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Modeling long-term creep rupture by debonding in

unidirectional fibre-reinforced composites

B. Nedjara,∗

aMechanical Engineering Unit, Materials and Structures group, ENSTA-ParisTech,

91762 Palaiseau, France

Abstract

Delayed fracture due to debonding can be observed in many unidirectional

fibre-reinforced composites when the fibre/matrix interface experiences creep.

The aim of this work is to describe such a phenomenon within the recently

proposed modeling framework of transverse isotropy that allows for a neat

decomposition of the mechanical behavior into fibre-directional, transverse,

and pure shear parts. Specifically, debonding is here chosen to be governed

by the tension transverse to the fibres. One can then speak of a mode-I

debonding if use is made of the terminology adopted in fracture mechanics.

On another hand, the time-dependent response is attributed to the matrix

constituent. As the role of this latter is to deform and support stresses

primarily in shear, a viscoelastic behavior is introduced that affects solely

the pure shear part of the behavior. We show that both characteristics can

be easily embedded into the aforementioned formulation. Among others, the

occurrence of tertiary creep is made possible to predict. It is otherwise found

that the predicted debonding path always propagates along the direction of
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the fibres in agreement with many experimental observations found in the

literature. On the numerical side, the algorithmic treatment of debonding is

independent of the one for viscoelasticity. This renders the implementation

within the context of the finite element method very easy.

Keywords: Fibre-reinforced composites, Debonding, Viscoelastic matrix,

Tertiary creep, Finite element method

1. Introduction

In general, debonding in unidirectional fibre-reinforced composites occurs

locally at the interface between fibre and matrix, mostly when the interface is

weak. As a consequence, this phenomenon can significantly reduce structural

stiffness before eventual catastrophic failure. It is then of interest to build

predictive modeling tools to ensure maximum security of the stuctures.

There has been extensive study of these composites in the literature.

For instance, at the micro- and meso-scale levels, models based on extended

versions of the shear-lag model to multi-fibre composites involving the in-

teractions between the fibres and the matrix have been widely developed,

see for example (Ochiai et al., 1999; Beyerlein and Landis, 1999), or more

recently, models based on damage mechancis as well as elastoplasticity have

been proposed that take into account the characteristic behavior of each com-

ponent to represent their influence on the overall composite properties, see

for example the recent references (Needleman et al., 2010; Kurnatowski and

Matzenmiller, 2012; Nedjar et al., 2014).

In this work, a macroscale point of view is adopted where the fibres are

considered to be continuously arranged throughout the material. The result-
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ing composite exhibits then strong directional dependencies. Fibre/matrix

debonding is here described by the concept of the plasticity theory which

requires the introdution of a yield criterion together with companion flow

rules that control the way dedonding takes place. It is then of importance

to judiciously choose the aforementioned criterion. This task is drastically

simplified by adopting the so-called integrity-basis formulation of transverse

isotropy as proposed by Spencer (1984). This basis consists of invariants of

the strain tensor together with invariants of tensor products of the strain

with the structural tensor, the latter being the dyadic product of the fibres’

direction, see also (Kaliske, 2000; Nedjar, 2011). Notice that the formalism of

integrity-basis is nowadays widely employed in the finite strain range, among

others, see for example (Weiss et al., 1996; Bonet and Burton, 1998; Holzapfel,

2000) for purely hyperelastic fibre-reinforced materials, and (Kaliske, 2000;

Klinkel et al., 2005; Nedjar, 2007) for cases where, in addition, inelasticity

can occur such like plasticity or viscoelasticity. In all cases, the formulation

does not depend on a particular choice of coordinate system, i.e. it is not

necessary that one of the coordinate axes coincides with the direction of the

fibres.

Within this formulation, the stress-strain constitutive relation can be de-

composed into fibre-directional, transverse, and pure shear parts. It is this

fact that is exploited in the present modeling framework. On the one hand,

the form adopted in this paper for the plastic yield criterion is chosen to

depend on the tension transverse to the fibres, i.e. a mode-I debonding, and

on the other hand, for the time-dependent part of the behavior, viscoelas-

ticity is introduced that solely affects the pure shear part of the material
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response. This latter has recently been developed in full detail in (Nedjar,

2011). Hence, the combination of the two processes allows to built a model

that is able to capture short-term as well as long-term mode-I debonding

phenomena.

The rest of the paper is organized as follows. The transversely isotropic

formulation we use is recalled in Section 2 where the constitutive stress-strain

decomposition is developed. Debonding modeling is motivated and developed

in full detail in Section 3 where the combination with viscoelastic behavior

of the matrix constituent is introduced as well. The numerical integration of

the constitutive model and local evolution equations at hand is then detailed

in Section 4 for an easy implementation within a finite element procedure.

