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Abstract. The material presented in this chapter is based on important advances
realized in “attophysics” which make feasible to follow the motion of electrons in
atoms and molecules with attosecond-level time resolution. In this context, time-
delays have been recently determined in the process of photoionization by extreme-
ultra-violet (xuv) pulses and the question of the significance of these measured
delays arises. As we shall outline here, numerical experiments show that they are
intimately related to the structure of the ionized species’ continuous spectrum. An-
other point addressed here is that, in experiments, the measurements have the com-
mon characteristic to be performed in the presence of an auxiliary infra-red (IR)
field, used to “clock” the timing of the process. This implies to adapt the theory
treatment to handle such “two-color” photoionization processes. We review a sys-
tematic analysis of these features that are characteristic of this class of electronic
transitions, when viewed in the time domain.
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1.1 Introduction

“Attophysics” has emerged in the 2000s with the advent of a new genera-
tion of radiation sources delivering attosecond pulses of Extreme Ultra-Violet
(xuv) radiation via the High-order Harmonic Generation (HHG) process [1-3].
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These new sources allow the photoionization process to be considered as tak-
ing place at a well defined time within a brief time window with attosecond
resolution. This opens up the possibility to achieve the real-time probing and
control of electron (or hole) dynamics on a sub-femtosecond time scales [4,5].
It is in this very active context that several different experiments have evi-
denced attosecond time-delays that are associated with the photoionization
process [6-12]. Complementary interpretations of these experiments has been
reviewed within the frameworks of both the time-independent [13] and the
time-dependent picture [14].

This set of results have been obtained thanks to the advances realized in
both the attosecond metrology and generation schemes of XUV pulses through
HHG. One has led to the generation of isolated pulses with duration down to
80 as, [15] while the other has resulted in the emission of attosecond pulse
trains, with bursts of XUV radiation having durations down to 63 as [16]. When
recombining such XUV pulses with an infrared (IR) laser radiation, one can
realize two-color pump-probe experiments, with sub-femtosecond temporal
resolution. One important outcome has been to study the photoionization of
atoms in the time domain, thus evidencing intrinsic time-delays associated
with the process [6,9-11]. As we shall show, the physical significance of the
delays so measured depends on the electronic structure of the excited species,
including the influence of resonant states. Regarding the input of attophysics
in this latter field, c.f. refs. [17-19]

Before to proceed, we wish to make clear the distinction existing between
the attosecond scale relevant to intra-atomic electronic transitions and the
much longer time scale governing the detection of the wave packet created
in the ionization process. When the atom is irradiated by an attosecond XUV
pulse, the width of the energy content of the photoionized wave packet is
governed by the time-energy uncertainty principle. While traveling over a
macroscopic distance towards the detector, the motion of the maximum of the
density probability is essentially classical. In parallel, all energy components
of the electron wave packet (EwP) will spread so that the spatio-temporal
structure also reaches the macroscopic realm. This allows for direct detection
of the electron energy distribution as a function of time-of-flight to the detec-
tor. The important point is that, although the electronic transition is taking
place on an attosecond scale, in the presence of the IR clock a signature of
the time-development of the process can be extracted from the photoelectron
spectrum.

The organization of the chapter is as follows: In sec. 1.2, we will follow
the wave packet evolution using time-dependent simulations and extract the
delays due to the microscopic interactions that have occurred in the target.
The results are directly compared with theoretical delays obtained from time-
independent scattering theory. In sec. 1.3 we provide an interpretation of the
microscopic delays in photoionization using a formalism designed to compute
two-photon (XUV-IR) matrix elements. In sec. 1.4 we give a review of experi-
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mental work on photoionization delays using two-color (XUv-IR) fields. Finally,
in sec. 1.5 we present our conclusions.

1.2 Phase-shifts and time-delays

1.2.1 Formal definition of a photoionization delay

The characterization of the dynamics of a photoelectron wave packet com-
monly refers to the notion of scattering time-delay developed in the context
of quantum collision theory [20,21]. A wave packet scattered by a potential
experiences a delay as compared to free motion. Wigner and his collabora-
tors [20,21] first pointed out that this delay can be characterized through the
spectral derivative of a phase shift 7:

on

T="h 9E (1.1)
where E represents the particle’s energy '. A stationary-phase derivation
shows that this delay, evaluated at the energy of maximum amplitude, repre-
sents the delay induced by the potential on the traveling particle, compared to
the time it takes a reference particle (typically a free particle) with the same
energy to cover the same distance: In Eq. 1.1, it is implicit that 7 is the phase
difference (or phase shift) between the scattered and the reference waves 2.
It must be clear also that the reference has to be chosen to match the scat-
tering wave in the incoming region (usually far from the interaction region).
Moreover, since a collision treated quantum mechanically is described with
the help of wave packets, its dynamics can never be completely represented
by a unique delay: The group delays are representative quantities in principle
only for near Fourier-limited, ideally Gaussian distributions.

Extending Wigner’s formalism to photoionization processes is straightfor-
ward if one admits that a photoelectron experiences a “half collision” as it is
ejected, while remaining under the influence of the ionic core [13]. Further, a
group delay can be assigned to the spectral phase that the photoelectron wave
packet accumulates during and upon the transition. This comes in addition to
the imprint of the driving electric field phase exploited in standard Xuv pulse
characterization techniques such as RABBIT [24,25] or FROG-CRAB [26].

Scattering delay

In the case of one-photon ionization, the only contribution to the phase of the
EWP is associated with the real-valued continuum wave function selected by

! Other formal definitions can be invoked, see Ref. [22] for a comprehensive review.
2 The stationary-phase approximation is discussed in e.g. Ref. [23]
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the transition [27]. Just as for collisions, that phase is actually a phase shift,
the definition of which comes with the choice of a reference.

When taking the free-particle as a reference, the overall scattering phase
associated with photoionization decomposes as the sum of a short-range and
a long-range contributions,

N = Nsr + Mir (1-2)

The long-range term, 7.z, is due to the asymptotic Coulomb tail associated
with any atomic or molecular ionic core potential and it depends logarithmi-
cally on the electron position. The short-range term, 7gz, contains a signature
of the detailed interactions between the released electron and the remain-
ing ones which constitute the ionic core, as well as the multi-center nuclear
structure in the case of molecules.

