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Delayed fracture due to debonding can be observed in many unidirectional fibre-reinforced composites when the fibre/matrix interface experiences creep.

The aim of this work is to describe such a phenomenon within the recently proposed modeling framework of transverse isotropy that allows for a neat decomposition of the mechanical behavior into fibre-directional, transverse, and pure shear parts. Specifically, debonding is here chosen to be governed by the tension transverse to the fibres. One can then speak of a mode-I debonding if use is made of the terminology adopted in fracture mechanics. On another hand, the time-dependent response is attributed to the matrix

constituent. As the role of this latter is to deform and support stresses primarily in shear, a viscoelastic behavior is introduced that affects solely the pure shear part of the behavior. We show that both characteristics can be easily embedded into the aforementioned formulation. Among others, the occurrence of tertiary creep is made possible to predict. It is otherwise found that the predicted debonding path always propagates along the direction of

Introduction

In general, debonding in unidirectional fibre-reinforced composites occurs locally at the interface between fibre and matrix, mostly when the interface is weak. As a consequence, this phenomenon can significantly reduce structural stiffness before eventual catastrophic failure. It is then of interest to build predictive modeling tools to ensure maximum security of the stuctures.

There has been extensive study of these composites in the literature.

For instance, at the micro-and meso-scale levels, models based on extended versions of the shear-lag model to multi-fibre composites involving the interactions between the fibres and the matrix have been widely developed, see for example [START_REF] Ochiai | Shear-lag simulation of the progress of interfacial debonding in unidirectional composites[END_REF][START_REF] Beyerlein | Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness[END_REF], or more recently, models based on damage mechancis as well as elastoplasticity have been proposed that take into account the characteristic behavior of each component to represent their influence on the overall composite properties, see for example the recent references [START_REF] Needleman | Effect of an interphase region on debonding of a CNT reinforced polymer composite[END_REF][START_REF] Kurnatowski | Coupled twoscale analysis of fiber reinforced composites structures with microscopic damage evolution[END_REF][START_REF] Nedjar | Modeling of unidirectional fibre-reinforced composites under fibre damage[END_REF].

In this work, a macroscale point of view is adopted where the fibres are considered to be continuously arranged throughout the material. The result-ing composite exhibits then strong directional dependencies. Fibre/matrix debonding is here described by the concept of the plasticity theory which requires the introdution of a yield criterion together with companion flow rules that control the way dedonding takes place. It is then of importance to judiciously choose the aforementioned criterion. This task is drastically simplified by adopting the so-called integrity-basis formulation of transverse isotropy as proposed by [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF]. This basis consists of invariants of the strain tensor together with invariants of tensor products of the strain with the structural tensor, the latter being the dyadic product of the fibres' direction, see also [START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF][START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. Notice that the formalism of integrity-basis is nowadays widely employed in the finite strain range, among others, see for example [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF][START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF][START_REF] Holzapfel | Nonlinear solid mechanics. A continuum approach for engineering[END_REF] for purely hyperelastic fibre-reinforced materials, and [START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF][START_REF] Klinkel | An anisotropic fibre-matrix material model at finite elastic-plastic strains[END_REF][START_REF] Nedjar | An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects[END_REF] for cases where, in addition, inelasticity can occur such like plasticity or viscoelasticity. In all cases, the formulation does not depend on a particular choice of coordinate system, i.e. it is not necessary that one of the coordinate axes coincides with the direction of the fibres.

Within this formulation, the stress-strain constitutive relation can be decomposed into fibre-directional, transverse, and pure shear parts. It is this fact that is exploited in the present modeling framework. On the one hand, the form adopted in this paper for the plastic yield criterion is chosen to depend on the tension transverse to the fibres, i.e. a mode-I debonding, and on the other hand, for the time-dependent part of the behavior, viscoelasticity is introduced that solely affects the pure shear part of the material response. This latter has recently been developed in full detail in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. Hence, the combination of the two processes allows to built a model that is able to capture short-term as well as long-term mode-I debonding phenomena.

