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Abstract.

The recently developed attosecond light sources are making possible the

investigation of ultrafast processes in matter with unprecedented time resolution. It

has been proposed that the very mechanism underlying the attosecond emission allows

for imaging the valence orbitals with Ångström space resolution. This controversial

idea together with the possibility to combine attosecond and Ångström resolutions in

the same measurements have become a hot topic in strong-field science. Indeed, this

could provide a new way to image the evolution of the molecular electron cloud during,

e.g., a chemical reaction in “real time”. Here we review both the experimental and

theoretical challenges raised by the implementation of these prospects. In particular,

we show how the valence orbital structure is encoded in the spectral phase of the

recombination dipole moment calculated for Coulomb scattering states, which allows a

tomographic reconstruction of the orbital using first-order corrections to the plane-wave

approach. The possibility to disentangle multi-channel contributions to the attosecond

emission is discussed as well as the necessary compromise between the temporal and

spatial resolutions.
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1. Introduction

The recent advent of attosecond sources of extreme ultraviolet (XUV) and soft x-ray

radiation is opening wide perspectives for probing dynamics in matter at the natural

timescale of electron motion, i.e. the atomic unit of time (1 a.u. ≈ 24 × 10−18s =24

attoseconds) [1]. It was recently realized that these same sources could also provide

Ångström-resolved images of electron wavepackets in molecules [2–4]. The combination

of these extreme spatial and temporal resolutions may fulfill the dream of imaging in

real time the most fundamental processes occurring in physics, chemistry or biology [5].

Understanding these processes is of the utmost importance for future developments in

science and technology as it is the key for controlling them.

These attosecond light sources are based on the spectacular phenomenon of high-

order harmonic generation (HHG) [6, 7] that results from the strongly nonlinear

interaction of intense infra-red (IR) laser pulses with atomic or molecular gases. In

spite of its apparent complexity, the generating process can be described by a fairly

intuitive semi-classical three-step model [8, 9]: the strong laser field tunnel ionizes the

molecules or atoms of the target gas, releasing an electron wavepacket (EWP) that

is subsequently accelerated by the oscillating field and driven back to its parent ionic

core where it recombines, emitting an attosecond burst of coherent soft x-rays. In a

multicycle laser field, this process is repeated every half-cycle resulting in the emission

of a train of attosecond pulses, the spectrum of which is composed of the high order

harmonics of the generating IR field. This very simple model not only succeeds in

explaining the main properties of HHG [10] but also lies at the heart of its use in many

attosecond spectroscopy schemes [1].

The first demonstration of the generation of attosecond pulses through HHG in

2001 [11, 12] suddenly made possible a number of new investigations of dynamics in

matter. The applications can be grouped in two categories. The first one concerns

“conventional” pump-probe experiments, hereafter referred to as “direct” schemes,

where the attosecond bunch of photons is used to excite or probe ultrafast dynamics in

another system – a direct extension of femtosecond spectroscopy and femtochemistry

[13] to the attosecond domain. A number of field-driven [14–17] and intrinsic [18–24]

processes with attosecond dynamics have already been studied in atoms, molecules and

solids using direct schemes. In the second category of experiments, the harmonic signal

is analyzed to retrieve temporal and structural insight on the generating system itself.

In such “self-probing” schemes, the recolliding electron wavepacket plays the role of a

probe that encodes information on the generating molecule in the emitted radiation.

It was long considered a theoretical challenge to extract relevant information out of

such a highly nonlinear optical spectroscopy due to the complicated underlying physics.

However, the spectacular simplifications brought about by the semiclassical model were

tested and (partly) validated by a number of experimental and theoretical studies [25],

providing direct information on the radiating system with unprecedented temporal and

spatial resolutions.
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Indeed, advanced characterization of the attosecond soft x-ray emission gives precise

information on both the structure and dynamics of the target gas. The reason is that the

recolliding EWP associated with the observed photon emission has a duration of a few

hundred attoseconds and a de Broglie wavelength of the order of molecular internuclear

distances (≈ 1 Å). It is thus extremely sensitive to ultrafast nuclear or electronic

dynamics occurring inside its parent molecular ion: Rotational [26–28], vibrational [29–

32] and electronic [3, 33, 34] dynamics have already been successfully studied using this

self-probing scheme. For instance, it was found that a change in bond length of ≈ 1%

may result in a change in high-harmonic signal of ≈ 10%, allowing Raman vibrations

to be observed in SF6 [30] or ultrafast proton rearrangements to be measured in H+
2

and CH+
4 with 100 as resolution [29, 32]. Besides, multielectron dynamics also leave

characteristic fingerprints in the HHG emission, which allows studying multichannel

tunnel ionization with attosecond resolution [3, 33, 34].

Another, most fascinating, perspective opened by the self-probing scheme is the

possibility not-only to time-resolve attosecond intra-molecular dynamics but also to

spatially image the wavefunction of the radiating system with Ångström resolution, as

first proposed by Itatani et al. [2]. The basic idea is that, during the HHG process,

the ionic core is probed by the laser-driven rescattering electron in a well defined

direction given by the laser polarization axis. This makes HHG strongly dependent

on the molecular orientation with respect to the laser polarization. It was suggested

that, via a tomographic analysis of the harmonic signal obtained at different relative

orientations, one could reconstruct an image of the orbital from which the electron

was released. The intrinsic coherence of the process, more precisely the coherence of

the EWP formed by a combination of scattering states and the initial bound state,

in principle gives access not only to the modulus of the radiating dipole but also to its

phase, and therefore to the electron wavefunction, in amplitude and phase (up to a global

constant). This came somewhat as a surprise since a paradigm of quantum mechanics

is that a wavefunction is merely a mathematical construction and that only electron

densities are ”observable” quantities. For a discussion on the feasibility of wavefunction

“measurements”, see [35]. Concerning the access to the wavefunction phase, it is

provided by interferometric intensity measurements made possible by the coherence

of the process, as mentioned above – in contrast to photoemission spectroscopy [36] and

scanning tunnelling microscopy [37, 38] that give access only to electron densities.

An important property of HHG is that, since tunnel ionization depends

exponentially on the binding energy, the emission process intrinsically selects the higher

lying populated electronic levels, and is therefore particularly sensitive to the stucture

of the valence electronic states, which are those participating in chemical reactions.

It has thus been suggested that this could provide a new way to image the evolution

of the molecular electron cloud during a chemical change, in “real time” and with Å

resolution. Due to its high potential and implications, this possibility to monitor orbitals

and dynamics of chemical reactions on an attosecond timescale has become a “burning

question” in high-field science, motivating a large number of studies, the main outcome
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of which being that there are still several major issues at stake before reaching this

goal. Here we shall address a few of them, from both the experimental and theoretical

point of views, and discuss the problem in the light of recent works [3, 4, 39]. After

a brief presentation of the principles of tomographic orbital imaging in Section 2, we

shall review the experimental techniques and challenges raised by its implementation in

Section 3. We shall then discuss the type of information that can be accessed from the

HHG process on three levels: i) the recombination dipole moment in Section 4; ii) the

orbital reconstruction in Section 5; iii) the dynamics occurring in the radiating system

in Section 6. We shall review the different challenges raised by each level in view to

fulfill the dream of imaging changing orbitals during a chemical reaction.