According to Eq. 1.2, the group delay associated with scattering upon
photoionization reads as the sum

ﬁ _ Onsr | O

= 1.
OF 2 OF (1)
~ S =

of a long-range delay 7z and a short-range delay 74r. While 7, is everywhere
modified by the infinite-range influence of the Coulomb potential, 7y con-
verges after some finite distance representative of the size of the atom or the
molecule, i.e. beyond the influence of the short-range component of the po-
tential. As already mentioned, the implicit reference in Eq. 1.2 and 1.3 is the
free motion.

Note that for practical reasons, scattering phase shifts and Wigner-like
delays are usually assigned to angular momentum components of the com-
plete EWP expanded on a partial wave basis. Partial-wave decompositions are
essential in atomic calculations as they allow the use of angular momentum
theory. Formal links between the Wigner delay, the lifetime matrix, ¢, and
the scattering matrix, S, were first derived by Smith [21]. In the present con-
text, such constructions provide a way to separate the total wave packet into
partial wave packets in different ionic channels. The dynamics of each of these
can be properly characterized by a simple Wigner-like group delay.

Besides, when choosing specific representations of the continuum, the scat-
tering phase shift sometimes manifests as a contribution to the phase of a
complex valued wave-function. This occurs for example when treating the
continuum with conventional scattering waves, initially developed in the S-
matrix formalism to represent a full collision. This phase then shows up as the
argument of the associated (otherwise real-valued) transition matriz element:
One indeed often refers to the scattering phase shift as the “phase of the dipole
matrix element”. Similarly, it was shown recently that the one-photon dipole
matrix element becomes complex if correlation effects are included perturba-
tively on a basis of uncorrelated single particle function products [28].
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Beyond 1-photon transitions

The fact that the real-valued dipole operator itself does not bring any
contribution to the phase of the released EWP reflects the instantaneous
nature of single photon absorption (or its annihilation in the quantum-
electrodynamics formalism). However, in multiphoton transitions associated
with above-threshold ionization (ATI), i.e. when intermediate states lie in the
continuous spectrum, the transition operator (typically the Green operator in
a 2-photon transition) becomes complex, thus bringing an additional contri-
bution to the spectral phase of the released wave packet.

Following the line of reasoning developed for the scattering delay, this
additional phase can be used in the time domain to introduce a “transition
delay” 7. accounting for the temporal shaping of the EWP as it builds up
during the transition [29]. In particular, it can be interpreted as a transition
duration when the energy transferred by one of the photons coincides with the
excitation energy towards a resonant state possessing a significant lifetime 7g:
Tua 18 then related to 7q and represents the time spent by the system in this
intermediate resonance before transiting toward the final state 3. Experimen-
tally, accessing this “transition phase” requires an interferometric setup with
two paths leading coherently to the same final continuum state. These re-
quirements are met by the RABBIT technique [31], a method initially designed
to characterize attosecond XUV pulse trains using an IR pulse as an external
clock [24,25,32,33]. This technique was thus revisited in [7,8,29,34] to inves-
tigate XUV-IR 2-color photoionization in the time-domain, where two distinct
2-photon transitions probe each other.

Furthermore, it was shown that the phase of the transition matrix ele-
ment in two-photon XUV-IR ionization through an intermediate continuum
is related to the short-range scattering phase shift (nsg) of the intermediate
state [10,13, 35, 36]. It was verified numerically for hydrogen that the inter-
mediate scattering phase could be recovered with high fidelity if a universal
phase shift, called the continuum—continuum phase, was subtracted from the
two-photon matrix element [36]. This reinterpretation of RABBIT measure-
ments [10], which states that the one-photon ionization delays can be experi-
mentally obtained, has now been verified by diagrammatic methods for both
neon and argon atoms [37]. In this reinterpretation, the IR pulse is seen as
a probe used to characterize the dynamics of XxuUv-driven 1-photon ioniza-
tion 4. The RABBIT setup shares fundamental similarities with the streaking
technique [14,36,38], which (i) also consists of HHG-based XUV-pump IR-probe
schemes, (ii) was initially conceived to characterize XUV pulses (using a FROG-
CRAB analysis), and (iii) had already been revisited to access photoionization
delays [9]. The main difference lies in the pulse properties: XUV pulse train

3 See eg [30] for a comprehensive derivation and exploitation of transitions delays
in the particular context of resonant X-ray Raman scattering.

4 Note that the two reinterpretations of RABBIT in terms of transition or scattering
delays are not contradictory, but rather complementary.
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and weak IR field in RABBIT wversus broad, single XUV pulse and moderate
IR field for streaking. Section 1.3 of the present chapter is dedicated in more
details to the specific subject of probing one-photon ionization delays using
dressing IR fields, but first we turn to time-domain simulations of microscopic
delays and compare the results with scattering theory.

1.2.2 JTonization dynamics in numerical experiments

The physical relevance of the scattering delay as defined above can be ad-
dressed in simulations of photoionization, where the actual dynamics observed
in numerical experiments is compared to the delays evaluated from energy-
dependent scattering phase shifts, using Wigner’s formalism. To this end, we
used simple models of atoms allowing extensive numerical experiments where
the formal delays are compared to the exact (numerical) solution of the time-
dependent Schrédinger equation (TDSE).

The model atoms

E.=+186eV E =+187eV
(1.7 fs) T\ (544fs)  ——

Electron energy [eV]

-10 0 10 -10 0 10 -10 0 10
Electron position x [a.u.] Electron position x [a.u.] Electron position x [a.u.]

Fig. 1.1. Model potentials used in our simulations. The potential for model
atom A (left) consists in a simple soft-Coulomb term. The potentials for model
atoms B (center) and C (right) contain additional barriers inducing structures in the
continuum. Horizontal lines represent discrete energy levels: bound states (E < 0,
yellow) and resonances (E > 0, red). The line styles indicate the parity of each state:
even (full) or odd (dashed). The energy (and life-time) of the states relevant for our
simulations are also indicated.