Then, a set of numerical examples is given in Section 5 where we show the

effectiveness of the present framework. Finally, conclusions and perspectives

are drawn in Section 6.

Notation: Throughout the paper, bold face characters refer to second- or

fourth-order tensors. In particular, 1 denotes the second-order identity tensor

with components δij, i, j = 1, . . . , ndim, δij being the Kronecker delta and ndim

is the problem dimension, and I is the fourth-order unit tensor of components

Iijkl =
1
2
(δikδjl + δilδjk). The double dot symbol ’:’ is used for double tensor

contraction. In particular, one has the property tr[(�)] = (�) : 1 for the trace

operator. The notation ⊗ stands for the tensorial product. In components,

one has for any second order tensors A and B, (A ⊗B)ijkl = AijBkl, and

for any vectors ~U and ~V , (~U ⊗ ~V )ij = UiVj. Furthermore, the upper dot

notation ( ˙ ) always refers to the time derivative.
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2. Transverse isotropy and stress-strain decompositions

Let denote by ~V the unit vector that characterizes the direction of the

fibres. Its components Vi (i = 1, 2, 3) with respect to a fixed global cartesian

basis {~ei}i=1,2,3 is regarded as a continuous function of the position. In the

same way, we also introduce the continuous tensor field of the micro-structure

defined by the dyadic product M = ~V ⊗ ~V . Notice the useful property

Mn = M for any integer n > 0, i.e. M is idempotent.

In the most general case with one family of fibres, the integrity-basis is

given by five irreductible invariants

I1 = tr[ε] I2 = ε :ε I3 = det[ε] I4 = ε :M I5 = ε
2 :M (1)

where ε is the infinitesimal strain tensor, det[�] designating the determinant

operator. I1, I2 and I3 are the classical invariants related to isotropy, and I4

and I5 reflect the presence of the family of fibres. In this section, only linear

elasticity is of concern with a totally reversible strain tensor. The occurrence

of plastic and viscous strainings will be considered later on in Section 3.

As the strain energy W is quadratic with respect to the strain tensor, it

then becomes independent of the cubic invariant I3. Its expression is given

by, see (Spencer, 1984)

W =
1

2
λ I21 + µT I2 + α I1I4 + 2(µL − µT ) I5 +

1

2
β I24 (2)

where the five parameters λ, µT , µL, α and β are Lamé-like elastic constants,

see also (Holzapfel, 2000; Kaliske, 2000; Nedjar, 2011, 2014) for details: µL

and µT are the shear moduli on planes parallel to- and normal to- the fibres,
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respectively, and λ, α and β can easily be related locally to the standard

engineering parameters, see below.

As the stress tensor is given by the state law σ = ∂W/∂ε, the following

linear stress-strain constitutive relation is obtained

σ = λ tr[ε]1 + β [ε :M ]M

+α
{

tr[ε]M + [ε :M ]1
}

+2µT ε + 2(µL − µT )
{

Mε+ εM

}

(3)

In this form, there is no need to select a coordinate system {~ei}i=1,2,3 such

that one of the coordinate axes coincides with the axis of transverse isotropy.

The five elastic constants are related to the engineering parameters as

µL = GLT

µT =
ET

2(1 + ν)

λ =
νELET + ν2

LTE
2
T

EL(1− ν2)− 2ETν2
LT (1 + ν)

α =
(νLT + ννLT − ν)ELET − ν2

LTE
2
T

EL(1− ν2)− 2ETν2
LT (1 + ν)

β =
(1− ν2)E2

L + ν2
LTE

2
T + (ν − 2νLT (1 + ν))ELET

EL(1− ν2)− 2ETν2
LT (1 + ν)

− 4GLT +
ET

1 + ν

(4)

where the subscript L refers to the fibres’ direction, and T to the transverse

plane normal to it. Notice that the anisotropy to isotropy transiton is ob-

tained by setting EL = ET ≡ E, νLT = ν and GLT = E/2(1+ ν). The above

five elastic constants then collapse to the well-known two Lamé coefficients

of isotropy.
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To go further, the stress tensor can be decomposed as, see (Spencer, 1984)

σ = s + p1 + tM (5)

where the scalar stress quantities p and t are determined by imposing the

conditions tr[s] = 0 and [s :M ] = 0. It is then easily deduced that

p =
1

2

[

σ : (1−M )
]

and t =
1

2

[

σ : (3M − 1)
]

(6)

and it follows by eliminating p and t from Eq. (5) that s can be written as

s = P :σ, where P is the pseudo-deviatoric fourth-order projection operator

in the three-dimensional space given by

P = I −
1

2
1⊗ 1−

3

2
M ⊗M +

1

2

{

M ⊗ 1+ 1⊗M

}

(7)

Likewise for the strain tensor, an analogous decomposition has been ap-

plied in (Nedjar, 2011). We write

ε = e + ϑ1 + ζM (8)

where e is the pseudo-deviatoric strain tensor given by e = P : ε, and the

scalar strain quantities ϑ and ζ are similarly determined by imposing the

conditions tr[e] = 0 and [e :M ] = 0.