The rest of the paper is organized as follows. The transversely isotropic formulation we use is recalled in Section 2 where the constitutive stress-strain decomposition is developed. Debonding modeling is motivated and developed in full detail in Section 3 where the combination with viscoelastic behavior of the matrix constituent is introduced as well. The numerical integration of the constitutive model and local evolution equations at hand is then detailed in Section 4 for an easy implementation within a finite element procedure.

Then, a set of numerical examples is given in Section 5 where we show the effectiveness of the present framework. Finally, conclusions and perspectives are drawn in Section 6.

Notation: Throughout the paper, bold face characters refer to second-or fourth-order tensors. In particular, 1 denotes the second-order identity tensor with components δ ij , i, j = 1, . . . , n dim , δ ij being the Kronecker delta and n dim is the problem dimension, and I is the fourth-order unit tensor of components

I ijkl = 1 2 (δ ik δ jl + δ il δ jk ).
The double dot symbol ':' is used for double tensor contraction. In particular, one has the property tr[( )] = ( ) : 1 for the trace operator. The notation ⊗ stands for the tensorial product. In components, one has for any second order tensors A and B, (A ⊗ B) ijkl = A ij B kl , and for any vectors U and V , ( U ⊗ V ) ij = U i V j . Furthermore, the upper dot notation ( ˙) always refers to the time derivative.

Transverse isotropy and stress-strain decompositions

Let denote by V the unit vector that characterizes the direction of the fibres. Its components V i (i = 1, 2, 3) with respect to a fixed global cartesian basis { e i } i=1,2,3 is regarded as a continuous function of the position. In the same way, we also introduce the continuous tensor field of the micro-structure defined by the dyadic product M = V ⊗ V . Notice the useful property M n = M for any integer n > 0, i.e. M is idempotent.

In the most general case with one family of fibres, the integrity-basis is given by five irreductible invariants

I 1 = tr[ε] I 2 = ε : ε I 3 = det[ε] I 4 = ε : M I 5 = ε 2 : M (1)
where ε is the infinitesimal strain tensor, det[ ] designating the determinant operator. I 1 , I 2 and I 3 are the classical invariants related to isotropy, and I 4 and I 5 reflect the presence of the family of fibres. In this section, only linear elasticity is of concern with a totally reversible strain tensor. The occurrence of plastic and viscous strainings will be considered later on in Section 3.

As the strain energy W is quadratic with respect to the strain tensor, it then becomes independent of the cubic invariant I 3 . Its expression is given by, see [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF])

W = 1 2 λ I 2 1 + µ T I 2 + α I 1 I 4 + 2(µ L -µ T ) I 5 + 1 2 β I 2 4 (2)
where the five parameters λ, µ T , µ L , α and β are Lamé-like elastic constants, see also [START_REF] Holzapfel | Nonlinear solid mechanics. A continuum approach for engineering[END_REF][START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF][START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF][START_REF] Nedjar | Plasticity-based modelling of fibre/matrix debonding in unidirectional composites[END_REF] for details: µ L and µ T are the shear moduli on planes parallel to-and normal to-the fibres, respectively, and λ, α and β can easily be related locally to the standard engineering parameters, see below.

As the stress tensor is given by the state law σ = ∂W/∂ε, the following linear stress-strain constitutive relation is obtained

σ = λ tr[ε] 1 + β [ε : M ] M +α tr[ε]M + [ε : M ]1 + 2 µ T ε + 2(µ L -µ T ) M ε + εM (3) 
In this form, there is no need to select a coordinate system { e i } i=1,2,3 such that one of the coordinate axes coincides with the axis of transverse isotropy.

The five elastic constants are related to the engineering parameters as

µ L = G LT µ T = E T 2(1 + ν) λ = νE L E T + ν 2 LT E 2 T E L (1 -ν 2 ) -2E T ν 2 LT (1 + ν) α = (ν LT + νν LT -ν)E L E T -ν 2 LT E 2 T E L (1 -ν 2 ) -2E T ν 2 LT (1 + ν) β = (1 -ν 2 )E 2 L + ν 2 LT E 2 T + (ν -2ν LT (1 + ν))E L E T E L (1 -ν 2 ) -2E T ν 2 LT (1 + ν) -4G LT + E T 1 + ν (4)
where the subscript L refers to the fibres' direction, and T to the transverse plane normal to it. Notice that the anisotropy to isotropy transiton is ob-

tained by setting E L = E T ≡ E, ν LT = ν and G LT = E/2(1 + ν).
The above five elastic constants then collapse to the well-known two Lamé coefficients of isotropy.