2. Principles of tomographic orbital imaging

This section briefly presents the theoretical basis for the orbital tomography; a more

detailed account can be found in the tutorial [25]. The general theoretical framework is

provided by the quantum description of HHG for a fixed-in-space molecule interacting

with the strong laser electric field. Retrieving a complete tomographic image in principle

requires to probe the molecule from all orientations Ω = (θ, φ), defined between the laser

polarization and a chosen molecular axis (Ox). In the following, we will however restrict

our procedure to 2D imaging, by varying a single angle, θ, in one of the molecular planes,

denoted (xOy) (see Fig. 1). The reconstructed image will turn out to be the projection

of the 3D orbital on this plane. The main reason for this is that we will illustrate

the procedure by applying it to the nitrogen molecule, for which the 2D projected

reconstruction already contains all the structural information – as for any object with

(assumed) cylindrical symmetry.

From the solution |ψθ(t)〉 of the Time-Dependent Schrödinger Equation (TDSE)

for the molecule’s active electron(s) at a given orientation θ, one can express the dipole

moment:

~D(t, θ) = −e 〈ψθ(t) |r̂|ψθ(t)〉 , (1)

where e is the electron charge. The acceleration of this dipole moment is the source

term inserted in the Maxwell’s equations (wave equation) for calculating the coherent

growth of the harmonic emission [40]. Under proper phase matching conditions, the

macroscopic harmonic field EXUV (ω, θ) at frequency ω is then determined by the ω

component of the Fourier transform of the single-molecule dipole acceleration:

~D(ω, θ) ≈ Ft→ω
[
− d2

dt2
~D(t, θ)

]
≈ ω2Ft→ω

[
~D(t, θ)

]
. (2)

Using an ansatz for |ψθ(t)〉 based on the strong-field approximation (SFA) [10],

the quantum version of the three-step model results in a factorized expression for the

complex valued dipole [41–44]:

~D(ω, θ) = κ(~k) a(~k) ~d(~k) (3)
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Figure 1. Reference frame for a diatomic molecule in the self-probing scheme: (xOy) is

defined as the plane containing both the molecular axis (Ox) and the laser polarization

direction, along which the freed EWP recollides with momentum ~k. The probing

orientation with respect to (Ox) is θ.

where each factor accounts for one of the three steps of the semi classical model.

The first factor κ(~k) is the (in general complex-valued) θ-dependent tunnel ionization

amplitude, a(~k) accounts for the propagation of the laser-driven EWP in the continuum

and ~d(~k) = 〈ϕ0 |r̂|ϕ~k〉 is the (length-form) dipole recombination matrix element between

the initial orbital ϕ0 (the Dyson orbital in a polyelectronic system, see below) and the

continuum wave function ϕ~k. The asymptotic momentum of the recolliding electron, ~k,

has its direction parallel to the laser polarization, and a modulus related to ω by the

energy conservation at recombination:

~ω = ~2k2/2m+ Ip (4)

with Ip, the ionization potential of the system and m the electron mass. Note that

the SFA predicts the EWP associated to a given frequency ω to mostly follow two

semi-classical trajectories during its excursion in the continuum: the so-called short and

long trajectories [41]. The above factorization assumes that the contributions from a

single class of trajectories were selected (see Section 3.2 for the trajectory filtering in

experiments).

The complex valued recombination dipole matrix element ~d(~k) is the one needed

to retrieve an image of the molecular orbital. In order to extract this dipole from

the measured harmonic emission, one needs to determine the first two factors: the

tunnel ionization amplitude κ(~k) and the continuum amplitude a(~k) which are not

easily accessible from either theory or experiment. However, as suggested initially in

[2], one can circumvent this difficulty by calibrating the harmonic measurements with

the HHG of a reference system (typically a rare gas atom) with same Ip. Indeed, given

the exponential dependence on Ip of tunnel ionization, species with the same ionization

energy are ionized at the same time during the laser cycle, i.e. with the same potential
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barrier width. The ~k-dependence of their tunnel ionization amplitudes can thus be

assumed to be equal. Moreover, the factors a(~k), associated with the motion of the

laser-driven continuum electron wave packets, are assumed to be essentially the same in

the molecule considered and in the reference system when the driving laser field is the

same. Then, if the recombination dipole matrix element dref(~k) of the latter is known,

e.g. from theory, the molecular dipole is obtained from the ratio of the measured signals:

~d(~k) =
1

η(θ)

~D(ω, θ)

Dref(ω)
dref(~k) (5)

where the label ref is attached to the quantities obtained in the reference system for

the same laser parameters. The complex valued η(θ) stands for the θ-dependence

of the tunnel ionization amplitude in the molecule, left after the ~k-dependence has

been calibrated for. Note that the reference dipoles Dref and dref are scalars: the

recombination dipole for an atom and hence the corresponding harmonic dipole are

always polarized parallel to the electron recollision direction, and we divide by this

component ||~k.

Thus, the components of the complex molecular “free-bound” recombination dipole

vector can be determined in the molecular frame through the measurements of the

amplitudes, phases and polarization of the harmonics emitted by the molecule and

reference atom gases. The corresponding “bound-free” ionization dipole has been

measured in a number of studies through XUV photoionization (PI) spectroscopy,

using, e.g. synchrotron radiation. The HHG self-probing scheme brings two important

advances: i) it measures the dipole during the HHG emission process, which is confined

to the femtosecond/attosecond timescale; this high temporal resolution allows the study

of fast dynamical processes occurring in the molecules; ii) HHG gives access to the

spectral phase of the dipole which is not accessible in PI experiments. The latter

property allowing the retrieval of advanced spatial information on the molecule is at

the heart of the tomographic procedure.

Going further in the analysis is made possible by a basic assumption of the SFA [10],

according to which the EWP dynamics in the continuum is only determined by the laser

field with no influence of the ionic core. The scattering waves are then approximated

by plane waves, i.e. ϕ~k(~r) ≈ ei
~k·~r. The q-component (q = x, y) of the recombination

dipole in the molecular frame then writes (z is the laser propagation direction, such that

kz = 0):

dq(~k) = 〈ϕ0 | q̂ |ϕ~k〉 ≈
∫
ϕ?0(~r) q e

i~k·~rd~r (6)

=

∫ ∫ [
q

∫
ϕ?0(x, y, z) dz

]
ei(kxx+kyy)dxdy

Each component of ~d thus contains the spatial Fourier transform of

qϕ̃0(x, y) = q

∫
ϕ?0(x, y, z)dz , (7)

i.e. q times the initial orbital projected onto the plane perpendicular to the laser

propagation direction. This implies that an orbital odd in z will not contribute. For an
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even orbital with a known symmetry (σ, π . . . ) around some axis in the x-y-plane, this

projection contains the complete information.