Now replacing the decompositions (5) and (8) into the constitutive equa-

tion (3), one can easily extract the remarkable pseudo-deviatoric stress-strain

constitutive relation

s = 2µT e + 2(µL − µT )
{

Me+ eM

}

(9)

Observe that, among the set of five elastic constants, this latter depends

solely on the shear moduli. It is this important fact that is exploited later
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on for the viscoelastic modeling in pure shear. For later use, Eq. (9) is

equivalently rewritten as

s =
[

2µTI + 2(µL − µT )IF

]

︸ ︷︷ ︸

= Cs

:e (10)

where we have introduced the elastic shear tensor Cs. The fourth-order tensor

IF is such that IF :e = Me+ eM with components

(IF )ijkl =
1

2
(ViVkδjl + ViVlδjk + VjVlδik + VkVjδil) (11)

The complementary relation can be given in the form of a (p, t) − (ϑ, ζ)

relation as in (Nedjar, 2011). However, the equivalent one with direct use of

the total strain tensor is more convenient for the following developments

p = χ1 tr[ε] + χ2 [ε :M ]

t = χ2 tr[ε] + χ3 [ε :M ]

(12)

where χ1 = λ+ µT , χ2 = α− µT , and χ3 = β + 4µL − µT .

3. Modeling of debonding embedded into a viscoelastic matrix

In order to provide tools for structural simulations, debonding is here

described by means of an internal variable modeling framework based on the

plasticity theory. The plastic part of the strain tensor εp is then introduced

and, among others, it remains now to characterize a form for the yield crite-

rion together with companion flow rules to describe the way debonding takes

place. More specifically, in this work, focus is made on the particular cases of

dominant mode-I conditions where debonding is mostly governed by tensile
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stresses that are normal to the fibres. Mode-II and mixed-I/II debonding

modes as developed in (Nedjar, 2014) are out of the scope of this paper.

The fibre sub-space being spanned by the tensor of the micro-structure

M , the projection [σ : M ] ≡ ~V .σ~V is no more than the stress along the

fibres. Hence, we can deduce that the projection on the complementary

sub-space gives a measure of the stress state transverse to the fibres, i.e.

[σ : (1−M )]. Remarkably, this latter is precisely the definition of the stress

quantity p in the decomposition (5), up to the factor 1/2 for ndim = 3, see

Eq. (6)1. Therefore, p constitutes an excellent candidate to govern this

debonding mode.

Remark 1. In the two-dimensional case with a fibre direction given by ~V =

cos θ ~e1 + sin θ ~e2, where θ is the angle between the fibres and the coordinate

axis ~e1, the stress quantity p for a general state of stress is given by, see Eq.

(A.3)1 in Appendix A

p = σ11 sin2 θ + σ22 cos2 θ − σ12 sin 2θ (13)

which is exactly the normal stress on a face with a unit vector normal to it

that makes an angle of θ + π/2, c.f. the Mohr circle. ✷

3.1. Characterization of debonding

To make matters as concrete as possible in the following developments, we

consider a simple, but not less efficient, model example with a p-dependent

yield criterion given by

F(p, ξ) = p − py exp[−Kξ] (14)
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where the additional strain-like internal variable ξ characterizes isotropic

hardening. Both py and K are material constants, py > 0 is the transverse

flow stress, and the non-dimensional parameter K controls softening (for

K > 0) or hardening (for K < 0).

Now by choosing an associated plastic flow, debonding is then given by

the following evolution equations







ε̇p = γ
∂F

∂σ
≡

γ

2
(1−M )

ξ̇ = γ

γ ≥ 0, F(p, ξ) ≤ 0, γF(p, ξ) = 0

(15)

where γ is the consistency parameter that satisfies the Kuhn-Tucker load-

ing/unloading conditions (15)3. In the evaluation (15)1, use has been made

of the relation (6)1. This would be ε̇p = γ(1−M ) for the plane-stress case,

see Eq. (A.3)1. Anyhow, and irrespective to the space dimension of the

problem, one has the following remarkable properties

tr[ε̇p] = γ [ε̇p :M ] = 0 ė
p = 0 (16)

where ep is the pseudo-deviatoric part of εp. Hence, plastic straining solely

affects the trace term while ep remains inactive.