To go further, the stress tensor can be decomposed as, see [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF] 

σ = s + p1 + tM (5)
where the scalar stress quantities p and t are determined by imposing the conditions tr[s] = 0 and [s : M ] = 0. It is then easily deduced that

p = 1 2 σ : (1 -M ) and t = 1 2 σ : (3M -1) (6) 
and it follows by eliminating p and t from Eq. ( 5) that s can be written as s = P : σ, where P is the pseudo-deviatoric fourth-order projection operator in the three-dimensional space given by

P = I - 1 2 1 ⊗ 1 - 3 2 M ⊗ M + 1 2 M ⊗ 1 + 1 ⊗ M (7)
Likewise for the strain tensor, an analogous decomposition has been applied in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. We write

ε = e + ϑ1 + ζM (8)
where e is the pseudo-deviatoric strain tensor given by e = P : ε, and the scalar strain quantities ϑ and ζ are similarly determined by imposing the conditions tr[e] = 0 and [e : M ] = 0. Now replacing the decompositions ( 5) and ( 8) into the constitutive equation (3), one can easily extract the remarkable pseudo-deviatoric stress-strain constitutive relation

s = 2µ T e + 2(µ L -µ T ) M e + eM (9) 
Observe that, among the set of five elastic constants, this latter depends solely on the shear moduli. It is this important fact that is exploited later on for the viscoelastic modeling in pure shear. For later use, Eq. ( 9) is equivalently rewritten as

s = 2µ T I + 2(µ L -µ T )I F = C s : e (10)
where we have introduced the elastic shear tensor C s . The fourth-order tensor

I F is such that I F : e = M e + eM with components (I F ) ijkl = 1 2 (V i V k δ jl + V i V l δ jk + V j V l δ ik + V k V j δ il ) (11) 
The complementary relation can be given in the form of a (p, t)

-(ϑ, ζ)
relation as in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. However, the equivalent one with direct use of the total strain tensor is more convenient for the following developments

p = χ 1 tr[ε] + χ 2 [ε : M ] t = χ 2 tr[ε] + χ 3 [ε : M ] (12) 
where

χ 1 = λ + µ T , χ 2 = α -µ T , and χ 3 = β + 4µ L -µ T .

Modeling of debonding embedded into a viscoelastic matrix

In order to provide tools for structural simulations, debonding is here described by means of an internal variable modeling framework based on the plasticity theory. The plastic part of the strain tensor ε p is then introduced and, among others, it remains now to characterize a form for the yield criterion together with companion flow rules to describe the way debonding takes place. More specifically, in this work, focus is made on the particular cases of dominant mode-I conditions where debonding is mostly governed by tensile stresses that are normal to the fibres. Mode-II and mixed-I/II debonding modes as developed in [START_REF] Nedjar | Plasticity-based modelling of fibre/matrix debonding in unidirectional composites[END_REF] are out of the scope of this paper.

The fibre sub-space being spanned by the tensor of the micro-structure M , the projection [σ : M ] ≡ V .σ V is no more than the stress along the fibres. Hence, we can deduce that the projection on the complementary sub-space gives a measure of the stress state transverse to the fibres, i.e.

[σ : (1 -M )]. Remarkably, this latter is precisely the definition of the stress quantity p in the decomposition (5), up to the factor 1/2 for n dim = 3, see Eq. ( 6) 1 . Therefore, p constitutes an excellent candidate to govern this debonding mode.

Remark 1. In the two-dimensional case with a fibre direction given by V = cos θ e 1 + sin θ e 2 , where θ is the angle between the fibres and the coordinate axis e 1 , the stress quantity p for a general state of stress is given by, see Eq.