Measuring dq for one recollision angle θ thus yields data points in Fourier space of

the object qϕ̃0(x, y). These points, with coordinates (kx, ky), all lie on a line along the

recollision angle, θ, at distances from the origin equal to the electron wave numbers k

related to the harmonic frequencies by energy conservation (Eq. 4). A whole spectrum

of XUV frequencies, mapped onto points (kx, ky) consequently yields a slice through one

quadrant of Fourier space. A discretized collection of data points is recovered slice-by-

slice over the Fourier space by repeating the measurement for a sample of θ-values. The

inverse 2D Fourier transform F~k→~r, applied to the so-obtained data, thus yields qϕ̃0(x, y)

in real space, and the sought-for molecular orbital (projection) can be reconstructed as

ϕ̃0
q(x, y) =

F~k→~r[dq(kx, ky)]
q

. (8)

An explicit, discretized version of this equation is given as equation 2 in ref. [3].

Note that from both dipole matrix element components, x and y, i.e. parallel and

perpendicular to the molecular axis, the same orbital can in principle be reconstructed.

The same scheme can be written based on the velocity form of the recombination

dipole matrix element dVq (kx, ky). The orbital can then be obtained using:

ϕ̃0
q(x, y) = F~k→~r

[
dVq (kx, ky)

kq

]
. (9)

Due to the plane-wave approximation that breaks the gauge invariance, formulations (8)

and (9) are not equivalent and may give different results. Which is the most appropriate

one is still hotly debated in the community and so far depends on the case studied [45].

While the fundamental justifications in favor of a form or the other are still unclear,

there may be technical reasons to prefer one or the other: if ϕ̃0 has a nodal plane

containing the x- or y-axis, one will run into numerical problems when dividing by x or

y in (8).

It is straightforward to generalize the principle of the procedure, presented here

for 2D reconstructions, to retrieve the full 3D orbital. The dipole needs to be sampled

in 3D – either by performing the measurements also outside the (xOy) plane, or by

extrapolating the 2D measurements to 3D applying assumed symmetries.

The orbital imaging procedure raises a number of important questions concerning

its applicability to real-world molecular systems. These questions can be divided in

two classes regarding either the experimental conditions, to assess the precision of the

measurements, or the theoretical aspects, to appraise its range of validity.

3. Experimental techniques and challenges

3.1. Alignment and orientation

The first experimental prerequisite is to control the EWP re-collision angle θ in the

molecular frame. This implies that the molecules have to be held in a certain orientation
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in the laboratory frame, where the EWP re-collision direction k̂ is fixed by ε̂IR (note that

small deviations from that exist, which may induce some distortions to the expected

dipole response [46]). Symmetry in some cases, e.g., in homonuclear diatomics, makes

it sufficient to only fix the alignment of some particular molecular axis (l), whereas

in general, one has in addition to control the up and down directions of this axis (↑),
i.e. to orient the molecule. Achieving this prerequisite is a formidable experimental

challenge and it remains an active area of research [47–50]. On the one hand, HHG

requires relatively high (∼ 1017 cm−3) medium densities, while the ones in which highly

efficient alignment and orientation are typically demonstrated are orders of magnitude

lower. This is because very high degrees of alignment and orientation demand very low

initial rotational temperatures, that are attained only in very cold gas jets produced

by supersonic expansion, employing (several) skimmers and possibly some means of

state-selection [51, 52]. Thus, a temperature-density trade-off has to be found. For 1D

alignment, this results in rotational temperatures . 100 K where significant degrees of

laser-assisted alignment are already achieved at the typical HHG densities.

For non-linear molecules, a 3D alignment is required – even if one decides to restrict

the probing and reconstruction to 2D. 3D alignment places higher demands on the

rotational cooling, and the orientation of molecules is a yet more challenging task, since

it additionally requires an asymmetric laser field that distinguishes up and down. A full

control over the orientation of molecules in the laboratory frame has been demonstrated

in very low density ensembles [51–53]. Extending it to media with sufficient densities

for HHG is one of the chief experimental challenges we identify for progress towards the

generalization of the tomographic procedure.

3.2. Harmonic generation and characterization

Once alignment is under control and the molecules are pinned down in the laboratory

frame, an intense laser pulse (typically I ≈ 1014 W cm−2) produces HHG in the aligned

medium. In the case of oriented molecules, one must ideally ensure that they are probed

only from one side, i.e., the inversion symmetry of the driving laser field must be broken.

This can be performed either by mixing the driving laser with its second harmonic or by

using few-cycle pulses with stabilized Carrier-Envelope Phase (CEP) [54]. It turns out

that gas jets required for efficient alignment/orientation (in our case: molecule density

∼ 1017cm−3 and effective medium length . 1mm), also establish medium properties that

are optimal for broad-band phase matching and minimal re-absorption. By positioning

the laser focus before the gas jet, phase matching is optimized for the contributions to

the harmonic dipole of the shortest possible trajectories for the electron in the continuum

(corresponding to excursion times . 0.65 TIR, TIR ≈2.7 fs for an 800-nm laser) [55, 56].

The measured macroscopic harmonic signal is then essentially an amplified version of

the single-molecule emission restricted to these short trajectories. Trajectory selection

is very important for ensuring the validity of both the dipole factorization in Eq. 3 and

the calibration procedure in Eq. 5 because, as already mentioned, different trajectories
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leading to the emission of the same harmonic photon have different ionization times and

thus ionization amplitudes κ and different continuum amplitudes a(~k).

For each harmonic frequency ω and orientation θ, the spectral intensity, phase

and polarization of the complex harmonic field ~EXUV (ω, θ) are in principle required to

perform the tomographic analysis. If measuring the spectral intensity of the harmonics

is relatively straightforward using an XUV spectrometer, it is experimentally much more

challenging to measure the XUV spectral phase and polarization.

As for the harmonic spectral phase, one has to realize first that one is dealing

with a quantity φ(ω, θ) depending on both the harmonic frequency and the molecule

orientation. Techniques such as FROG-CRAB [57] and RABBIT [11], designed for

the characterization of attosecond pulses, measure the spectral phase up to a constant,

i.e. up to the CEP of the attosecond pulses. This means that the phase derivative

with respect to frequency, ∂φ/∂ω, i.e. the so-called group-delay, is determined in these

experiments. Repeating such measurements for several orientations of the molecule

[3, 58] is thus not sufficient to recover the complete phase information since its variation

with orientation at a given frequency remains undetected.

To access the latter, it is necessary to measure the phase derivative with respect

to orientation, ∂φ/∂θ. Doing so for several frequencies then adds redundancy to

the data which can be used to cross-validate the measurements. An experimental

method for such measurements is high-harmonic interferometry [33, 39, 59–61], where

HHG from unaligned molecules serves as a reference, against which the phase of the

aligned/oriented molecules is retrieved from the far-field interference pattern. A similar

approach consists in producing HHG in mixed gases [62–64], where a different species not

prone to orientation – often a noble gas – provides a phase reference for extracting the

orientation-dependent phase from the interferences taking place in the mixed medium.

The measurement of the phase derivatives with respect to frequency and orientation

finally determines the spectral phase as a function of orientation up to a global constant,

which will turn out to have no importance for orbital imaging, as wave functions

themselves are defined up to an arbitrary global phase.

