦. It, therefore, appears that the second reattachment weakens the permanent

primary reattachment. It is worth noticing that in contrast to the first reattachment, the

separation location during the second reattachment depends significantly on the Reynolds

number and moves progressively from about 240◦ to 230◦, approximately (or from −120◦ to

−130◦) as located by the dashed lines in Fig. 19(b). Despite the Reynolds number effect

observed on the bottom side, the state #1t describes one side reattachment, and state #2

full reattachment. A few events of detachments (less than 2%) on the top side are also

observed around Re = 3.65 × 105 (see Fig. 17) and their pressure distributions are shown

in Fig. 19(c). These are the antisymmetric situation of the distributions of states #1t in

Fig. 19(a).
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FIG. 18. Pressure distributions of the conditional statistics #0 (a), #1t (b), #1b (c) for Reynolds

numbers in the range 2.99 × 105 < Re < 3.45 × 105 during the primary reattachment of the

antisymmetric scenario. Arrows are indicating the hierarchy of the curves for increasing Re.

To conclude this part on the asymmetric scenario, we show in Fig. 20, the pressure

distributions of the states observed during the two lift fluctuation peaks observed in Fig. 8,

at Re = 3.35 × 105 in Fig.20(a) and at Re = 3.59 × 105 in Fig.20(b). The fluctuations for

the first peak in C ′
L, are due to the dynamics of the nearly equal exploration of state #0

corresponding to no reattachment, and state #1t corresponding to the reattachment of the

boundary layer on the top side of the cylinder only. Few events of state #1b representing 0.5%

of the time spent corresponds to the reattachment on the bottom side only. It is noteworthy

that while the proportion of states #1b and #1t differ by two order of magnitudes, they

exhibit mirror symmetry with respect to each other. For the second peak, the fluctuations

are due to the dynamics of exploration of three states: 62% of state #2 corresponding to full

reattachment, 37% of state #1t corresponding to the reattachment of the boundary layer on

the top side of the cylinder only and 1% of state #1b corresponding to the reattachment on

the bottom side only. For both fluctuations, the reattachment dynamics is random as can be

observed via the statistics of state changes. We consider the realization to be in a given state
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FIG. 19. Pressure distributions of the conditional statistics #1t (a), #2 (b), #1b (c) for Reynolds

numbers in the range 3.5 × 105 < Re < 3.8 × 105 during the secondary reattachment of the

antisymmetric scenario. Arrows are indicating the hierarchy of the curves for increasing Re. Dashed

lines help to locate the separation angles.

in a time interval dt = 1/fs, where fs = 500Hz is the sampling frequency of the pressure

time series recording. Let us call k, the number of consecutive realizations giving the same

state considered as a random variable. Hence kdt represents the time lapse between two

consecutive state changes. Practically, the time lapse is measured from the duration between

two consecutive pressure coefficient of level -2 in the time series of cp(θ = 84◦, t). In order

to obtain better statistical convergence, a long time series (380s) has been recorded for the

case Re = 3.35×105 only. In that case, the total signal duration is 2.09×105 d
U
and the time

interval during which the realization is to be in a given state, is dt = 1.1 d
U
. The resulting

experimental probability P (k) shown in Fig. 21 (empty circles) displays an exponential

distribution. The probability Ps to switch from one state to another during dt = 1.1 d
U

is Ps = 1
<k>

= 3.47 × 10−3, where < k > denotes the average over all the realizations k

obtained during the total signal duration. The mean time spent in one state only is given

by dt/Ps = 320 d
U
. The experimental probability distribution is compared to the statistics

of a binomial law of independent events P ∗(k) = Ps(1− Ps)
k. The theoretical binomial law
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FIG. 21. Probability of spending a time kdt in a same state at Re = 3.35 × 105. Straight line is

the binomial law (see text)

using Ps = 3.47 × 10−3 as measured from the experiment corresponds satisfactorily to the

experimental data. This very good agreement confirms the randomness of the reattachment

processes as independent events. There is then no characteristic frequency associated with

this long time dynamics for which the characteristic time deduced from the mean time spent

in a state 320 d
U
is much larger by 2 orders of magnitude than the period of the global Kármán

dynamics that is comprised5 between 5.5 d
U
and 2 d

U
during the drag crisis transitions.
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FIG. 22. Space time diagrams of the pressure distribution cp(θ, tU/d) for (a) Re = 3.47× 105, (b)

Re = 3.61× 105 (c) Re = 3.67× 105 and (d) Re = 3.74× 105.