(A.3) 1 in Appendix A p = σ 11 sin 2 θ + σ 22 cos 2 θ -σ 12 sin 2θ (13)
which is exactly the normal stress on a face with a unit vector normal to it that makes an angle of θ + π/2, c.f. the Mohr circle. ✷

Characterization of debonding

To make matters as concrete as possible in the following developments, we consider a simple, but not less efficient, model example with a p-dependent yield criterion given by

F(p, ξ) = p -p y exp[-Kξ] ( 14 
)
where the additional strain-like internal variable ξ characterizes isotropic hardening. Both p y and K are material constants, p y > 0 is the transverse flow stress, and the non-dimensional parameter K controls softening (for K > 0) or hardening (for K < 0). Now by choosing an associated plastic flow, debonding is then given by the following evolution equations

         εp = γ ∂F ∂σ ≡ γ 2 (1 -M ) ξ = γ γ ≥ 0, F(p, ξ) ≤ 0, γF(p, ξ) = 0 ( 15 
)
where γ is the consistency parameter that satisfies the Kuhn-Tucker loading/unloading conditions (15) 3 . In the evaluation (15) 1 , use has been made of the relation ( 6) 1 . This would be εp = γ(1 -M ) for the plane-stress case, see Eq. (A.3) 1 . Anyhow, and irrespective to the space dimension of the problem, one has the following remarkable properties

tr[ εp ] = γ [ εp : M ] = 0 ėp = 0 (16)
where e p is the pseudo-deviatoric part of ε p . Hence, plastic straining solely affects the trace term while e p remains inactive.

Characterization of viscoelasticity in pure shear

On another hand, considering that the matrix can otherwise experience creep only in shear, this condition has recently been captured within the present integrity-basis formulation in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. We assume viscoelasticity only through the pseudo-deviatoric part of the behavior, Eq. ( 9) or (10), by introducing a viscous strain tensor e v . This latter can in turn be the sum of as many as necessary internal contributions e v i , i.e.

e v = l i=1 e v i ( 17 
)
where the i = 1, . . . , l hidden tensors e v i characterize viscoelastic processes. An equivalent description via external variables by means of relaxation/creep functions is possible as well, see for example [START_REF] Ascione | Creep phenomena in FRP materials[END_REF][START_REF] Ohno | A variational method for unidirectional fiber-reinforced composites with matrix creep[END_REF] among others.

Among the many possibilities, we choose for the evolution of the above processes the well known generalized Kelvin-Voigt rheological model. For an illustration, this device is shown in Figure 1 where the modulus µ can either be the shear modulus along the fibres µ L or the one normal to them µ T .

Each viscous process i is characterized by the dimensionless stiffness factor The l local evolution equations are then given by, see [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF] for full details,

ėv i + 1 τ i e v i + ω i τ i l j=1 e v j = ω i τ i e, i = 1, . . . , l (18) 
where no sum on repeated indices is assumed in Eq. ( 18). Notice that, by construction, the internal variables e v i satisfy the conditions tr[e v i ] = 0 and [e v i : M ] = 0. One has then for the total viscoelastic strain tensor

tr[e v ] = 0 [e v : M ] = 0 (19)

Recapitulation and basic constitutive equations

With the properties ( 16) and ( 19), the elastic parts of the stress-strain constitutive relation, Eqs. ( 10) and ( 12), become for the present viscoelastic model coupled with debonding

s = C s : (e -e v ) p = χ 1 (tr[ε] -tr[ε p ]) + χ 2 [ε : M ] t = χ 2 (tr[ε] -tr[ε p ]) + χ 3 [ε : M ] (20)
Hence, the behavior in pure shear remains viscoelastic while the plasticity only affects the scalar trace terms in the definition of the stress components p and t. These remarkable facts drastically simplify the plastic and viscoelastic updates within the algorithmic scheme as shown below.

In summary: the fibre/matrix debonding with matrix creep is described by the constitutive equations ( 5) and ( 20), the l local evolution equations (18) for the matrix creep in pure shear, and the local problem ( 14)-( 15) for the mode-I debonding.

Time integration and numerical implementation

The key idea in the design of the integration algorithm is to exploit the fact that the l viscoelastic evolution equations ( 18) are independent of the mode-I debonding, and vice versa. It is then carried out by the combination of algorithms, each one adapted to the corresponding sub-problem. The order in which these algorithms are sequenced is not important.