Eventually, the characterization of the harmonic emission can be completed by

measuring its polarization state using, e.g., the reflection off a bare silver-mirror as

a broad-band polarizer in the XUV [34, 65–67]. Ideally, the harmonic intensity and

phase – both as functions of frequency and orientation – are measured in a polarization

resolved way (as done in ref. [3]), i.e. by selecting only one polarization component of

the high-harmonic radiation. Then, the measurement of the harmonic ellipticity and

angle of the ellipse main axis provides both amplitude and phase of the perpendicular

polarization component, resulting in a complete characterization of the high harmonic

radiation.

All the techniques mentioned above are aimed at characterizing the macroscopic

harmonic field EXUV (ω, θ). Since the angular distribution of the molecular medium has a

finite width, the detected harmonic signal is the coherent addition of the fields emitted

by molecules with various alignment angles around the mean value θ (with typical
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deviations of ±10◦). Retrieving the single-orientation response from the macroscopic

signal is a field of high current interest [4, 62].

3.3. Sampling the Fourier space

The spatial quality of the orbital reconstruction is obviously determined by the sampling

in ~k, i.e., by both the discretization and the covered range of parameters – see [25] for a

detailed discussion. The finite discrete sampling combined with the PW approximation

gives in general different results for the orbitals reconstructed from the x and y dipole

matrix elements. For that reason, one performs averaged reconstructions:

ϕ̃0(x, y) =
1

2
[ϕ̃0

x(x, y) + ϕ̃0
y(x, y)] (10)

in order to balance the distortions induced in each of the ϕ̃0
x and ϕ̃0

y reconstructions.

The truly crucial parameter is the range and sampling of k values to be covered.

First, it is necessary to sample around the characteristic spatial frequencies of the orbital

(see Section 5.1). Second, it is beneficial to extend the range to high k-values. Using

a mid-IR driving laser field rather than a conventional Ti:Sapphire source allows for

a finer sampling and generation of much higher harmonic orders, since the spectrum

cutoff scales as IL × λ2IR [8, 9]. The inherent reduction of harmonic signal, which scales

unfavorably as λ−5IR [68], may be partly compensated by improved phase-matching [69–

71]. Such a plateau extension will be of particular importance for a large variety of

species with low binding energies or photo-excited and probed in a transition state, as

they will not withstand too high laser intensities.

As for the orientation, sampling θ every 10◦ may be enough to resolve typical

oscillations and nodal structures of valence shell orbitals in many cases. Another issue

for the orbital reconstruction is the need to sample the ~k-space over 360◦. This is

not a problem for asymmetric molecules, provided that they are oriented and probed

only from one side at a time, as explained above. For symmetric molecules however,

the symmetry of the orbital cannot be obtained from measurements at symmetric

orientations. Consider for example a diatomic molecule with its internuclear axis along

(Ox): a quick-and-dirty interpretation of the harmonic dipole factorization in Eq. 3

may suggest to look for phase variations when probing it from θ and from −θ. In fact,

the two measurements provide the same observable, irrelevant of the symmetry (σ or

π) of the probed orbital. This is simply because the overall orbital phase is arbitrary,

and any phase convention will be carried along by the EWP, from tunnel ionization to

recombination (as illustrated e.g. in Fig. 8 of [25]), while the “naive” scheme relies on

fixed and independent phases for the probe EWP and for the probed orbital. Up to

now, the orbital reconstructions based on the self-probing scheme were carried out on

diatomics with assumed symmetries.

In view to detect the symmetry from HHG measurements, one should rather look

for patterns resulting from interferences of the structured EWP with itself – such as

two-center interference minima, the position of which indicate whether the interfering
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emitting centers (here the orbital lobes) have opposite or equal signs [72, 73]. In the same

spirit, it has been proposed to steer the electron trajectory in the continuum to make it

recollide with the core from a different direction, and probe the orbital phase changes at

the quadrant boundaries. Steering can be performed using an elliptically polarized laser

field or a mixing of cross-polarized ωIR-2ωIR fields [74–76]. Recently, it was proposed

that the orbital symmetry could also be inferred from polarization measurements [77].

3.4. Experimental orbital reconstruction

We illustrate the application of the tomographic procedure with the N2 orbital

reconstructions reported in [3]. A cold gas jet with 90-K rotational temperature is

produced by supersonic expansion. Nonadiabatic alignment is obtained by focusing

an 800-nm 55-fs laser pulse at 5 × 1013 W cm−2 in the jet, creating a rotational

wavepacket that periodically rephases. At revival, a field free molecular alignment

along the laser polarization is obtained with < cos2 θ >≈ 0.55. A second laser pulse

focused at 1.2×1014 W cm−2 generates harmonics in the aligned medium. Two grazing-

incidence (11.5◦) reflections on a toroidal mirror and a flat mirror coated with gold

preferentially transmit the s-polarized component of the harmonic beam; the generating

laser is kept s-polarized while the molecular alignment axis is rotated to predominantly

detect the HHG polarization component parallel to the generating laser field. Finally,

a magnetic-bottle electron spectrometer is used to perform the measurement of the

harmonic spectral amplitude and phase using the RABBIT technique: the two-photon

XUV+IR photoionization of a target gas is induced by the harmonic beam in presence

of a third laser beam focused at ≈ 1011 W cm−2, the delay of which is controlled with

attosecond accuracy. The measurements were performed in the spectral range H17-H31

for a sampling of θ with 10◦-steps in the range 0-90◦. The symmetry of the orbital was

then assumed in order to cover the range 90-360◦. Argon (IArp = 15.76 eV) provided the

reference gas (IN2
p = 15.58 eV).

Figure 2b) displays the experimental reconstruction. It is to be compared to the

Hartree-Fock Highest Occupied Molecular Orbital (HOMO) projected onto the (xOy)

plane (Fig. 2a) and to a simulated reconstruction (Fig. 2c). The latter was obtained

with PW dipoles filtered for the experimental harmonic (H17-31) and orientation (0-

90◦) samplings, and projected along the laser polarization direction. The experimental

reconstruction is remarkably similar to the simulated one. The restricted harmonic

span results in a filtering of the spatial frequencies of the orbital: consequently the

reconstructed orbital is elongated with extra oscillations due to the discrete sampling.

However it retains the main features of the Hartree-Fock orbital and exhibits the

characteristic three-lobe shape with alternating signs and nodal surfaces passing through

the nuclei.

The experimental reconstruction presented in Fig. 2b is significantly different from

the one published in [2]. The main reason is that in this seminal work, only the amplitude

of the harmonic emission was measured and both the phase and the polarization were
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Figure 2. Highest Occupied Molecular Orbital of N2: (a) Hartree-Fock orbital; (b)

reconstruction from experimental data; (c) reconstruction from theoretical PW dipoles

filtered as in the experimental conditions. Black dots indicate the nuclei positions.

assumed. In particular, a π phase jump at harmonic 25 was imposed at all probing

angles, which was not observed in the conditions of Ref. [3]. Another difference lies in

the sampling: in [2], the harmonic range was H17-43. A difference in sampling may also

be the reason for the discrepancy with the theoretical reconstructions performed for N2

in [78, 79] (see Section 5.1).