Our generic model consists in a single active electron (with position )
interacting with an effective core through a symmetric potential in one di-
mension. We will consider three different potentials defining three different
systems: A, B and C. Atom A is built on a simple soft-Coulomb potential ®,

V() . (1.4)
) = ——— .
Vot @

5 The equations are displayed in atomic units: i =m = e = 1/(4mep) = 1.
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where the regularizing parameter a is the main knob to control the energies
of the bound states. The potentials for atoms B and C read

1
va? 4+ a?

where G(z) represents two symmetric hyper-gaussian barriers, see Fig. 1.1.
In such models, the short-range barriers are adjusted to design shape reso-
nances, accounting qualitatively for the mean-field interaction between the
active electron and the frozen cores. The spectral positions of the shape res-
onances depend mainly on the barrier separation, and their widths on the
height and width of the barriers.

Note that because we use symmetric potentials, the discrete bound states
wave-functions are alternately even and odd (starting with an even wave-
function for the ground state) whereas degenerate even and odd continuum
states are found for any positive energy. This property is of first importance
in the simulations since a dipole transition between two such states is allowed
only if their parity is opposite, allowing for a direct treatment of the continuum
in terms of real-valued wave-functions [27,29,39], with defined parities. In the
following, we denote ¢g ,(r) the continuum eigenfunction associated with
the positive energy E and parity p (+1 and —1 for an even and odd parity
respectively). The potentials were adjusted to create a relatively broad, odd
resonance near threshold in atom B, and a narrower one, also odd, in atom C
(see Fig. 1.1).

The time evolution of the system’s wave-function ¢ (z,t) follows the time-
dependent Schrédinger equation:

Viz) = — +G(z) (1.5)

1 92

AN A V()| W) (1.6)

0

"ot
where the interaction with light is treated in the velocity gauge (A - p) rep-
resentation of the dipole approximation. We solved it numerically using the
Crank-Nicolson algorithm [40]. The temporal dependence of the vector po-
tential A(t) is defined by a carrier frequency wg and a generic sin®-envelope
centered at t = 0, with a duration of 100 cycles FWHM. In the range of consid-
ered photon energies (15.8 eV < wy < 18.8 eV), it represents pulse durations
of ~ 25 fs, which lies between the lifetimes of the resonances in atom B (1.7
fs) and in atom C (54.4 fs). The XUV pulse intensities were kept low enough
so that non-linear effects could be safely neglected.

1-photon transition dynamics and scattering delay

We present here results illustrating the relevance and limitations of the for-
mal scattering delay (Eq. 1.3) as a characteristic time of 1-photon ionization
dynamics. More precisely, our study focuses on the short-range contribution
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Fig. 1.2. Model atom B (ground state) @ 17.55 eV — (a) full blue curve:
electron spectrum (the vertical line indicates the mean energy under the peak E);
dash-dotted green curve: phase shift of the odd scattering state (atom A as a ref-
erence); (b) full red curve: electron flux j(z4) evaluated at zq = 1000 a.u. versus
propagation time; dashed red curve: j(z4) evaluated at the same distance when
photoionizing the reference atom A with a pulse adjusted to obtain the same aver-
age energy F; vertical lines: average times under the peaks, Tor (full) and TOF . of
(dashed) respectively. For a better readability, the spectrum and flux data were

normalized to 1 at their maximum values.

to the delays, 74x: we thus investigated the photoionization dynamics of atoms
B and C, taking atom A as a reference (see Fig. 1.1).

We first detail the procedure for a near resonant ionization of atom B,
where the resonance is short-lived enough to induce negligible distortions on
the bell-shaped temporal and spectral profiles, but where the delay is large
enough to be visualized on the wave packet temporal profile. We present
afterwards the results obtained near a sharper resonance and in a smooth
continuum.

Near a broad resonance

Our analysis consists in merging temporal and spectral information retrieved
from photoelectron wave packets. Figure 1.2(a) displays the spectral profile
o(E) of the wave packet created by ionizing atom B initially in its ground
state, with a pulse of central energy wy = 17.55 eV. The spectrum was re-
trieved by using the spectral analysis technique described in Ref. [41]. The
wave packet is centered close to the resonant energy (Er =1.87 eV), within
its width (I'r = 0.383 eV). The associated mean photoelectron energy com-
puted as
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Fig. 1.3. Model atom C (ground state) @ 17.55 eV — (a) full blue curve:
electron spectrum (the vertical line indicates the mean energy under the peak F);
dash-dotted green curve: phase shift of the odd scattering state (atom A as a ref-
erence); (b) full red curve: electron flux j(zq) evaluated at zq = 1000 a.u. versus
propagation time; dashed red curve: j(z4) evaluated at the same distance when
photoionizing the reference atom A with a pulse adjusted to obtain the same aver-
age energy F; vertical lines: average times under the peaks, ToF (full) and TOF of
(dashed) respectively. For a better readability, the spectrum and flux data were
normalized to 1 at their maximum values.

E=— [ Exo(E)dE (1.7)

where P,, is the total ionization probability, is equal to 1.86 eV. From the
temporal point of view, we characterized the wave packet dynamics by com-
puting the electron flux as a function of time at a position z, = 1000 a.u,
beyond the short-range part of the potential, as

J(@a,t) = Im {[Y(za, )¢’ (24, 1)} (1.8)

where 1)’ is the first order derivative of ¥ with respect to x and * stands for
complex conjugate. From the flux, shown in Fig. 1.2(b), we defined a numerical
“time-of-flight” as the average arrival time at the virtual detector,

1
TOF(24) = — [ t x j(zq,t)dt . (1.9)
ion J
In the considered case, it amounts to 64.04 fs. That average value is indeed
close to the time it would take a free particle with a kinetic energy of 1.86
eV to travel the distance of 1000 a.u (65.42 fs), and the difference evidences
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Fig. 1.4. Scattering delays evaluated as a time-of flight difference (circles) and
as a formal group delay (full curves), as a function of the mean photoelectron energy
E (see text). (a) smooth continuum: ionization of atom B compared to ionization
of atom A, both from their first excited state (the resonance is transparent the
transition, for parity reasons); (b) broad resonance: ionization of atom B compared
to ionization of atom A, both from their ground state; (c) sharp resonance: ionization
of atom C compared to ionization of atom A, both from their ground state.
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the influence of the potential on the electron motion, all along the way to the
detector.