D. Symmetric reattachment

The simultaneous reattachment, on the top and bottom side of the cylinder, evidenced

in Fig. 7 is now studied. Figure 22 shows different stages of the reattachment dynamics.

As with the asymmetric scenario, the space-time pressure distribution in Fig. 22(a) shows

that it is dominated by symmetric perturbation before reattachment. This is confirmed by

the tendency of positive correlation around a slope of 1 in the corresponding joint PDF in

Fig. 23(a). For larger Re in Fig. 22(b), the reattachments appear simultaneously on both
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FIG. 23. Joint probability density function of cp(84
◦) and cp(276

◦) for (a) Re = 3.47 × 105, (b)

Re = 3.61× 105 (c) Re = 3.67× 105 and (d) Re = 3.74× 105. Vertical and horizontal dashed lines

show the saturated value introduced by the higher limit of the pressure scanner.

sides of the cylinder. The joint PDF in Fig. 23(b) shows two most probable values, one state

corresponding to the flow prior reattachment and another state to the reattached flow. The

bi-stability is now associated with two symmetric states. At Re = 3.67× 105 (Fig. 22c), the

flow is quasi-permanently reattached on both sides. However, this situation is unstable in

comparison to Fig. 15(e) of the full reattachment obtained with the asymmetric scenario.

On increasing the Reynolds number to 3.8 × 105, the top boundary layer re-detached in-

termittently as shown by the space-time diagram in Fig. 22(d) and the corresponding joint

PDF in Fig 23(d). This case is considerably limited by the range of our pressure scanner.

Therefore, measurements at larger Reynolds numbers are not possible. Fortunately, this

experimental problem affects only the rarest events associated with pressure lower than

the measurement threshold. Therefore, there is no significant effect on the mean pressure

distribution for Re < 3.7× 105.

The conditional statistics in the four quadrants as a function of Re is realized identically

as for the asymmetric scenario presented in the previous part. The proportion of obtained

states is plotted in Fig. 24 in the semi-log representation. The reattachment dynamics
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FIG. 24. Probabilities of the conditional statistics #0, #1b, #1t and #2 during the symmetric

reattachment process.

starts from Re = 3.45 × 105. As expected, in the joint PDF in Fig. 23(b), the dynamics

is dominated by the random exploration of two symmetric states #0 and #2 in the range

3.55× 105 < Re < 3.68× 105.

In contrast to the full reattachment observed for the asymmetric scenario, the joint PDFs

in Fig. 23(b-c) exhibit a fair spread around the state #2 due to large fluctuations. These

fluctuations are not necessarily associated with the existence of stable states #1t or #1b

since no maxima are observed in the corresponding quadrant of the joint PDFs. Hence,

we conclude that the resulting pressure distributions of statistics #1t and #1b with the

conditional averaging are associated with transitions between the two stable symmetric

states #0 and #2 whose pressure distributions are given in Fig. 25. We can see that

the distribution of state #0 is not sensitive to the Reynolds number while the reattached

distribution is. Separation points move downstream and the base pressure rises as Re

increases.

To conclude this part about the symmetric reattachment scenario, the dynamics of the

pressure distribution leading to the lift and drag fluctuations at Re = 3.61 × 105 can be

viewed as a random combination of the two symmetric states #0 and #2 during 80% of the

time. Their pressure distributions are given in Fig. 26.
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3.55 × 105 < Re < 3.68 × 105 during the reattachments of the symmetric scenario. Arrows are

indicating the hierarchy of the curves for increasing Re.
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crisis of the symmetric reattachment scenario at Re = 3.61 × 105. See Fig. 17 or 24 for symbols

legend.