4. Access to the recombination dipole moment: Open questions

4.1. Calibration for the continuum amplitude a(~k)

The calibration of the harmonic signal with a reference system in Eq. 5 has been shown

to be quite efficient in cancelling the complex amplitude a(~k) accumulated by the EWP

in the continuum (see Eq. 3) [3, 58]. In particular, its phase amounts to several tens

of π radians and overshadows the subtle phase variations of the recombination dipole

moment if not properly removed from measured data. Note that the calibration also

presents the advantage of compensating for the spectral response of the detection system

that otherwise should be determined accurately. However, the availability of a reference

gas of same ionization potential is quite limited. Besides, when several orbitals with

significantly different Ip’s participate simultaneously in the emission process (see Section

5.2), the calibration is efficient only for one contribution (in general the HOMO), and

leaves part of the continuum phase for the other ones. Thus, a theoretical issue remains,

regarding the possibility to produce reliable estimates of the time evolution of the EWP

in these molecular systems. Under the assumption of purely laser-driven continuum

dynamics, knowledge of Ip and of the laser parameters with sufficient precision should

allow using theoretical predictions. Let us mention that if the response of the reference

system does not vary smoothly in the considered spectral domain, for instance because

of a Cooper minimum or a resonance, a precise calculation of the recombination dipole,
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most likely beyond the PW approximation, must be used to compensate for this effect

in Eq. 5 – bringing considerable complications to the data analysis [80, 81]. One can

anticipate that this latter point will be of importance when wider spectral ranges are

considered, notably in relation with the advent of mid-IR laser sources. Note finally

that the calibration does not remove the angle-dependent quantum diffusion in the

continuum.

4.2. Calibration for the ionization amplitude

The operational expression of the dipole in Eq. (5) contains the θ-dependence of the

tunnel ionization amplitude of the molecule. Theoretically, it is difficult to describe

accurately this dependence because there is no easy way to extend the atomic ADK

approach [82] to the case of a non-spherically symmetric system. Indeed, to compute

tunnel ionization amplitudes, one needs an accurate representation of the asymptotic

form of the molecular wave functions, not available from standard quantum chemistry

codes. Various schemes have been explored to improve this asymptotic description

[83, 84]. Alternatively, solving the TDSE for the molecule in the strong IR field provides

computed yields containing all the entangled contributions to ionization, including

multiphoton and stepwise processes, in addition to tunnelling which is the only one

we are interested in for HHG.

4.3. What dipole is it?

The detailed balance principle states that the recombination dipole is merely the

complex conjugate of the (single-photon) photo-ionization (PI) dipole, since PI is

the reverse process of radiative recombination. A nice demonstration of the direct

relationship existing between HHG and PI spectra, is provided by the signature of the

presence of a Cooper minimum in the harmonic spectrum of Argon, at a frequency

very close to the one in the photoelectron spectrum [80, 81]. The “giant” resonance

in photoelectron spectra in xenon has also been recently observed in HHG spectra

[85]. However, several questions remain open, when trying to establish a direct

correspondence between the two processes. This is particularly true in molecular systems

where the precise calculation of the angle-dependent PI dipoles, including the correct

phase-shifts (or scattering-phase) remains a challenge for theory [79, 86, 87].

Three important questions are currently discussed:

• In principle, the detailed balanced principle does not strictly apply to HHG since

the driving laser field is present during the recombination process and may induce a

dressing of the molecular states (polarization of the molecule). For harmonic orders

close to the cutoff region, where the laser field at recombination is close to zero,

such an effect is expected to be small but it may influence harmonic orders well

in the plateau region. Single-active-electron TDSE simulations have shown, both

in atoms [87] and in H+
2 [44, 88], that this effect is negligible and that field-free

recombination dipoles may indeed be extracted from the HHG signal.
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• What happens when sharp – long lived – resonances are present in the PI dipole?

Do they appear in the HHG-extracted recombination dipole despite the attosecond

dynamics of the emission process? Indeed, HHG is a coherent process and, through

phase matching, one may select the contributions to the EWP with the shortest

excursion times . 0.65TIR ≈ 1.7 fs for an 800-nm laser. It is questionable whether

this leaves enough time for building sharp resonances the timescales of which would

be larger than, say, 10 fs. If not, the HHG dipole may be “cleaned” from such

resonances, as a result of this “temporal filtering”. This question has emerged

recently in the community and is currently much debated [89].

• Finally, it is clear that the HHG-extracted recombination dipole deviates from

the PI dipole when many different orbitals contribute coherently to the harmonic

emission. Disentangling their contributions to HHG measurement will be in general

problematic, while in PI, the energy of the ejected electron is a signature of the

ionized orbital (see Section 5.2).

Note that HHG measurements give in principle access to both the modulus and the

phase of the recombination dipole vector – which allows performing the inverse

Fourier transform and ultimately gives access to the orbital, in contrast to PI

experiments where the spectral phase is lost. Obviously, the phase is a crucial

element in this orbital reconstruction scheme since it encodes the structure of the

orbital through changes of sign (or π phase jumps) at the characteristic spatial

frequencies.

5. Analysis of the recombination dipole: Accessing the molecular orbital(s)

In this section, we review three major issues that must be carefully considered prior

to applying the apparently straightforward tomographic analysis to any experimental

molecular HHG data: deviations from the PW approximation, participation of multiple

ionization channels, and correlated multi electron processes. We illustrate our purpose

with simulations for the nitrogen molecule N2 which come as a complement to the

analysis presented in [3].

5.1. Validity of the plane-wave approximation

The plane-wave approximation for the continuum excursion is by far the most criticized

pillar of the SFA, when applied to molecules as much as in atoms. Indeed, this

approximation (equivalent to using the 1st-Born approximation in collision theory),

is a priori inadequate in the range of relatively low electron kinetic energies relevant to

HHG; in particular, it does not contain the scattering phase-shifts characteristic of the

system. This has been one of the main objections to the tomographic procedure and the

subject of theoretical investigations. Numerical experiments were performed to obtain

the harmonic dipole moment from the solution of the (single-active-electron) TDSE

in model systems. Application of the (PW) tomographic procedure resulted in very
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Figure 3. Phase of the recombination dipole matrix elements parallel to the laser

polarization for the N2 HOMO (a) and HOMO-1 (b) as a function of the asymptotic

electron momentum k. PW/CW dipole phases are shown in dashed/solid lines for θ= 0

(blue), 45 (red) and 90 (black) degree. Calculations for HOMO-1 are performed using

the velocity form. The continuum phase difference ∆φc is shown in (c) as a function of

the harmonic order. It was computed with SFA for an 800-nm laser field with intensity

1.2×1014W cm−2. and the binding energies for the HOMO (-15.58 eV) and HOMO-1

(-17.00 eV). The horizontal lines indicate the phase differences and excursion times

for the first (H17), middle (H25) and last (H31) harmonics of the considered spectral

range.

good orbital reconstructions in the three studied cases (symmetric, antisymmetric and

asymmetric orbitals) [54]. On the other hand, application of the procedure to accurate

photoionization dipoles calculated using quantum chemistry codes led to distortions of

the reconstructed orbitals [79].