To reveal the role of the short-range barriers on the release dynamics, and
more specifically on the ToF value, we simulated the photoionization of the
reference atom A (with the interaction potential restricted to the soft Coulomb
term) with a central pulse frequency finely adjusted to create a wave packet
with the same average energy £ = 1.86 eV. The flux computed at z, for
this reference transition presents a temporal profile similar to the near reso-
nant transition in atom B (also displayed in Fig. 1.2(b)). It is however clearly
shifted towards shorter times: The associated average time-of-flight, ToF ¢, is
equal to 62.40 fs. The time-of-flight difference

ATOF = TOF(x,) — TOF of(Z4) (1.10)

is equal to 1.64 fs. It is a numerical evaluation of the delay induced on the
released wave packet by the short-range barriers in atom B, seen from a time-
dependent perspective, to be compared to the formal scattering delay.

We thus numerically computed the real-valued continuum eigenfunctions
selected by the transition [39] ¢ ,(x) for atom B and qb%fi(m) for the reference-
atom A and finally determined their relative phase shift n,(E). The phase shift
7—1(E) computed in the energy range covered by the wave packet is shown as a
dashed curve in Figure 1.2(a). It undergoes a smooth ~ 0.67 jump spread over
the resonance width. Its spectral derivative evaluated at the average energy
E, i.e. the formal scattering delay ..., is equal to 1.65 fs, which is remarkably
close to the value of AToF.

The procedure was then repeated for a set of pulse frequencies near the
resonance. Figure 1.4(b) compares the values of AToF (circles) obtained in
the time-dependent treatment (Eq. 1.8 — 1.10), to the group delays 7., (full
line) derived from the scattering phase shifts and evaluated at the mean wave
packet energies E. The two sets of data follow a typical bell-shaped curve,
with a maximum at resonance reaching the resonance lifetime I'y ' = 1.7 fs.
They are in very good agreement with the most noticeable discrepancy at
resonance (E ~ 1.87 eV), i.e. where the wave packet distorsion is expected to
be maximum.

Near a narrow resonance

The situation is different when the transition reaches the vicinity of a reso-
nance narrower than the pulse spectral width. A representative case is given
by the resonant ionization of atom C taken in its ground state.

In the wave packet launched by a hwy = 17.55 eV pulse, the resonance
now manifests as a sharp, prominent, peak distorting the otherwise smooth,
bell-shaped spectral profile, as displayed in Figure 1.3(a). Furthermore, the
electron flux shown in Fig. 1.3(b) (still computed at z, = 1000 a.u.), now
displays an asymmetric tail towards larger times — a direct signature of the
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resonance’s exponential decay. At this point, it is already clear that such a
structured wave packet cannot be accurately characterized by a single energy
(eg E), nor its elongated temporal profile by a single time (eg Tor). Taking
again atom A as a reference provides a time of flight difference ATor =
28.46 fs, while the formal delay derived from the scattering phase shift 7_1 (E)
(shown in Figure 1.3(a)) at the average energy E is above 50 fs.

We again repeated the simulations by changing the central frequency, and
reported the delays in Figure 1.4(c). Although both sets of data display the
same peaked shape centered at the resonant energy EFr = 1.86 €V, they present
clear discrepencies. In particular, the maximum value reached by AToF is
approximately twice smaller than the actual resonance lifetime and the ATor
peak is broadened by the light pulse width, as compared to the .., peak.

In a smooth continuum

The formal scattering delay, validated before as representative of the ioniza-
tion dynamics near a broad resonance, is expected to be just as relevant in a
smooth continuum. To illustrate this, we simulated photoionizations of atom
B, now initially considered in its first excited state with odd symmetry. The
pulse central frequency was varied to end up in the same electron energy re-
gion, between 1 and 3 eV. Selection rules are such that now, the odd resonance
is transparent to one-photon transitions, for parity reasons.

We followed the same time-energy analysis as for the two previous cases.
The delays, computed as the time-of-flight difference AToF on the one hand
and as the phase shift derivative 7,., on the other hand, are compared in
Figure 1.4(a). The delay evolves monotonically, and the two sets of data are
indeed in very good agreement.

The results presented above illustrate the validity of the formal scattering
delay as representative of the average one-photon ionization dynamics, at least
when the created wave packets are unstructured enough both in the energy
and time domains. We mention that the significance and relevance of the
formal transition delay can be evidenced in a similar manner in two-photon
ionization simulations [29, 34].

1.3 Analysis of two-photon XUV +IR ionization

A real-world time-of-flight spectometer for detecting photoelectrons oper-
ates on the basis of separating different energy (or momentum) components
through macroscopic propagation [42,43]. Indeed, this constitutes a frequency
domain measurement and information about microscopic time-delays can-
not be resolved. However, if the photoionization process is modulated by an
IR laser field, it is possible to encode some temporal information into the
spectral domain by construction of a so-called spectrogram over photoelec-
tron kinetic energy (or momentum) and sub-cycle delay between xuv and IR
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fields [26,31, 44, 45]. This is done by repeating the experiment as a function
of the delay between XUV and IR fields. Still, timing information about the
one-photon process is not directly recorded and further theoretical calibration
is required, as we shall briefly discuss in this section.

In the presence of an IR laser field, the photoelectron released upon ab-
sorption of one XUV photon can further absorb and emit IR photons, thereby
changing its energy. Provided that the IR field is weak, the energy of the
electron will change as the result of the exchange of only one IR photon at
most, so that the overall process amounts to a two-photon transition. These
measurements are based on the interference of several multiphoton pathways
that lead to the same final continuum state. The contribution from the final
state scattering phase cancels out and the so-called transition phase through
the different pathways will determine the observed delay in the measurement.