In a finite element context, the approximation of the above evolution equations is accomplished at the integration point level. Within a typical time interval [t n , t n+1 ] with ∆t = t n+1 -t n , the sets of internal variables {ε p n , ξ n } and {e v i n , i = 1, . . . , l} are known at time t n . The objective is to advance the solution to time t n+1 and update the variables to {ε p n+1 , ξ n+1 } and {e v i n+1 , i = 1, . . . , l} through a strain driven procedure since the incremented total strain tensor ε n+1 is known during the iterative process.

Numerical integration of debonding

For the plasticiy-based debonding model, we use the well-known elastic predictor/plastic corrector concept. A backward-Euler scheme is applied to the constrained evolution equations (15) to give the incremental forms

         tr[ε p n+1 ] = tr[ε p n ] + ∆γ ξ n+1 = ξ n + ∆γ ∆γ ≥ 0, F n+1 ≤ 0, ∆γF n+1 = 0 (21)
where use has been made of the property ( 16) 1 . We have used the notations ∆γ = γ∆t and F n+1 = F(p n+1 , ξ n+1 ).

Firstly, the yield criterion ( 14) is evaluated at the trial state as F trial n+1 ≡ F(p trial n+1 , ξ n ) where the trial p-stress component is given by

p trial n+1 = χ 1 (tr[ε n+1 ] -tr[ε p n ]) + χ 2 [ε n+1 : M ] (22) 
Hence, if F trial n+1 ≤ 0, the trial state is admissible and we set ε p n+1 = ε p n and ξ n+1 = ξ n . Otherwise, the trial state is not admissible and a correction has to be performed. This is accomplished by noticing that, at the final state, the converged transvese stress measure p n+1 is simply given by

p n+1 = p trial n+1 -χ 1 ∆γ (23)
Then, enforcing the consistency condition F n+1 = 0 at time t n+1 , in combination with ( 23) and ( 21) 2 , lead to the following nonlinear equation to be solved for ∆γ > 0 by means of a Newton scheme

p trial n+1 -χ 1 ∆γ -p y exp[-Kξ n ] exp[-K∆γ] = 0 (24)
which, for the case of perfect plasticity with K = 0, gives the closed-form solution ∆γ = F trial n+1 /χ 1 . The plastic updates then follow by replacing the above solution ∆γ in the discrete equations (21) 1-2 . However, it is nowadays well known that strain-softening can render the global initial boundary value problem ill-posed, i.e. with K > 0 for our yield criterion, Eq. ( 14). One way to circumvent this difficulty is the use of a time-dependent regularization. A viscoplastic model can readily be obtained through a Perzyna-type regularization [START_REF] Perzyna | Thermodynamic theory of viscoplasticity[END_REF] or a Duvaut-Lionstype regularization [START_REF] Duvaut | Les inéquations en Mécanique et en Physique[END_REF]. For extensive discussions on this topic, the reader is referred to [START_REF] Simo | Computational inelasticity[END_REF], among others.

In this work, a Duvaut-Lions regularization is constructed as follows.

After having solved for the inviscid solution, i.e. the above updates tr[ε p n+1 ] and ξ n+1 , we define viscous counterpart quantities tr[ε vp ] and

ξ v as        tr[ εvp ] = 1 η tr[ε p n+1 ] -tr[ε vp ] ξv = 1 η ξ n+1 -ξ v (25)
where η is a fluidity parameter with the time as dimension. These equations may in turn be discretized, here by using again the backward-Euler scheme

to get        1 + ∆t η tr[ε vp n+1 ] = tr[ε vp n ] + ∆t η tr[ε p n+1 ] 1 + ∆t η ξ v n+1 = ξ v n + ∆t η ξ n+1 (26) 
Now by replacing the discrete forms ( 21) 1-2 into (26), and after noticing that this time we have tr[

ε vp n ] = tr[ε p n ] and ξ v n = ξ n , we get the update formulae    tr[ε vp n+1 ] = tr[ε vp n ] + ̟ ∆γ ξ v n+1 = ξ v n + ̟ ∆γ ( 27 
)
where we have introduced the notation