IV. DISCUSSION AND CONCLUSION

This study shows that before a local permanent reattachment on the cylinder, a dynam-

ics combining few stable states occurs. This dynamics is associated with force fluctuations

having an origin different than that of the Kármán global mode dynamics. The exploration

of the different stable states is random, and the typical time of the dynamics is 2 or 3 order

of magnitudes larger than the period of Kármán global mode. Joint PDFs and conditional

averaging were able to identify the stable states for two drag crisis scenarii. The first one is

always reported in the literature concerning experimental studies, for which the dynamics

during the reattachment never involves the exploration of two symmetric stable states (no

reattachments, and reattachments on both sides). In that case, the one bubble transition
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involves three states: no reattachments, only one reattachment on one side and only one

reattachment on the other side in agreement with the switched one bubble states observed by

Miau et al.16. The two bubbles transition, also involves three states: only one reattachment

on one side, only one reattachment on the other side and full reattachment. The proportion

between the states (Fig. 17) is very unequal, in such a way that the dynamics is governed

mainly by the exploration of two states (on bubble state and no reattachments), leading in

average to the observed symmetry breaking of the mean flow.

By changing the angle of attack of the cylinder, a symmetric scenario of reattachment is

observed. In that case there is a clear coupling between both boundary layers revealed by the

simultaneous reattachments. During this drag crisis, the one bubble transition is bypassed

and a direct transition to the two bubbles state occurs. The dynamics then explores the

two associated symmetric stable states and some transient states comparable to one bubble

transition situation. These observations prove that the occurrence of asymmetric states is

not the only route for reattachments during the drag crisis, and that the symmetric scenario

is possible as obtained in 2D and 3D simulation for which the asymmetric scenario is not

observed21,22. However, the symmetric scenario undergoes larger fluctuations than that of

the asymmetric one as can be deduced from the joint probability. They are spread around the

stable states in the case of the symmetric scenario (Fig. 23b,c). Moreover, the permanent

reattachment is not observed by increasing the velocity above Re = 3.7 × 105 where the

reattachment on the bottom side only becomes dominant. The full understanding of this

scenario certainly needs the investigation of the reattachment dynamics on the span and on

both sides of the cylinder since it is known that drag crisis dynamics is not a two-dimensional

process13,16,17,19,20.

As already mentioned in previous works, the abrupt disappearance of the shedding ac-

tivity on the cylinder is likely to be associated to 3D effects. Actually, the global Kármán

dynamics can be easily inhibited by steady 3D disturbances29 in the subcritical turbulent

regime. In the present case, it is possible that if a local reattachment is produced with the

dynamics described above somewhere on the cylinder, it will globally weaken the shedding

and also produce random disturbances with long characteristic time in the flow. These

might also affect other regions along the cylinder through the base pressure. We expect the

separated shear layers to react symmetrically to a base pressure variation. This assumption
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can explain the presence of the first transition at Re = 2.56 × 105 in Fig. 6 and 7. Hence,

this first transition should be understood as the manifestation of the first local reattachment

along the cylinder’s span. In that case the dynamics reported in Fig. 13 only reflects a reat-

tachment that occurs somewhere else than on the measurement ring. More generally, the

symmetric disturbances in the pressure distributions observed after this first transition (see

Fig. 15a) are likely to be caused by bistable dynamics of other local reattachments along

the span of the cylinder. This mechanism might explain the transition reported by Higuchi,

Kim, and Farell19.

In conclusion, it appears that for full comprehension of the drag crisis dynamics on a

cylinder, it is crucial to know instantaneously the boundary layer state all over the cylin-

der. Increasing the number of pressure measurements along the span of the cylinder might

introduce too much disturbances due to the presence of holes. It seems then relevant to use

newer techniques, such as the stereoscopic PIV in a transverse plane behind the cylinder.

It has already been done in the laminar cylinder wake30,31 and to investigate the dynamics

of three-dimensional bistable turbulent wakes32. Further investigations with this technique

is promising to study effects of roughness and turbulent intensity on the local drag crisis

transitions scenario and their interactions along the cylinder span.
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