3.2. Characterization of viscoelasticity in pure shear

On another hand, considering that the matrix can otherwise experience

creep only in shear, this condition has recently been captured within the

present integrity-basis formulation in (Nedjar, 2011). We assume viscoelas-

ticity only through the pseudo-deviatoric part of the behavior, Eq. (9) or
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(10), by introducing a viscous strain tensor ev. This latter can in turn be

the sum of as many as necessary internal contributions ev
i , i.e.

e
v =

l∑

i=1

e
v
i (17)

where the i = 1, . . . , l hidden tensors ev
i characterize viscoelastic processes.

An equivalent description via external variables by means of relaxation/creep

functions is possible as well, see for example (Ascione et al., 2012; Ohno et al.,

2002) among others.

Among the many possibilities, we choose for the evolution of the above

processes the well known generalized Kelvin-Voigt rheological model. For an

illustration, this device is shown in Figure 1 where the modulus µ can either

be the shear modulus along the fibres µL or the one normal to them µT .

Each viscous process i is characterized by the dimensionless stiffness factor

ωi and the relaxation time τi.

e
ev

ev1 evl

µ

µ/ω1 µ/ωl

τ1 µ/ω1 τl µ/ωl

Figure 1: Generalized Kelvin-Voigt rheological model used for the viscoelastic behavior in

pure shear. Here the modulus µ is either µL or µT .
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The l local evolution equations are then given by, see (Nedjar, 2011) for

full details,

ė
v
i +

1

τi
e
v
i +

ωi

τi

l∑

j=1

e
v
j =

ωi

τi
e, i = 1, . . . , l (18)

where no sum on repeated indices is assumed in Eq. (18). Notice that, by

construction, the internal variables ev
i satisfy the conditions tr[ev

i ] = 0 and

[ev
i :M ] = 0. One has then for the total viscoelastic strain tensor

tr[ev] = 0 [ev :M ] = 0 (19)

3.3. Recapitulation and basic constitutive equations

With the properties (16) and (19), the elastic parts of the stress-strain

constitutive relation, Eqs. (10) and (12), become for the present viscoelastic

model coupled with debonding

s = Cs : (e− ev)

p = χ1 (tr[ε]− tr[εp]) + χ2 [ε :M ]

t = χ2 (tr[ε]− tr[εp]) + χ3 [ε :M ]

(20)

Hence, the behavior in pure shear remains viscoelastic while the plasticity

only affects the scalar trace terms in the definition of the stress components p

and t. These remarkable facts drastically simplify the plastic and viscoelastic

updates within the algorithmic scheme as shown below.

In summary: the fibre/matrix debonding with matrix creep is described

by the constitutive equations (5) and (20), the l local evolution equations

(18) for the matrix creep in pure shear, and the local problem (14)-(15) for

the mode-I debonding.
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4. Time integration and numerical implementation

The key idea in the design of the integration algorithm is to exploit the

fact that the l viscoelastic evolution equations (18) are independent of the

mode-I debonding, and vice versa. It is then carried out by the combination

of algorithms, each one adapted to the corresponding sub-problem. The order

in which these algorithms are sequenced is not important.

In a finite element context, the approximation of the above evolution

equations is accomplished at the integration point level. Within a typical

time interval [tn, tn+1] with ∆t = tn+1 − tn, the sets of internal variables

{εpn, ξn} and {ev
i n, i = 1, . . . , l} are known at time tn. The objective is to

advance the solution to time tn+1 and update the variables to {εpn+1, ξn+1} and

{ev
i n+1, i = 1, . . . , l} through a strain driven procedure since the incremented

total strain tensor εn+1 is known during the iterative process.

4.1. Numerical integration of debonding

For the plasticiy-based debonding model, we use the well-known elastic

predictor/plastic corrector concept. A backward-Euler scheme is applied to

the constrained evolution equations (15) to give the incremental forms







tr[εpn+1] = tr[εpn] + ∆γ

ξn+1 = ξn +∆γ

∆γ ≥ 0, Fn+1 ≤ 0, ∆γFn+1 = 0

(21)

where use has been made of the property (16)1. We have used the notations

∆γ = γ∆t and Fn+1 = F(pn+1, ξn+1).
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Firstly, the yield criterion (14) is evaluated at the trial state as F trial
n+1 ≡

F(ptrialn+1, ξn) where the trial p-stress component is given by

ptrialn+1 = χ1 (tr[εn+1]− tr[εpn]) + χ2 [εn+1 :M ] (22)

Hence, if F trial
n+1 ≤ 0, the trial state is admissible and we set εpn+1 = εpn and

ξn+1 = ξn. Otherwise, the trial state is not admissible and a correction has

to be performed. This is accomplished by noticing that, at the final state,

the converged transvese stress measure pn+1 is simply given by

pn+1 = ptrialn+1 − χ1∆γ (23)

Then, enforcing the consistency condition Fn+1 = 0 at time tn+1, in

combination with (23) and (21)2, lead to the following nonlinear equation to

be solved for ∆γ > 0 by means of a Newton scheme

ptrialn+1 − χ1∆γ − py exp[−Kξn] exp[−K∆γ] = 0 (24)

which, for the case of perfect plasticity with K = 0, gives the closed-form

solution ∆γ = F trial
n+1/χ1. The plastic updates then follow by replacing the

above solution ∆γ in the discrete equations (21)1−2.