̟ = ∆t η + ∆t (28)
In this form, the algorithm is adapted to both viscoplasticity and rateindependent plasticity. This latter is recovered simply by setting η = 0 ⇒ ̟ = 1 in the update formulae. For the sake of clarity, Table 1 summarizes the conceptual steps involved during this local resolution procedure. 1. Trial state:

s n+1 = C s : (e n+1 -e v n+1 ) ≡ s n+1 from viscoelasticity p trial n+1 = χ 1 (tr[ε n+1 ] -tr[ε p n ]) + χ 2 [ε n+1 : M ] t trial n+1 = χ 2 (tr[ε n+1 ] -tr[ε p n ]) + χ 3 [ε n+1 : M ] F trial n+1 = p trial n+1 -p y exp[-Kξ n ] 2. IF F trial n+1 ≤ 0 THEN set: ε p n+1 = ε p n , ξ n+1 = ξ n , p n+1 = p trial n+1 , t n+1 = t trial n+1 ELSE IF F trial n+1 > 0 THEN solve F n+1 = 0 for ∆γ, Equation (24) update the internal variables:    tr[ε p n+1 ] = tr[ε p n ] + ̟ ∆γ ξ n+1 = ξ n + ̟ ∆γ with ̟ = ∆t/(η + ∆t)
update the stress components:

p n+1 = p trial n+1 -̟ ∆γ χ 1 t n+1 = t trial n+1 -̟ ∆γ χ 2 END IF
3. Reconstitute the total stress tensor:

σ n+1 = s n+1 + p n+1 1 + t n+1 M

Outlines of the viscoelastic integration

The incremented total strain tensor ε n+1 being known, so is the pseudodeviatoric strain tensor e n+1 . The internal variables e v i n , i = 1, . . . , l at time t n can be updated to e v i n+1 through either a fully implicit scheme or a semi-implicit one combined with the exponential map, see [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF] for details about these two schemes. For instance, when the latter is applied to the l evolution equations ( 18), this leads to the following decoupled update

e v i n+1 = ω i 1 + ω i e n+1 - l j=1,j =i e v j n 1 -exp(-α i ∆t) + e v i n exp(-α i ∆t), i = 1, . . . , l (29) 
where we have introduced the notation

α i = (1 + ω i )/τ i .
For later use, the algorithmic rate of change of the viscoelastic internal variables in terms of the rate of change of the pseudo-deviatoric tensor is computed from Eq. ( 29) as

ėv i = ω i 1 + ω i 1 -exp(-α i ∆t) ė, i = 1, . . . , l (30) 
so that, by Eq. ( 17), the algorithmic rate of change of the viscoelastic strain tensor is given by ėv =

l i=1 ω i 1 + ω i 1 -exp(-α i ∆t) = δ ė (31)
where the notation δ has been introduced. See [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF] for the corresponding expressions when the fully implicit scheme is used instead.

by linearizing the consistency condition enforcement, Eq. ( 24), which gives

χ 1 -Kp y exp[-Kξ n+1 ] = κ n+1 ∂∆γ ∂ε n+1 = χ 1 1 + χ 2 M ( 35 
)
where the notation κ has been introduced for convenience.

With these partial relations, the symmetric algorithmic tangent modulus is then reconstitued as

C algo n+1 = H ani -δ 2µ T P + 2(µ L -µ T )I F -4(µ L -µ T )M ⊗ M viscoelasticity - ̟ κ n+1 χ 1 1 + χ 2 M ⊗ χ 1 1 + χ 2 M debonding (36) 

Representative numerical examples

The theory developed in this work has been implemented in a finite element software where new routines have been coded. We give in this section numerical simulations that demonstrate the effectiveness of the proposed framework. The examples are related to the frequently encountered situations of dominant mode-I debonding conditions that fall within the scope of this work. Among others, we show the strong influence of the fibres' direction on the responses predicted by the model.

Three-points bending tests on single-edge notched specimens

We consider in this section plate samples of dimensions (50×11) mm 2 and 1 mm thickness with a notch of 2.5 mm length and 0.4 mm width centered at one edge, while the center of the opposite edge constitutes the pointload for the bending tests. The direction of the fibres is characterized by the angle θ with respect to the global e 1 -axis as illustrated in Figure 2.