In order to better evaluate the influence of the ionic potential, we performed a case

study using analytic Coulomb waves (CW) for the scattering states and Hartree-Fock

orbitals of the nitrogen molecule for the initial state: either the HOMO or the orbital

lying just below (HOMO-1). Both ionization channels have been shown to participate

simultaneously in HHG from N2 [3, 34, 90], as will be discussed in Section 5.2. In a first

step, we here consider their contributions independently. Using CW can be seen as a

first order improvement of the PW description, since asymptotically, the N+
2 ion acts on

the recolliding electron just like a proton.

Figure 3 compares the phase of the recombination dipoles ~d(~k) computed with the

PW and CW approximations for three different angles, θ, of ~k relative to the molecular

axis. The HOMO (HOMO-1) PW dipole has a phase that is a multiple of π/2 (π) for all

k, i.e. it is purely imaginary- (real-) valued. This is a direct consequence of the symmetry

properties of the orbitals, dipole operator and Fourier transform. Sharp π-rad phase

jumps indicate sign changes that are a direct manifestation of the spatial structure of the

orbital at characteristic values of k. These characteristic spatial frequencies depend on

the recollision angle, which leads to a shift of the phase jumps location with increasing

angle [72, 91]. Switching to Coulomb waves corresponding to an effective ion charge of

Z = 1 provides strongly oscillating phases for k . 0.8a.u. (i.e. kinetic energies . 9eV).

The very rapid variations at these low momenta is a direct imprint left by the CW, as
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can be seen from their partial wave expansion [92], where each angular momentum `

contributes with a phase arg[Γ(`+ 1 + iZ/k)]. However, at higher momenta – including

values typical for HHG – both series of curves show similar patterns, with the following

differences: i) beside being smoothed, the π jumps are translated towards lower k values

by an amount δk ≈ 0.4 a.u., and ii) the phases are vertically shifted by a global term

δφr that decays smoothly as k increases.

The observed momentum translation of the phase features in i) translates to an

energy shift of ≈ 15 eV in the spectral region of (0.9 a.u.. k . 2 a.u.) relevant to most

HHG experiments using 800-nm driving lasers. This corresponds to the fact that the

recolliding electron, as it approaches the core, experiences an additional acceleration by

the ionic potential, with typical energy gain of≈ Ip [93]. This is why in the interpretation

of self-probing experiments, as a first correction for the errors introduced by the PW

approximation, one modifies the relation between the recolliding electron wave number

k at recollision and the measured XUV photon energy ω by the heuristic relation:

~ω = ~2k2/2m. A similar conclusion was reached using two-center Coulomb waves in

the case of H+
2 [94]. Consequently, the heuristic relation was used for the reconstructions

in Fig. 2: the harmonic range H17-31 then corresponds to 1.39 a.u.< k < 1.88 a.u.,

and thus covers the crucial zone where the dipole phase changes rapidly, i.e., close to

a characteristic spatial frequency of the HOMO. While the (translated) phase jumps

are imprints of the bound orbital structure, the global phase shift δφr mentioned in

ii) corresponds to the CW scattering phase. In the experimental harmonic range, an

average value of δφr ≈ π/4 rad is obtained for both HOMO and HOMO-1 dipole phase.

This means that a−π/4 rad rotation of the CW dipoles results in mostly imaginary/real-

valued dipoles for the HOMO/HOMO-1, similarly to the PW dipoles.

In Fig. 4, we display tomographic reconstructions (frames e-h) using the CW

dipoles in the same conditions as in Fig. 2. Here, we used the asymptotic k-values given

by the usual relation (Eq. 4), corresponding to 0.88 a.u.< k < 1.54 a.u. This allows

probing the same “slice” of the dipole (around the characteristic π-phase jump). To

account for the PW tomographic procedure, the different k-values are then shifted by

δk in the reconstruction. Due to the smoothing of the phase jumps as well as to the

phase variation within the relevant k-range, the CW dipoles for HOMO / HOMO-1 are

not purely imaginary / real valued, even after the −π/4 phase correction mentioned

above. Using these corrected dipoles (with adapted symmetries) results in complex

reconstructed orbitals. However, the real part of the reconstructed HOMO/HOMO-

1 (shown in Figs. 4e and f respectively) are approximately 10 times larger than the

corresponding imaginary parts (Figs. 4g and h). It is noticeable that the shapes of the

orbitals thus obtained are very similar to the ones reconstructed from PW dipoles (Figs.

4c and d).

We thus conclude that, in this simple case, correcting for i) the momentum

translation and ii) the global phase shift allows relatively accurate orbital

reconstructions the precision of which is mainly limited by the accessible harmonic

spectral range.
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Figure 4. HOMO and HOMO-1 of N2 and contributions to their tomographic

reconstructions in the experimental spectral range (harmonics 17-31). Hartree-Fock

HOMO (a) and HOMO-1 (b). Orbitals reconstructed from the PW dipoles of the

HOMO (c) and HOMO-1 (d). Real/Imaginary part of the orbitals reconstructed from

the Coulomb-wave dipoles of the HOMO (e)/(g) and HOMO-1 (f)/(h) with a π/4

global phase shift applied. Real (i)/Imaginary (j) part of the orbital reconstructed

from the Coulomb-wave HOMO-1 dipole, multiplied by the continuum phase factor

exp(i∆φc) (the HOMO symmetry is enforced in the reconstruction). The deviation

from -π of ∆φc results in a small contribution to the real part of the orbital. Frames

(a) and (c) correspond to the frames (a) and (c) of Fig. 2.

Note that beside the basic corrections i) and ii) to the plane-wave approximation

discussed above, there exist other possibilities of improvements. For instance, by writing

the tomographic procedure using the velocity form of the recombination dipole, one can

include in a first-order perturbative approach the deviation from the plane wave due to

the ion field [4]. Finally, indirect retrieval procedures using iterative algorithms have

also been proposed to recover the orbital without the plane-wave approximation [78, 95].

5.2. Contribution of several channels

An additional difficulty comes into play in molecules that is absent in atoms: the

possibility to tunnel ionize through several channels, namely from the HOMO as

well as from the closest lying valence orbitals (HOMO-1, HOMO-2 . . . ), as already

demonstrated in N2 [3, 34, 90, 96], CO2 [33, 97, 98], and H2O [99]. Indeed, the probability

to tunnel ionize decays exponentially with the binding energy. While in atoms, subshells

are typically separated by tens or hundreds of eV, valence orbitals in molecules are only a

few eV apart and may be simultaneously tunnel ionized by the strong laser field. These

different ionization channels provide different coherent contributions to the harmonic

emission at recollision.

This raises the following question: Is it possible to disentangle their respective

contributions in view to reconstruct each participating orbital? First, this requires
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the absence of coupling between the different channels, couplings that may be induced

by the laser field and/or the electron correlation [34]. Second, one must consider the

recombination dipoles corresponding to each channel. In the particular case of N2, only

the first two highest occupied orbitals – separated by ≈ an IR photon energy (1.55 eV)

– are expected to contribute. We have seen above that the HOMO (HOMO-1) PW

dipole is purely imaginary (real) valued due to the orbital different symmetries. This

is still approximately the case for the CW dipoles provided that a -π/4 global phase

shift correction is applied, so that the reconstructed HOMO and HOMO-1 in Fig. 4a-

d) present very small imaginary parts that would represent “leakage” of information

in the other quadrature and mixing of the two contributions. Could we say that the

two contributions are also disentangled in the real and imaginary parts of the calibrated

harmonic dipole? In fact, the continuum dynamics in the two channels is different due to

the different ionization energies: the calibration of the harmonic dipole by the reference

(argon) gas removes the continuum amplitude a(ω) for the HOMO contribution (see Eq.