However, it is nowadays well known that strain-softening can render the

global initial boundary value problem ill-posed, i.e. with K > 0 for our yield

criterion, Eq. (14). One way to circumvent this difficulty is the use of a

time-dependent regularization. A viscoplastic model can readily be obtained

through a Perzyna-type regularization (Perzyna, 1971) or a Duvaut-Lions-

type regularization (Duvaut and Lions, 1972). For extensive discussions on

this topic, the reader is referred to (Simo and Hughes, 1998), among others.

In this work, a Duvaut-Lions regularization is constructed as follows.
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After having solved for the inviscid solution, i.e. the above updates

tr[εpn+1] and ξn+1, we define viscous counterpart quantities tr[εvp] and ξv

as 





tr[ε̇vp] =
1

η

(

tr[εpn+1]− tr[εvp]
)

ξ̇v =
1

η

(

ξn+1 − ξv
) (25)

where η is a fluidity parameter with the time as dimension. These equations

may in turn be discretized, here by using again the backward-Euler scheme

to get






(

1 +
∆t

η

)

tr[εvpn+1] = tr[εvpn ] +
∆t

η
tr[εpn+1]

(

1 +
∆t

η

)

ξvn+1 = ξvn +
∆t

η
ξn+1

(26)

Now by replacing the discrete forms (21)1−2 into (26), and after noticing

that this time we have tr[εvpn ] = tr[εpn] and ξvn = ξn, we get the update

formulae 





tr[εvpn+1] = tr[εvpn ] +̟∆γ

ξvn+1 = ξvn +̟∆γ
(27)

where we have introduced the notation

̟ =
∆t

η +∆t
(28)

In this form, the algorithm is adapted to both viscoplasticity and rate-

independent plasticity. This latter is recovered simply by setting η = 0 ⇒

̟ = 1 in the update formulae. For the sake of clarity, Table 1 summarizes

the conceptual steps involved during this local resolution procedure.
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Table 1: Local algorithm for mode-I debonding.

1. Trial state:

sn+1 = Cs : (en+1 − ev
n+1) ≡ sn+1 from viscoelasticity

ptrialn+1 = χ1 (tr[εn+1]− tr[εpn]) + χ2 [εn+1 :M ]

ttrialn+1 = χ2 (tr[εn+1]− tr[εpn]) + χ3 [εn+1 :M ]

F trial
n+1 = ptrialn+1 − py exp[−Kξn]

2. IF F trial
n+1 ≤ 0 THEN

set: εpn+1 = εpn, ξn+1 = ξn, pn+1 = ptrialn+1, tn+1 = ttrialn+1

ELSE IF F trial
n+1 > 0 THEN

solve Fn+1 = 0 for ∆γ, Equation (24)

update the internal variables:






tr[εpn+1] = tr[εpn] +̟∆γ

ξn+1 = ξn +̟∆γ

with ̟ = ∆t/(η +∆t)

update the stress components:

pn+1 = ptrialn+1 −̟∆γ χ1

tn+1 = ttrialn+1 −̟∆γ χ2

END IF

3. Reconstitute the total stress tensor:

σn+1 = sn+1 + pn+11+ tn+1M

16



4.2. Outlines of the viscoelastic integration

The incremented total strain tensor εn+1 being known, so is the pseudo-

deviatoric strain tensor en+1. The internal variables ev
i n, i = 1, . . . , l at

time tn can be updated to ev
i n+1 through either a fully implicit scheme or a

semi-implicit one combined with the exponential map, see (Nedjar, 2011) for

details about these two schemes. For instance, when the latter is applied to

the l evolution equations (18), this leads to the following decoupled update

ev
i n+1 =

ωi

1 + ωi

{

en+1 −
l∑

j=1,j 6=i

e
v
j n

}(
1− exp(−αi∆t)

)

+ ev
i n exp(−αi∆t), i = 1, . . . , l

(29)

where we have introduced the notation αi = (1 + ωi)/τi.