Plane-stress assumption is considered in this analysis, see Appendix A for related complementary details. This example has been motivated by the experimental investigations in [START_REF] Lee | Quasi-static and dynamic fracture of graphite/epoxy composites: An optical study of loading-rate effects[END_REF] on similar samples where the authors have studied the fracture behavior of unidirectional graphite composite laminates by means of a 2D digital image correlation method. For the unidirectional composite material, the elastic characteristics we use are those of the graphite/epoxy given in [START_REF] Lee | Quasi-static and dynamic fracture of graphite/epoxy composites: An optical study of loading-rate effects[END_REF]. They are listed in Table 2 where formulae (4) have been used to obtain the corresponding Lamé-like coefficients. For debonding, we choose the following transverse flow stress and hardening/softening control parameter p y = 5 M P a K = 100 (37)

and mesh-3 with 7894 elements. All the computations use the standard displacement-based triangular element with a quadratic interpolation Tri6.

In a first step, and for a given fibres' orientation, we need to determine the short-term strength of the specimen in three-points bending conditions.

For this, the viscoelastic part of the behavior is deactivated and the response is computed under monotonic loading by prescribing an increasing displacement of the point-load. Figure 3 shows the results for the fibres' directions 

θ = 0 • ,

Traction of a notched strip

In this second example we consider similar computations, this time on the (24 × 120) mm 2 rectangular strip with a centered notch of 5 mm length and 0.04 mm width as illustrated in Figure 6. The top and bottom edges are fixed along the e 1 -axis while loading is applied on the top edge in the direction e 2 . Here again the plane-stress assumption is assumed with thickness 1 mm. This example has been motivated by experimental and theoretical studies on unidirectional glass/epoxy composites where authors use similar specimens, see for example [START_REF] Andersons | Finite fracture mechanics analysis of crack onset at a stress concentration in a ud glass/epoxy composite in off-axis tension[END_REF].

For the unidirectional composite, the material characteristics we use are those given in the precedent example (Section 5.1). Figure 7 Finally, at the local level, debonding path is shown in Figure 9 during the respective tertiary creep stages. Here again, one can observe that debonding emanates from the tip region of the notch and propagates along the direction of the fibres. These local results are again in agreement with experimental observations made in the literature, see for example [START_REF] Andersons | Finite fracture mechanics analysis of crack onset at a stress concentration in a ud glass/epoxy composite in off-axis tension[END_REF].

Conclusion and perspectives

The main thrust of this paper has been the formulation of a model in order to provide a tool for predicting the long-term response of unidirec- tional fibre-reinforced composites that experience dominant mode-I debonding. The transversely isotropic behavior of the material has been captured by means of the so-called integrity-basis formulation. This latter allows for a neat decomposition of the stress and strain fields into fibre-directional, transverse, and pure shear parts. In particular, the viscous behavior is here taken into account through the shear part of the behavior, while debonding is modeled through its transverse part.

θ = 30 • θ = 45 • θ = 60 •
In this manner, a subtle modeling framework has been established that permits to reflect to the macroscale some important micromechanical processes such like debonding in our case. For this latter, a plasticity-based formulation has been used to build a model by means of a yield criterion governed, precisely, by the tension transverse to the fibres.

complementary part is given by Eqs. (12) as well, but this time with the following modified elastic coefficients

χ 1 = λ 1 - λ λ + 2µ T + 2µ T χ 2 = α 1 - λ λ + 2µ T -2µ T χ 3 = β - α 2 λ + 2µ T + 4µ L (A.5)
which should be used in all the developments of Sections 3 and 4.
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 1 Figure 1: Generalized Kelvin-Voigt rheological model used for the viscoelastic behavior in pure shear. Here the modulus µ is either µ L or µ T .
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 2 Figure 2: Sample specimen with a notch. Geometry and boundary conditions.
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 34 Figure 3: Short-term response in three-points bending for different orientations of the fibres. Results for three different mesh refinements.

  Figure 5: Equivalent plastic strain field at the tertiary creep: (a) for θ = 30 • with mesh-2, and (b) for θ = 45 • with mesh-3.
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 6 Figure 6: Rectangular specimen with a notch. Geometry and boundary conditions.
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 78 Figure 7: Short-term response of the notched strip for different orientations of the fibres.
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 9 Figure 9: Debonding propagation at the tertiary creep stages for θ = 30 • , 45 • and 60 • .