In the following, we will restrict the analysis to ATI in a smooth contin-
uum where the photoelectron interacts perturbatively with both the Xxuv and
IR fields through second-order perturbation theory. The two-photon process
induced by the linearly polarized field, F(w), is expressed as an S-matrix:

_ L

@)
S 2mi

/dw’ M2 () BEw') EW"), (1.11)

where the two-photon matrix element from the initial state |i) (with energy
€;) and to the final state |f) (with energy €y) is

M) i S ERE
E =0+ 4 (6 + W' — € + i)

(1.12)

with w’ being the energy of the first absorbed photon and where the integral-
sum runs over intermediate states n (with energy e,). The integral over w’
in Eq. (1.11) can be seen as a sum over all quantum paths that lead from
the initial state to the final state with the energy-conservation requirement:
W' +w” = €5 —¢;. In our two-color case, the field has two different components
at XUv and IR frequencies for the pump and probe fields, respectively. The
dominant contribution to Eq. (1.11) can then identified as the process with
absorption of one XUV photon followed by exchange of one IR photon. If both
components have a broad bandwidth then there is a broad range of photon-
pairs available. However, the effects of this convolution are negligible if one of
the fields is quasi-monochromatic. We will assume that the IR field is quasi-
monochromatic with frequency wig = w and with a bandwith Ajr that is
narrower than the bandwidth of the Xuv field with frequencies {2~ and 2.
The two dominant quantum paths become:

a 1
Si) ~ =M (20 B(02)Ew) A
© o L@ )
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Fig. 1.5. Photon-diagrams for laser-assisted photoionization: Single XUv-photon
absorption contributes with a direct path (d) to the final state. The dominant two-
photon processes involve the absorption or emission of a laser photon indicated by
paths (a) and (e). Higher-order processes involve the exchange of more laser photons.
Figure adapted from Ref. [35].

corresponding to absorption (a) and emission (e) of a laser photon from the
fields as depicted in Fig. 1.5. Note that the intermediate XUv photon energy
is different in the two paths to ensure global energy conservation. For this
class of multiphoton processes numerically exact computations can only be
performed in one-electron (hydrogen-like) and two-electron (helium-like) sys-
tems. In single-ionization events the wave packet can be described as a single
excited electron at a large radial distance far from the ionic core. Within
the single-active electron approximation, it is feasible to derive a convenient
approximation method designed to evaluate the time delay induced by the
IR-driven transition in the continuum. It has been demonstrated that the
main results from this analysis also hold for the delay in photoionization from
many-electron atomic systems [37,46].

1.3.1 Asymptotic approximation for ATI transition amplitudes

In order to obtain an estimate for the phase of the two-photon matrix element,
we will rely on an approximation, which utilizes the asymptotic continuum
forms of the final state and of the first-order perturbed wavefunction. Special-
izing to the case of a hydrogenic system with nuclear charge Z, the S-matrix in
Eq. (1.11) can be evaluated approximately, as shown in Ref. [36]. One notices
that the phase of the two-photon matrix element contains only phase-shifts
that are governed by the angular momentum A of the intermediate state, i.e.
a state that can be reached via single-photon ionization. More precisely, for
a given transition channel (characterized by the angular momenta of the in-
termediate and final state: ¢; — A\ — L), the phase of the matrix element
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Fig. 1.6. (a) Continuum-—continuum phases: ATI phase-shifts for absorption (a)
of one 800nm laser photon; and for stimulated emission (e) of one laser photon,
in a Coulomb potential with Z = 1. The asymptotic approximation (P) provides
the correct qualitative behaviour, while the long-range amplitude corrections (P+A
and P+A’) lead to quantitative agreement, at high enough energy, with the exact
calculations in hydrogen (+ and x). (b) Ionization delays: The Wigner delays for
hydrogen with a photoelectron of s, p, d or f-character [red, upper curves| plus
the universal continuum—continuum delay for the laser-probing process with Z =
1 and hw = 1.55 eV [blue, dashed curve], yields the total delay in laser-assisted
photoionization [black, lower curves]. Figure adapted from Ref. [35].

reduces to:
(LA my) )
arg[Sﬁ | =7+ arg[Yrm, (k)] + ¢< + ¢
A
- %+77A("3)+¢cc(k7ﬁvz)7 (114>

where ¢ and ¢ are the phases of the xuv field, {2, and of the IR laser, w,
respectively; and where the continuum—continuum phase is approximated by

(26)2/5 T2 +iZ(1/k — 1/E)] + y(k, k)
(2k)12/k (k — k)iZ(/r=1]F) } , (L15)

Occ(ky K, Z) = arg {

where k£ and x are the final and intermediate momentum, respectively; and
Z is the residual charge of the ion. The first term in Eq. (1.15), which only
includes the effects of long-range phase distortion due to the ionic potential,
corresponds to the label (P) in Fig. 1.6 (a). The additional term, v(k, ) in
Eq. (1.15), is a correction term that arises from amplitude effects due to the
ionic potential,

(k= k) (K2 + k)
Whm) =2 T

which is shown with the label (P+A) in Fig. 1.6 (a). The result presented
as (P+A’) in Fig. (1.6) is a fit to the exact calculation for hydrogen by R.
Taieb [36]. We stress that the final state scattering phase, nr(k), cancels out

Il +iZ(1/k — 1/k))], (1.16)
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and that it does not enter in Eq. (1.14). In the next section we explain how
the “delay in photoionization” can be constructed using two-photon matrix
elements.