For later use, the algorithmic rate of change of the viscoelastic internal

variables in terms of the rate of change of the pseudo-deviatoric tensor is

computed from Eq. (29) as

ė
v
i =

ωi

1 + ωi

(
1− exp(−αi∆t)

)
ė, i = 1, . . . , l (30)

so that, by Eq. (17), the algorithmic rate of change of the viscoelastic strain

tensor is given by

ė
v =

(
l∑

i=1

ωi

1 + ωi

(
1− exp(−αi∆t)

)

)

︸ ︷︷ ︸

= δ̂

ė (31)

where the notation δ̂ has been introduced. See (Nedjar, 2011) for the corre-

sponding expressions when the fully implicit scheme is used instead.
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4.3. Algorithmic tangent moduli

The nonlinear initial boundary-value problem at hand is here solved by

means of an iterative procedure of the Newton’s type. Accordingly, this

requires the linearization of the global equilibrium about a known state at

time tn. This procedure is nowadays standard and we give in this section

the contribution to the algorithmic tangent stiffness where it is of interest

to determine the relation between the rate of stress and the rate of total

strain via the algorithmic change of the internal variables εp, ξ and {ev
i , i =

1, . . . , l}. That is, to find the tangent modulus Calgo
n+1 such that

σ̇n+1 = C
algo
n+1 : ε̇n+1 (32)

When debonding takes place, the updated stress is given by, see Table 1,

σn+1 = Cs :en+1 + ptrialn+11 + ttrialn+1M

− Cs :e
v
n+1 − ̟∆γ

{

χ11+ χ2M

} (33)

The rate form of the first three terms in the right hand side of Eq. (33)

is no more than Hani : ε̇n+1, where Hani is the constant transversely isotropic

elastic Hooke’s tensor given by, see Eq. (3),

Hani = λ1⊗ 1 + βM ⊗M + α
{

1⊗M +M ⊗ 1
}

+ Cs (34)

The rate form of the fourth term in the right hand side of Eq. (33) is

computed with the help of the algorithmic relation (31) together with the

pseudo-deviatoric projection ėn+1 = P : ε̇n+1. Finally, for the last term in Eq.

(33), the chain rule is employed where the derivative ∂∆γ/∂εn+1 is obtained
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by linearizing the consistency condition enforcement, Eq. (24), which gives

(

χ1 −Kpy exp[−Kξn+1]
)

︸ ︷︷ ︸

= κn+1

∂∆γ

∂εn+1

= χ11+ χ2M (35)

where the notation κ has been introduced for convenience.

With these partial relations, the symmetric algorithmic tangent modulus

is then reconstitued as

C
algo
n+1 = Hani − δ̂

{

2µTP+ 2(µL − µT )IF − 4(µL − µT )M ⊗M

}

︸ ︷︷ ︸

viscoelasticity

−
̟

κn+1

{

χ11+ χ2M

}

⊗
{

χ11+ χ2M

}

︸ ︷︷ ︸

debonding

(36)

5. Representative numerical examples

The theory developed in this work has been implemented in a finite ele-

ment software where new routines have been coded. We give in this section

numerical simulations that demonstrate the effectiveness of the proposed

framework. The examples are related to the frequently encountered situa-

tions of dominant mode-I debonding conditions that fall within the scope of

this work. Among others, we show the strong influence of the fibres’ direction

on the responses predicted by the model.

5.1. Three-points bending tests on single-edge notched specimens

We consider in this section plate samples of dimensions (50×11)mm2 and

1mm thickness with a notch of 2.5mm length and 0.4mm width centered

at one edge, while the center of the opposite edge constitutes the point-

load for the bending tests. The direction of the fibres is characterized by
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the angle θ with respect to the global ~e1-axis as illustrated in Figure 2.

Plane-stress assumption is considered in this analysis, see Appendix A for

related complementary details. This example has been motivated by the

experimental investigations in (Lee et al., 2010) on similar samples where

the authors have studied the fracture behavior of unidirectional graphite

composite laminates by means of a 2D digital image correlation method.

θ

11mm

50
m
m ~e1

Loading

Figure 2: Sample specimen with a notch. Geometry and boundary conditions.

For the unidirectional composite material, the elastic characteristics we

use are those of the graphite/epoxy given in (Lee et al., 2010). They are listed

in Table 2 where formulae (4) have been used to obtain the corresponding

Lamé-like coefficients. For debonding, we choose the following transverse

flow stress and hardening/softening control parameter

py = 5MPa K = 100 (37)
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Table 2: Elastic characteristics of the UD composite.

Engineering parameters Lamé-like coefficients

EL = 171.6GPa λ = 0.214GPa

ET = 8.25GPa µT = 4.044GPa

GLT = 6.21GPa µL = 6.21GPa

νLT = 0.344 β = 151.219GPa

ν = 0.02 α = 2.715GPa

where a plastic-softening is induced with K > 0 so as to trigger a pic-load

for the specimen’s response. In all the computations that will follow, we use

a fluidity parameter η = 10−3s for the viscoplastic regularization.