3) but leaves in particular the continuum phase difference for HOMO and HOMO-1:

∆φc(ω) ≈ ∆Ipτ , with τ , the mean excursion time in the continuum of the electron

trajectory corresponding to the considered harmonic frequency ω [100]. This is shown in

Fig. 3c). At this laser intensity, ∆φc varies around −π by ±0.2π in the H17-31 spectral

range. This deviation from −π mixes somewhat the two orbital contributions. To

illustrate this, we show in Fig. 4e,f) the real/imaginary parts of the orbital reconstructed

from the CW-HOMO-1 dipole multiplied by the continuum phase factor exp(i∆φc) with

enforced HOMO symmetry. It comes as no surprise that the HOMO-1 contribution now

goes mostly to the imaginary part with a factor 10 compared to the real part; the latter

thus hardly affects the real HOMO reconstruction when adding up the two contributions.

In the experimental reconstructions, we thus used the imaginary/real part of

the measured dipole to recover the HOMO/HOMO-1 (enforcing the corresponding

symmetry). An image of the HOMO-1 reconstruction can be found in [3].

In summary, for the limited spectral range considered here, the contributions from

the HOMO and HOMO-1 to the emission of N2 can be practically disentangled (or

disentanglable) in the imaginary and real parts of the harmonic dipole respectively.

This allows reconstructing both orbitals without significant distortions that would be

due to the mixing of the different channel contributions to the HHG spectra.

We note however that it will not always be straightforward – or even possible – to

meet proper conditions to disentangle multi-orbital contributions. For example, in CO2

probed at angle θ close to 0◦, a π phase difference between the HOMO and HOMO-2

contributions was identified as responsible for destructive interferences, manifesting as

a minimum in the harmonic spectrum. The signature of such a so-called “dynamical”

minimum is that its spectral position varies with the laser parameters (intensity and

wavelength), in contrast with “structural” minima associated to characteristic spatial

frequencies [58, 60, 62, 98, 101–103]. While it prevents a priori from performing a

clean tomographic analysis of the harmonic signal, the dynamical minimum in CO2 was

exploited in [33, 97] to retrieve fundamental informations on the ion dynamics during
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the generating process. Moreover, Vozzi et al. found conditions where the dynamical

minimum disappears, using few-cycle mid-IR (λ ≈ 1.5 µm) laser pulses, and thus could

successfully reconstruct the HOMO of CO2 [4]. Isolating the HOMO contribution by

adjusting the generating conditions was also recently demonstrated in N2 [104].

5.3. Correlated processes

Once it is realized that multichannel dynamics occur in molecules, the next step is

to consider correlated multi-electron processes. This crucial point directly challenges

the validity of the single-active electron approximation, adopted by the vast majority of

models in strong-field physics. Correlated dynamics are behind a rich variety of different

phenomena arising essentially from two simple facts:

(i) The laser field acts on all electrons of the molecule, i.e. also on those that remain

bound. It can thus polarize both the bound wavefunction in the neutral molecule as

well as the molecular ion [105]; and it may excite the molecular ion on a sub-cycle

time scale, changing the electronic configuration of the ion between ionization and

recombination in HHG, thus resulting in channel coupling and the appearance of

cross-channels [34]. The larger the molecules, the stronger the bound electrons are

likely to be affected by the laser field.

(ii) The electrons of the molecule, including the one being ionized, interact among

each other through Coulomb repulsion. As an electron is being tunnel ionized, it

interacts with the remaining electrons and may thereby electronically excite the ion

[106, 107]. When the continuum electron returns, it will again interact with the

bound electrons in the ion, possibly exciting it [89, 108].

These few examples at least demonstrate that expressing a true multi electron dynamics

in terms of single electron events quickly becomes awkward, and one loses the intuitive

and elegant interpretation of HHG provided by the semiclassical model.

Concerning ab initio simulations, since the complexity of the TDSE increases

exponentially with the dimensionality of the problem, brute force calculations are still

limited to a maximum of 2 active electrons [109]. Of the methods able to deal with

more electrons, multi-configuration time-dependent Hartree-Fock (MCTDHF) may be

the most promising one, as it fully includes correlation but also allows to gradually

“switch” it on and off by including more or less configurations [105, 110].

To date, strong-field theorists are just starting to gain qualitative and quantitative

understanding of multi-electron phenomena. A first step that brings valuable insight

is made by reformulating the matrix elements of the SFA three-step model for multi-

electron systems [95, 111, 112]. The recombination dipole matrix element can then be

written as:

~d(~k) = 〈ϕd|r̂|ϕ~k〉+ ~dex. (11)

Here, ϕd is the Dyson-orbital, i.e. the scalar product of the f -electron wavefunction of

the neutral and the (f − 1)-electron wavefunction of the ionic core, where integration



Imaging orbitals with as and Å resolutions: toward attochemistry? 20

runs over the first (f − 1) electron coordinates. This orbital takes the role of the initial-

state orbital ϕ0 in the single-active-electron formulation and can be interpreted as an

electron-hole in the ion [3, 33]. For an alternative, more general, definition of the hole

(density), see [113, 114]. The “exchange correction” term ~dex contains contributions by

all other bound orbitals of the neutral, but becomes important only if orbital relaxation

upon ionization is significant [25]. In N2, such relaxation is negligible [89], allowing a

direct recovery of the Dyson orbital. As theoretical understanding of these effects will

improve in the future, it is likely that self-probing experiments can be used as sensitive

probes for correlated multi-electron dynamics.

6. Access to the dynamics of the radiating system

We now consider both the temporal and spatial properties combined in HHG and raise

the ultimate (for the present concern) question: Can we image a dynamics occurring in

the radiating system?

6.1. Imaging the hole left by tunnel ionization

The dynamics of a “hole” – that is, the space left vacant by an absent electron –

created in an atom or a molecule by single-photon ionization can be extremely fast,

with the early response lasting about 50 as [114]. In a polyatomic molecule, electron

correlation can drive the hole across a few Ångströms in just a couple of femtoseconds

[115]. Resolving this motion in space and time is an enticing prospect and a formidable

challenge [116]. Simultaneous tunnel ionization from two orbitals creates a coherent

wavepacket (a “hole”) in the molecule that evolves during the EWP excursion, and that

is probed at the recombination instant. In the case where the orbital contributions

can be disentangled, the coherent superposition of the orbital reconstructions can be

interpreted as a snapshot of the hole at recombination [3]. In multielectron language,

the Dyson wave-packet extracted via time-resolved HHG-tomography (interpreted as the

hole left in the ion) is a coherent superposition of the Dyson orbitals associated with

all channels contributing to the signal (provided that the EWP freed in each channel

can be factorized, i.e. is about the same [25]). Varying the generation parameters (laser

intensity and wavelength, long trajectories) provides different ways for controlling the

EWP recombination time and thus for probing the hole at different instants.