1.3.2 Extracting time-delay information from laser-assisted
photoionization signals

Having established the asymptotic approximation for the complex amplitudes
of ATI processes, we now turn to the probability for the emission of a photo-
electron with energy ex = €; + {2, as depicted in Fig. 1.5. The probability is
given by the square of the sum of the amplitudes:

P = |Sq+ S + S.|?
= |Sal® + [Sal? + |Se|?
+2R{S5(Sa + So) + S35}, (1.17)

where d, a and e label the paths associated with the lowest-order processes:
(d), (a) and (e) in Fig. 1.5. The total probability depends on the relative phase
of all individual quantum paths. In experiments, the phase of the two-photon
amplitudes labelled (a) and (e) can be controlled by changing the sub-cycle
delay, 7, between the probe field and the attosecond pulses. More precisely,
one controls the relative phase of the IR field as compared to the XUV field,
¢=wt in Eq. (1.14). The probe-phase dependence is S, x F(w) x expliwT]
and S, x E*(w) x exp[—iwT]. This implies that the cross-terms in Eq. (1.17)
vary differently as a function of 7: (d)-(a) and (d)-(e) are modulated with
periodicity wT associated with the exchange of only one IR photon [47]; while
the cross-term (a)-(e) is modulated with periodicity 2wt due to the two IR
photons involved [31,48]. The maximal probability for photoemission in a
RABITT sideband ¢ occurs when the amplitudes associated with paths (a)
and (e) are in phase, arg[S,] = arg[S.], which, using the explicit phases of
the relevant two-photon matrix elements in Eq. (1.14) and assuming that an
intermediate angular channel ()) is dominant, leads to:

TG D
—_——~
_ bo. — o
T =
2w,
— cc k7 - %ec k7
4 M) —malse) | Peclks B>) = dec “<), (1.18)
2w, 2w,
e Tee

5 It has been shown theoretically that the delay of the photoelectron spectrogram
in an attosecond streak-camera experiment, as compared to the time variation
of the IR vector potential, is equal to the shift of the corresponding RABITT
sidebands, c.f. refs [14, 36, 38].
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where the momenta k. and k-~ correspond to absorption of an XUV photon
2. and (2, respectively. In Eq. (1.18), we observe that the XUv-IR delay, 7,
that maximizes the yield is a sum of three delays:

e 7¢p: the group delay of the XUV field is relative to the subcycle oscillations
of the IR probe field.

e 7): the Wigner delay is the “delay” in single-photon ionization (must be
deduced from the difference with the delay in a reference system, e.g.
hydrogen).

e 7..: the continuum—continuum delay is a measurement-induced delay from
the interplay of the IR field and the long-range Coulomb potential.

The sum: 7 + 7. = Ty constitutes the so-called “atomic delays”. Its variation
in terms of the kinetic energy of the photoelectron are shown in Fig. 1.6 (b)
for the case of hydrogen the angular momentum, A. A similar separation of the
time-delays as shown in Eq. (1.18) was reported by the group of Burgdorfer
for streaking of single attosecond pulses by solving numerically the time-
dependent Schrédinger equation [49, 50]. Interestingly, they also showed that
Tee (there called ‘Coulomb-laser coupling’) could be calculated from a classical
ensemble of electron trajectories.

The delays presented in Eq. (1.18) are calculated from the finite-difference
approximations to the actual derivatives, 7a¢p = ¢ /912 and 7y = O, 1/012.
For these approximations to be valid, we must require that the spectral phases
vary slowly, |A¢o| = |¢po> —do. | < 27, with a small phase variation over the
energy range spanned by two laser photons, Af2 = 2w. In this sense, “slow”
reactions, such as autoionization of a resonance discussed in sec. 1.2.2, require
a more detailed evaluation of the spectral integral in Eq. (1.11) [34,51]. In
this context, we wish to mention the work that has been made also using the
soft-photon approximation (SPA) where Volkov solutions are used as approx-
imate continuum states [52-54]. The advantage of this approximation is that
it allows for analytical solutions to non-perturbative IR interactions with the
photoelectron, however, because the electron—ion Coulomb interaction is omit-
ted neither the scattering phases nor the continuum—continuum phases will be
recovered by SPA. Prior to these successful demonstrations of the seperability
of the 7\ and 7. in Eq. (1.18), the influence of the short-range scattering
phase-shifts was identified by Yakovlev et al [55] and the importance of the
long-range Coulomb tail was discussed by Zhang and Thumm [56].

The effects of electron—ion interaction for laser-assisted XUV ionization
has also been studied by Smirnova and coworkers using the Eikonal-Volkov
Approximation (EVA) [57]. With EVA it was possible to provide accurate results
for the photoionization delays from hydrogen [58]. More recently, Eq. (1.18)
has been validated, not only for hydrogen, but also for noble-gas atoms by
diagrammatic methods [37]; effective two-electron models [50]; and for the H"
molecule [59].
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Fig. 1.7. (a) Theoretical partial photoionization cross-section for Ar3p~! compared
to the total photoionization cross-section measurements by Samson and Stolte [60].
(b) Atomic delay for Ar3p~' observed along the polarization axis of the fields. (c)
Theoretical partial photoionization cross-section for Ar3s~! compared to partial
cross-section measurements by Mobus et al. [61]. (d) Atomic delay for Ar3s™!
observed along the polarization axis of the fields. The correlated orbitals in the RPAE
model are listed in the curly brackets. The IR photon is 1.55eV. SAE calculations
are performed using the potential proposed by Muller [62]. Figure adapted from
Ref. [63].

The delay paradox

Eq. (1.18) opens up for the possibility to measure (i) 7gp of the attosecond
pulse or (ii) 7, of the photoelectron. The former requires exact knowledge of
T = Tx + Tee, Which then must be subtracted from the experimental data;
while 7, requires exact knowledge of 7qp and compensation of the universal
Tee- The above statements contain a paradox because our ability to measure
one of these quantities requires exact knowledge of the other.

The first observation of attosecond pulse structures in 2001 [24] relied on
subtraction of 7y computed for argon within the single-active electron ap-
proximation (SAE) using the potential proposed by Muller [62]. In Fig. 1.7 (a)
we show the cross-section for ionization from the 3p subshell in argon by
absorption of one XUv photon for both the Muller potential (o) and using
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the Random-Phase Approximation with Exchange (RPAE ) for many-body
screening effects (+, x, *) [63]. Each model reproduces a Cooper minimum in
the photoionization cross section [64] in qualitative agreement with the exper-
imental total cross-section determined by Samson and Stolte [60]. The RPAE
result, which includes ground-state correlation, is in excellent agreement with
the measurement close to the ionization threshold. At higher energies the to-
tal cross-section differs from the partial RPAE cross-section due to opening of
other ionization channels. In Fig. 1.7 (b) we show the corresponding atomic
delays (computed from two-photon matrix elements) for argon within the SAE
(o) and for RPAE screened XUV photon (4, X, *). The SAE agrees qualitatively
with the correlated calculations, but it can hardly be used for calibration of
the experimental data on the attosecond time scale.