Table 1 :

 1 Local algorithm for mode-I debonding.

Algorithmic tangent moduli

The nonlinear initial boundary-value problem at hand is here solved by means of an iterative procedure of the Newton's type. Accordingly, this requires the linearization of the global equilibrium about a known state at time t n . This procedure is nowadays standard and we give in this section the contribution to the algorithmic tangent stiffness where it is of interest to determine the relation between the rate of stress and the rate of total strain via the algorithmic change of the internal variables ε p , ξ and {e v i , i = 1, . . . , l}. That is, to find the tangent modulus C algo n+1 such that σn+1 = C algo n+1 : εn+1 (32)

When debonding takes place, the updated stress is given by, see Table 1,

The rate form of the first three terms in the right hand side of Eq. ( 33) is no more than H ani : εn+1 , where H ani is the constant transversely isotropic elastic Hooke's tensor given by, see Eq. ( 3),

The rate form of the fourth term in the right hand side of Eq. ( 33) is computed with the help of the algorithmic relation (31) together with the pseudo-deviatoric projection ėn+1 = P : εn+1 . Finally, for the last term in Eq.

(33), the chain rule is employed where the derivative ∂∆γ/∂ε n+1 is obtained Engineering parameters Lamé-like coefficients

where a plastic-softening is induced with K > 0 so as to trigger a pic-load for the specimen's response. In all the computations that will follow, we use a fluidity parameter η = 10 -3 s for the viscoplastic regularization.

Now for the viscoelastic behavior in pure shear, we choose to activate two processes, i.e. l = 2, and fix their couples of parameters as

where, and as this is only for illustrative purposes, [T ] denotes the unit of time (seconds, hours, . . . ). Let us recall that, after complete relaxation, the instantaneous effective shear moduli µ L and µ T become, respectively,

Furthermore, to show the numerical behavior of the finite element implementation, three mesh refinements are used with growing density around the tip of the notch; mesh-1 with 2550 elements, mesh-2 with 4282 elements, A detailed algorithmic treatment has been developed in order to numerically integrate the constitutive law and the local evolution equations at hand within the context of the finite element method. Representative numerical simulations have been performed to show the possibilities of the proposed modeling framework. In particular, the strong influence of the fibre direction on debonding propagation, on the one hand, and the ability of the model to capture long-term creep response, on the other hand, were explored and commented.

We believe that the modeling framework developed in this paper can trigger deeper research. For instance, we can extend the present model to take into account the reduction of the elastic properties with the introduction of new damage-type internal variables via the nowadays well-known formalism of continuum damage mechanics. Additional debonding modes can also be introduced, i.e. mode-II and mixed-I/II debonding mechanisms, and also, one can think about the combination with fibre breakage damage mode.

These topics will be the subject of future investigations.

Appendix A. Two-dimensional plane-stress particularization

For the many practical applications with thin composite samples, it proves convenient to particularize the above developments for two-dimensional problems under the plane-stress assumption. Here we consider the plane spanned by the cartesian basis { e i } i=1,2 .

The problem being independent of the coordinate x 3 , when introducing the constraints σ 13 = σ 23 = σ 33 = 0, the constitutive relation, Eq. (3), becomes

where all the tensorial quantities are understood in two dimensions. In particular, the trace operator becomes here tr[ε] ≡ [ε : 1] = ε 11 + ε 22 . The nonzero off-plane strain is given by

The stress decomposition (5) gives this time

for the scalar stress quantities, and s is now written as s = P : σ, where the fourth-order projection operator in the two-dimensional space is given by .4) and which should replace the operator P given by Eq. ( 6).

Likewise for the in-plane strain tensor, the decomposition (8) gives the pseudo-deviatoric part as e = P : ε, and the scalar strain quantities ϑ and ζ by similar formulas as in (A.3).

Replacing these decompositions into Eq. (A.1), the pseudo-deviatoric part of the stress-strain relation is exactly the one given by Eq. ( 9), and the