Now for the viscoelastic behavior in pure shear, we choose to activate two

processes, i.e. l = 2, and fix their couples of parameters as

(ω1 = 2.5, τ1 = 102[T ]) (ω2 = 4, τ2 = 104[T ]) (38)

where, and as this is only for illustrative purposes, [T ] denotes the unit of

time (seconds, hours, . . . ). Let us recall that, after complete relaxation, the

instantaneous effective shear moduli µL and µT become, respectively,

µL

1 + ω1 + ω2

and
µT

1 + ω1 + ω2

(39)

when t → ∞.

Furthermore, to show the numerical behavior of the finite element im-

plementation, three mesh refinements are used with growing density around

the tip of the notch; mesh-1 with 2550 elements, mesh-2 with 4282 elements,

21



and mesh-3 with 7894 elements. All the computations use the standard

displacement-based triangular element with a quadratic interpolation Tri6.

In a first step, and for a given fibres’ orientation, we need to determine

the short-term strength of the specimen in three-points bending conditions.

For this, the viscoelastic part of the behavior is deactivated and the response

is computed under monotonic loading by prescribing an increasing displace-

ment of the point-load. Figure 3 shows the results for the fibres’ directions

θ = 0◦, 30◦ and 45◦. Each case has in turn been computed with the three

aforementioned finite element meshes. One can observe the good convergence

properties, at least until the pic-loads. The two denser meshes show close

responses while mesh-1 gives higher pic-loads in all cases. The strengths

R0, R30 and R45 are then the pic-load values of the curves obtained with

the denser mesh, i.e. mesh-3. In particular for later use, we have obtained

R30 = 6.29N and R45 = 9.94N .

Now for the long-term response with active viscoelastic behavior in pure

shear, Figure 4 shows the results of two creep tests for the fibre orientations

θ = 30◦ and θ = 45◦ at constant loads corresponding to 70% of their re-

spective strengths, see the marked points illustrated in Figure 3. Each test

has been computed with the above two denser mesh refinements, mesh-2 and

mesh-3. The curves represent the evolution of the point-load displacement

with respect to time. In both cases we obtain the typical S-shaped form

highlighting three stages corresponding to a primary creep, a more or less

pseudo-linear secondary creep, and a fast tertiary creep before failure. For

the sake of comparison, similar computations ignoring the shear viscoelastic-

ity give the two dashed straight lines, also plotted in Figure 4, which means
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Figure 3: Short-term response in three-points bending for different orientations of the

fibres. Results for three different mesh refinements.
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that no debonding nor creep failure occur in this case.
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Figure 4: Creep results for θ = 30◦ and θ = 45◦ specimens under 70% of the respective

strength loads.

At the local level, Figure 5 shows the computed plastic fields during

the respective tertiary creep stages. For illustrative purposes, Figure 5(a)

corresponds to θ = 30◦ computed with mesh-2, while Figure 5(b) corresponds

to θ = 45◦ computed with mesh-3. One can observe that, in all cases,

debonding emanates from the tip region of the notch and propagates along

the direction of the fibres. These local results are in complete agreement with

the optical observations made in (Lee et al., 2010) from similar experimental

tests.

5.2. Traction of a notched strip

In this second example we consider similar computations, this time on the

(24× 120)mm2 rectangular strip with a centered notch of 5mm length and
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(a) θ = 30◦, mesh-2 (b) θ = 45◦, mesh-3

Figure 5: Equivalent plastic strain field at the tertiary creep: (a) for θ = 30◦ with mesh-2,

and (b) for θ = 45◦ with mesh-3.

0.04mm width as illustrated in Figure 6. The top and bottom edges are fixed

along the ~e1-axis while loading is applied on the top edge in the direction

~e2. Here again the plane-stress assumption is assumed with thickness 1mm.

This example has been motivated by experimental and theoretical studies on

unidirectional glass/epoxy composites where authors use similar specimens,

see for example (Andersons et al., 2010).

For the unidirectional composite, the material characteristics we use are

those given in the precedent example (Section 5.1). Figure 7 shows the

results of the short-term responses for different orientations θ of the fibres

with respect to the global ~e1-axis. As expected, we observe that the more the

fibres deviate from the loading direction the more the strength of the strip

decreases.