In Fig. 1.7 (c) and (d) we show the partial cross-section and atomic delays
for photoionization from the 3s subshell of argon, respectively [63]. Inter-
orbital correlation effects (4, x*) give rise to a minimum in the partial cross-
section, as first pointed out by Amusia [65], and to a large positive peak
in the atomic delay [12] that is not present for models which only include
intra-shell correlation (x). In Fig. 1.7 (c¢) the experimental measurements of
the partial photoionization cross section by Mdbus and co-workers [61] is in
qualitative agreement with the RPAE result (+,x) 8. By subtraction of the
data in Fig. 1.7 (b) and (d), an atomic delay difference of ~ 25 as is found at
sideband 24 (~ 37.2eV) between the 3p and 3s subshells. Unfortunately, this
value does not agree well with the experimental measurements of ~ 100 as
performed at Lund University [10,12].

While the long-range phase, nx(z) in Eq. (1.2), is known from early quan-
tum scattering theory [66], the accurate determination of the short-range
phase, 7, presents a numerical challenge for complex systems due to cor-
relation effects [67]. Multi-electron screening effects on the delay in photoion-
ization were first studied using the state-specific expansion approach (SSEA) [9]
and by the RPAE for absorption of a single XUv photon [68,69]. Further works
have included the multi-configurational Hartree-Fock method (MCHF) [51] and
the time-dependent local density approximation (TDLDA) [70].

It was soon argued that the IR probe field should affect the photoion-
ization delay measurement due to coupling to the long-range Coulomb poten-
tial [10,36,38,49,58]. Correlation effects in two-color fields (XUV +IR) has been
benchmarked for helium [46]. Approximate methods for larger atoms include
the time-dependent R-matix [71], effective two-electron models [72], diagram-
matic perturbation theory [37,63] and application of the B-spline R-matrix
(BsrM) for inclusion of shake-up processes [73].

Despite all this theoretical activity, the experimentally measured neon de-
lay of 21 + 5as between the 2p and 2s subshell at an XUV photon energy of

7 For details about the RPAE theory see Ref. [28].
8 Surprisingly, the inclusion of correlation with the L-shell (%) brings the calculation
further away from the experimental measurements.
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~ 100eV [9] remains larger than the simulated values. The experimentally
measured argon delay of ~ 100 as between the 3p and 3s subshell at an XUV
excitation energy of ~ 37eV [10,12] has been best reproduced by MCHF [51]
and TDLDA calculations [70]. It has been found by Dixit and co-workers that
the TDLDA method, in contrast to the RPAE model, produces a negative delay
peak from the 3s subshell [70]. A further study of the correlation effects by
diagrammatic methods has confirmed that the sign of the delay peak depends
on the details of the correlation model [63], but further work is needed to
pin-point important interactions beyond the RPAE that include virtual shake-
up (two holes and one electron) and knock-out (one hole and two electrons)
processes.

We predict that in the coming years, the interpretation of attosecond ex-
periments will offer a new testing ground for many-body calculations. Future
experiments will provide interesting opportunities to test various theoretical
methods for light-induced electron-electron interactions in connection to mea-
surements of phases and delays in complex atomic and molecular systems. In
the next section we provide an overview of how the paradox of attosecond de-
lays was overcome experimentally by performing relative delay measurements
from different initial states of the target.

1.4 Review of experimental delay measurements

The first experimental observations of photoionization time delays were made
with the same experimental setups as those used for the characterization of at-
tosecond pulses, but with one important modification: In these relative delay
experiments, two photoelectron spectrograms were recorded simultaneously
from two different initial states of the target [6,9-12]. Because it was the
same attosecond pulses that triggered ionization from both initial states, the
unknown exact shape of the attosecond pulses canceled out and the paradox
of delays was circumvented. In these measurements photoelectron ‘replicas’ of
the attosecond pulses are generated at different average kinetic energies corre-
sponding to each initial state, say A and B. These replicas were then character-
ized by using the IR-field as an ultrafast phase-gate so that the relative atomic
delay between the two states could be observed: Ary(A, B) = 19(A) — 19(B).
Alternatively, if the stability of the attosecond pulses is good enough, the rela-
tive atomic delay can be studied sequentially in different target systems, thus
revealing differences in the atomic delays associated with the two systems [7].

The experimental work on photoionization time-delays has been carried
out on many-electron systems: condensed matter [6], noble gas atoms [9,10,74]
and molecules [7].

In the following, we will proceed with a brief overview of the current ex-
perimental efforts, adapted and extended from the corresponding section out
of Ref. [13]. We will only review work on time-delay and phase measurements
using attosecond pulse trains (APT) where we have taken an active part.
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1.4.1 Atomic-delay measurements using attosecond pulse trains

In an experiment conducted by Kliinder and co-workers using an APT with a
photon energy of ~ 35eV [10], two RABITT scans were recorded simultane-
ously by ionizing both the 3p and 3s orbitals of argon. A schematic illustration
of the experiment is shown in Fig. 1.8. As explained above, the unknown tem-
poral structure of the attosecond pulses is subtracted without ever knowing
the exact shape. The result is a relative delay of ~ 100 as between the ion-
ization from the 3p and 3s subshells at the same ionizing photon energy.
A large part of this measured delay was attributed to 7., see Fig. 1.6 (b),
due to the different final energies of the photoelectrons originating from the
two different subshells. In this work, the high-order harmonic comb was first
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Fig. 1.8. Delay experiment for the 3s and 3p shells in Ar using APT: The APT is
composed of three odd harmonics, 2¢ + 1, that ionize (pump) electrons from either
initial shell, 3s or 3p, into the continuum. After absorbing one harmonic photon,
the photoelectron can either absorb or emit a laser probe photon in order to reach
an even number sideband (SB) state, labelled by 2¢g. The SB probability oscillates
with the delay APT-IR delay, 7, due to interference between the two quantum paths.
Information about the attosecond timing is found in the relative modulation offset
between the same sideband numbers from different initial states [10]. Figure adapted
from Ref. [35].