A currently debated question is the value of the initial phase between the different

channels because it determines the initial location and shape of the hole after ionization

[33, 97]. Such a phase could appear between the different ionic states due to nonadiabatic

dynamics of electron rearrangement during tunnel ionization. While it does not seem

to be the case in CO2, recent experiments give indication for a significant phase in N2

for cross-channels [34].

Can the above study be generalized to a more conventional pump-probe scheme

to study dynamics not induced by the HHG driving laser field? For instance, to
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follow the ”frontier” orbital of a photo-excited system? A number of new issues arise.

Experimentally, in dynamical studies of photo-excited systems, the HHG emission by

the pumped molecules will represent only a small fraction of the total signal since the

pumping efficiency is presumably below 10%. It may thus be necessary to implement

advanced detection techniques aiming at increasing the signal-to-noise ratio, such as

excitation gratings [28, 39].

6.2. Compromise temporal/spatial resolution

A more fundamental problem is the trade-off between temporal and spatial resolutions

that must be performed because the different harmonic orders are associated with

different electron trajectories and thus with different recollision times. A broader HHG

plateau provides a wider Fourier domain – thus a finer spatial resolution, but it results

from events occurring over a larger time window, which spoils the temporal resolution.

Consequently the single image that they provide altogether may be blurred or even

distorted if the studied dynamics is too fast [116]. If one leaves aside the encoded spatial

information, the optimal temporal resolution is obtained by considering the ultrashort

recollision delays between two consecutive odd harmonic orders i.e. the group delay

dispersion related to the so-called attochirp [117]. At laser intensities ≈ 1014 W cm−2,

the group delay dispersion is of the order of 100 as/2ω0 ≈ 20, 000 as2 for a 800 nm laser.

This indeed provides an extreme temporal resolution that can be extracted from the

experimental data and combined with a priori knowledge of the spatial structure of the

orbitals to reconstruct the dynamics occurring in the molecule, as performed in [33, 97].

In the tomographic procedure, a fair resolution trade-off can be reached by using

only a group of harmonic orders (e.g. H17-31 generated in N2) to reach an Ångstrom

spatial resolution, but limiting the temporal resolution to ≈ 600 as [3]. The latter may

be sufficient to probe a molecular electron hole wave-packet as it stands on one side of

the molecule – since its dynamics has a fs period (3 fs in the case of the HOMO/HOMO-

1 superposition in N2) and the space resolution is enough to distinguish lobes and nodal

surfaces, such as the three lobe structure of the nitrogen HOMO.

Note that the reconstructed images are distorted – not just blurred – by the

difference in continuum phase accumulated by each channel: as discussed above, the

continuum phase ∆φc somewhat mixes the orbital contributions but the corresponding

distortions remain small in our case. Furthermore, the generation parameters such as

laser intensity and wavelength can be used to control ∆φc, and in particular to decrease

its variation in the measured spectral range and minimize the corresponding distortion.

In conclusion, one can state that a reasonable trade-off can be reached, making it possible

to obtain both Ångström and sub-femtosecond resolutions.
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7. Conclusion

We have reviewed the experimental and theoretical challenges raised by the tomographic

imaging of valence orbitals using the “self-probing” scheme. Experimentally, it relies on

the full characterization of the attosecond emission from aligned/oriented molecules

interacting with a strong laser field. Theoretically, it recovers from this data the

amplitude and phase of the molecular-frame recombination dipole that gives direct

access to the bound orbital through a Fourier transform. This procedure involves

a number of approximations/simplifications that need to be assessed carefully. In

particular, we have shown that the spectral phase of the Coulomb-wave recombination

dipole encodes the orbital structure, that can be recovered using first-order corrections

to the plane-wave approach. Moreover, one can find conditions where multi-channel

contributions are disentangled in the real and imaginary parts of the harmonic dipole.

Finally, a compromise between temporal and spatial resolutions must be performed

but a reasonable trade-off can be reached, making it possible to obtain “snapshots” of

electronic wavepackets with both Ångström and sub-femtosecond resolutions.

How much can these conclusions be generalized? It is far beyond the current

knowledge to answer this question. Presumably, this will not apply to a number of

systems, due to multi-electron effects and structured continua. However, in some cases,

one may be helped by the “cleaning” of the continuum from sharp resonances performed

by the attosecond timescale of the emission process (see Section 4.3). Another important

question is the feasibility of time-resolved orbital tomography, i.e. of making a “movie”

of the changes in the valence orbitals, e.g., in the course of a chemical change. This would

give direct access to the electron cloud dynamics as well as to structural information such

as bond lengths and molecular geometry. A difficulty is that both types of information

are inherently intertwined via the “vibronic” structure of the excited molecular states.

This has been demonstrated experimentally in relatively simple systems such as H2 and

its isotopes [29, 118], N2 [104] or even H2O [99], and theoretically for a collection of

larger molecules [119–121].

In spite of these difficulties, these benchmark studies clearly evidence the richness

of information encoded in the measurable complex HHG dipole. The tomographic

procedure is nothing but a way of retrieving and presenting the information, and

alternative methods – at first glance less spectacular but in principle as informative as

orbital imaging – can be invoked when tomography is not applicable. Several significant

advances in this direction have already been achieved in unaligned molecules using high-

harmonic spectroscopy. They include:

(i) Following in time the ultrafast dissociation of Br2 molecules [39]; The principle of

the technique is to monitor the harmonic signal emitted by molecules brought in

a superposition of the fundamental and of a dissociative state with the help of a

pump pulse. Depending on the internuclear distance, destructive or constructive

interferences can take place between the amplitudes originating from each states,

and one can follow the transition between harmonic emission from molecular Br2
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to the limiting case of separated Br atoms (at distances > 9 Å).

(ii) Exploring conical intersection dynamics in the NO2 molecule [122]. The dependence

of the harmonic signal on the excitation time delay contains the signature of the

nuclear motion involving the simultaneous bending and asymmetric stretching of

the O–N–O bonds, close to the crossing of a conical intersection. This provides

original information about the evolution of the electronic and nuclear molecular

wave-packets in the course of the dissociation NO2 →NO+O.

In conclusion, high harmonic generation appears as a most promising tool for the

development of attochemistry, i.e. the perspective of following chemical reactions by

probing and ultimately steering electrons and nuclei on the attosecond time-scale. From

the experimental point of view, accessing the complete recombination dipole requires

to fully characterize the harmonic dipole vector in the molecular frame: besides the

improvement of light characterization methods in the XUV domain, it implies the

development of efficient alignment/orientation methods of larger molecules, ideally in

three-dimensions. From the theoretical point of view, the effort will be concentrated on

the interpretation of the complex dipole. Tomography provides one way of extracting

and representing the attosecond and Ångström resolved information, but it is certainly

not the only one and alternative efficient methods emerge as HHG-based attochemistry

grows. The dream of observing the electronic and structural changes inside a molecule

during a chemical reaction becomes reality!
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Meijer G 2009 Phys. Rev. Lett. 102 023001

[53] Guerin S, Rouzee A and Hertz E 2008 Phys. Rev. A 77 041404(R)
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