Now for long-term responses, Figure 8 illustrates the results of simulated
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Figure 6: Rectangular specimen with a notch. Geometry and boundary conditions.
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Figure 7: Short-term response of the notched strip for different orientations of the fibres.
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creep tests for the fibre orientations θ = 30◦, 45◦ and 60◦ at 75% of the

respective strength loads, see the marked points in Figure 7. In this case one

can observe the somehow sharp tertiaty creep before failure.
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Figure 8: Creep results for θ = 30◦, 45◦ and 60◦- strip under 75% of the respective strength

loads.

Finally, at the local level, debonding path is shown in Figure 9 during the

respective tertiary creep stages. Here again, one can observe that debonding

emanates from the tip region of the notch and propagates along the direction

of the fibres. These local results are again in agreement with experimental

observations made in the literature, see for example (Andersons et al., 2010).

6. Conclusion and perspectives

The main thrust of this paper has been the formulation of a model in

order to provide a tool for predicting the long-term response of unidirec-
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θ = 30◦ θ = 45◦ θ = 60◦

Figure 9: Debonding propagation at the tertiary creep stages for θ = 30◦, 45◦ and 60◦.

tional fibre-reinforced composites that experience dominant mode-I debond-

ing. The transversely isotropic behavior of the material has been captured

by means of the so-called integrity-basis formulation. This latter allows for

a neat decomposition of the stress and strain fields into fibre-directional,

transverse, and pure shear parts. In particular, the viscous behavior is here

taken into account through the shear part of the behavior, while debonding

is modeled through its transverse part.

In this manner, a subtle modeling framework has been established that

permits to reflect to the macroscale some important micromechanical pro-

cesses such like debonding in our case. For this latter, a plasticity-based

formulation has been used to build a model by means of a yield criterion

governed, precisely, by the tension transverse to the fibres.
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A detailed algorithmic treatment has been developed in order to numeri-

cally integrate the constitutive law and the local evolution equations at hand

within the context of the finite element method. Representative numerical

simulations have been performed to show the possibilities of the proposed

modeling framework. In particular, the strong influence of the fibre direction

on debonding propagation, on the one hand, and the ability of the model

to capture long-term creep response, on the other hand, were explored and

commented.

We believe that the modeling framework developed in this paper can

trigger deeper research. For instance, we can extend the present model to take

into account the reduction of the elastic properties with the introduction of

new damage-type internal variables via the nowadays well-known formalism

of continuum damage mechanics. Additional debonding modes can also be

introduced, i.e. mode-II and mixed-I/II debonding mechanisms, and also,

one can think about the combination with fibre breakage damage mode.

These topics will be the subject of future investigations.

Appendix A. Two-dimensional plane-stress particularization

For the many practical applications with thin composite samples, it proves

convenient to particularize the above developments for two-dimensional prob-

lems under the plane-stress assumption. Here we consider the plane spanned

by the cartesian basis {~ei}i=1,2.

The problem being independent of the coordinate x3, when introducing

the constraints σ13 = σ23 = σ33 = 0, the constitutive relation, Eq. (3),
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becomes

σ = λ

(

1−
λ

λ+ 2µT

)

tr[ε]1 +

(

β −
α2

λ+ 2µT

)

[ε :M ]M

+α

(

1−
λ

λ+ 2µT

) {

tr[ε]M + [ε :M ]1
}

+2µT ε + 2(µL − µT )
{

Mε+ εM

}

(A.1)

where all the tensorial quantities are understood in two dimensions. In par-

ticular, the trace operator becomes here tr[ε] ≡ [ε : 1] = ε11 + ε22. The

nonzero off-plane strain is given by

ε33 = −
1

λ+ 2µT

(

λ tr[ε] + α [ε :M ]
)

(A.2)

The stress decomposition (5) gives this time

p =
[
σ : (1−M )

]
and t =

[
σ : (2M − 1)

]
(A.3)

for the scalar stress quantities, and s is now written as s = P̄ :σ, where the

fourth-order projection operator in the two-dimensional space is given by

P̄ = I − 1⊗ 1− 2M ⊗M +
{

M ⊗ 1+ 1⊗M

}

(A.4)

and which should replace the operator P given by Eq. (6).

Likewise for the in-plane strain tensor, the decomposition (8) gives the

pseudo-deviatoric part as e = P̄ :ε, and the scalar strain quantities ϑ and ζ

by similar formulas as in (A.3).

Replacing these decompositions into Eq. (A.1), the pseudo-deviatoric

part of the stress-strain relation is exactly the one given by Eq. (9), and the
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complementary part is given by Eqs. (12) as well, but this time with the

following modified elastic coefficients

χ1 = λ

(

1−
λ

λ+ 2µT

)

+ 2µT

χ2 = α

(

1−
λ

λ+ 2µT

)

− 2µT

χ3 = β −
α2

λ+ 2µT

+ 4µL

(A.5)

which should be used in all the developments of Sections 3 and 4.
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