passed through a thin chrome foil acting as a band-pass to separate four odd
harmonics (21-27) of the 800-nm driving laser. In this way, only three side-
bands, SB: 22, 24, 26, were produced when ionizing argon atoms from either
orbital. This truncation of the harmonic comb was made to prevent different
sidebands from different orbitals to overlap in photoelectron kinetic energy.
The analysis of the experiment [10] was first carried out within the SAE
approximation using Hartree-Fock phase-shifts from the literature [75]. As
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shown in Fig. 1.7 (c)-(d), the photoelectrons from the inner subshell, 3s,
couple strongly with the other electrons, and the corresponding dynamics is
greatly altered due to correlation. This important effect was identified by
Kheifets by considering RPAE effects in the absorption of a single XUv-photon
[69].

The influence of a narrower atomic resonance has been observed experi-
mentally by Swoboda and co-workers [8]. Fig. 1.9 illustrates the principle of
the experiment. Here, an APT has the particular advantage that the discrete
harmonics to which it corresponds in the spectral domain can be tuned to-
wards a specific energy region of interest. The frequency of the harmonics
from the HHG process can be tuned naturally by changing the fundamental
(driving) laser pulse frequency, w + dw, so that the high-order harmonic fre-
quencies increase or decrease by 612 = (2¢+ 1)dw. It was found that the phase
of the modulation of the lowest-lying sideband in Helium depended critically
on the frequency of the harmonics.

Ek'in

SB: 2q+2

25T (69)

(19 0

29-1 29+1 29+3
2
1s

Fig. 1.9. Phase induced by the 1s3p state in He using APT: The phase in photoion-
ization, d7, depends on the detuning, §{2, between the harmonic, (2g — 1)w = 15w,
and the bound state, 1s3p. The effect arises from the 7-jump that occurs in the
two-photon amplitude, when passing the resonance. The higher-lying sideband,
SB: 2¢q + 2, acts as an important “reference clock” in this experiment, which is
mostly insensitive to small frequency changes of the harmonic fields [8]. Figure
adapted from Ref. [35].

The observed modulation-shifts were attributed to a phase jump occur-
ring when a below-threshold harmonic, 15w < I,()He), was scanned over the
intermediate “resonant” bound state, 1s3p ' P;. By tuning the harmonic over
the sharp resonance, an abrupt w-shift is expected. The experimental 7-shift
is “smoothed” due to the finite duration of the laser probe field and of the
APT (~ 30 fs), which is much shorter than the resonance lifetime. In order to

fully resolve the abrupt rise of the delay due to pure atomic effects, one needs
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harmonics that are narrower in frequency than the atomic resonance, i.e. an
APT which is longer that the resonance lifetime.

A similar situation was observed by Haessler and co-workers with a short-
lived complex continuum resonance in nitrogen molecules [7,34] covered by
harmonic 11 of the 800-nm pump laser. Its lifetime was more comparable to
the duration of the APT, implying that the observed modulation-shifts contain
some information about the resonance lifetime. The experiment, very similar
to the scheme shown in Fig. 1.9 but with the resonance situated just above the
ionization threshold, compared ionization from the HOMO and the HOMO-
1 of nitrogen (corresponding to ions in their ground or first excited state,
respectively), with additional resolution of vibrational states of the created
ions, enabled by the relatively narrowband harmonics. As an additional “ex-
ternal” reference, the corresponding measurements were also made ionizing
the 3p-orbitals of argon atoms, where the harmonic instead directly creates a
photoelectron, 11w > I;Ar), and where resonances do not contribute consid-
erably.

The resonant channel involved in the nitrogen ionization starts by promot-
ing an electron from the HOMO-2 to a state of auto-ionizing character from
where it is ejected when its corresponding hole is filled by an electron from the
HOMO. At the resonant XUV-photon energy, ionization to the ionic ground
state is thus dominated by this resonant channel—at least in excited vibra-
tional states, which are less efficiently populated by direct ionization from
the HOMO. In the experiment, a large 0.97-modulation-shift of sideband 12
was observed for a single detuning (2. The accompanying theoretical study,
including numerical ToF simulations like those in section 1.2, showed that the
derivative of the modulation phase shift with respect to the detuning would
give a physically representative Wigner-like delay for the two-photon XUv +1r
ionization channel involving the resonance, reaching values of several femtosec-
onds. Interestingly, it is close to the lifetime of the resonance, suggesting a
chronology (the electron spends a few femtoseconds in the intermediate reso-
nance before auto-ionization and interaction with the IR field) in an a-priori
non-sequential two-photon ATI transition. Note that this delay for the two-
photon transition naturally includes the continuum—continuum delay, which
is here not to be considered a “measurement-induced artefact” but part of the
studied ionization dynamics.

Recently, Mansson and co-workers studied non-sequential double-ionization
of xenon atoms [74]. They compare, at a total absorbed energy of 40.1 eV
(sideband 26), the reference, single ionization of the xenon 5p state, with the
non-sequential double-ionization channel leading to the 'Dj excited state of
doubly-charged xenon ions, measured in parallel by detecting the two released
photo-electrons in coincidence. This experimental work is important because
it represents a way to study the phase of two-electron wave packets.
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5 Conclusions

this chapter, we have illustrated how subtle short-range distorsions in

atomic and molecular potentials can lead to variations in photoionization
delays photoionization delays on the attosecond and femtosecond time scale.
Such delays are nowadays measurable in experiments using two-color (XUV-

IR

) laser fields. The time-domain perspective opened by such studies provides

possibly more intuitive physical pictures as compared to the analytical deriva-
tions of stationary state phase shifts. Thus, exploring the time domain brings
a complementary view from the traditional frequency domain that prevails in
standard spectroscopy.
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