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Pseudoelastic Shape Memory Alloys to Mitigate 
the Flutter Instability: A Numerical Study

Arnaud Malher, Olivier Doaré and Cyril Touzé

Abstract A passive control of aeroelastic instabilities on a two-degrees-of-freedom
(dofs) system is considered here using shape memory alloys (SMA) springs in their
pseudo-elastic regime. SMA present a solid-solid phase change that allow them to
face strong deformations (∼10 %); in the pseudo-elastic regime, an hysteresis loop
appears in the stress-strain relationship which in turn gives rise to an important
amount of dissipated energy. This property makes the SMA a natural candidate
for mitigating undesired vibrations in a passive manner. A 2-dofs system is used
here to model the classical flutter instability of a wing section in a uniform flow.
The SMA spring is selected to act on the pitch in order to dissipate energy of the
predominant motion. A simple phenomenological model for the SMA hysteresis
loop is introduced, allowing for a quantitative study of the important parameters to
optimize in view of an experimental design. Thanks to a simple phenomenological
model for the SMA hysteresis loop, a quantitative numerical study is performed in
order to exhibit the best tuning of the material parameters for controlling the flutter
instability.

1 Introduction

Aeroelastic instabilities are an important issue in aeronautics, especially regarding the
wing motions. Indeed, for a coupled system airflow—flexible structure, like aircraft
wing, turbojet or bridge, a limit velocity exists above which the flexible structure
cannot evacuate the energy received from the airflow anymore, then giving rise to
strong or even fatal deformations. These instabilities, usually described under the
generic term flutter instability, result from interaction between aerodynamic, inertia
and elastic forces [3]. In this contribution, we focus on a passive control device for
mitigating the flutter instability by using springs composed of shape memory alloys
(SMA). In their pseudo-elastic regime, SMA are known for showing the ability of
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dissipating an important amount of energy thanks to the hysteresis loop appearing
in their stress-strain relationship [11], and has thus already been used in numerous
applications ranging from civil engineering, aeronautics to medical industry [13, 14].
The goal of this study is, in a first step, not to describe the system as accurately as
possible but to exhibit the interest of using an hysteretic phenomenon in the view
of controlling an aeroelastic instability and studying the influence of different SMA
parameters for the flutter control.

Recent contributions have considered the dynamical responses of SMA springs
from the theoretical viewpoint [1, 7, 11] in order to properly quantify the most
prominent features of the vibrations of simple single dof systems. Experimentally,
a torsion pendulum has recently been used in order to clearly exhibit the softening
effect of SMA oscillators [4].

The aim of this paper is to investigate the effect of a SMA spring on the flutter
instability. More particularly, the most relevant parameters of a pseudo-elastic regime
on the amplitudes of the limit cycle oscillations (LCO) are analyzed, in order to
quantify the effect of the dissipation brought by the hysteresis loop. The airfoil is
modeled using the classical 2-dofs system coupling pitch and heave motions [5].
In order to exchange energy and create the possibility of a Hopf bifurcation in the
system, the minimal model should contain at least a flexural (heave) and a torsional
(pitch) mode. The SMA nonlinear behaviour is described by an heuristic model
where the prominent parameters are left free to vary. The structural nonlinearities
that may appear in the wing motion are here described thanks to the addition of a
cubic nonlinearity in the restoring force [6, 8, 9, 12]. Numerical simulations are then
conducted in order to investigate the effect of the SMA on the LCO. In particular, it
is shown that for certain parameter range, the SMA spring can lead to a significant
decrease of the amplitude of the LCO.

2 2DOFs Airfoil Model

2.1 Linear Model and Flutter Velocity

The system under consideration is shown in Fig. 1. A Lagrangian formulation is used
to express the evolution of the altitude h (heave) and the angle of attack α (pitch) [5].
The kinetic energy reads T = 1

2 mḣ2 + 1
2 Iαα̇2 + Sα ḣα̇, and the potential energy

reads V = 1
2 kαα2 + 1

2 khh2. In these expressions, Iα is the inertia moment and Sα the
static moment which is directly related to the position of the airfoil gravity center
and is the cause of the coupling. The source terms F and M (aerodynamic force and
moment) are classically derived from the lift coefficient CL such as F = 1

2ρU 2SCL

and M = eF , where ρ is the fluid density, U the upstream airspeed and S the airfoil
section. We assume that the angle of attack remains small, so that the lift coefficient
depends linearly on αapp the apparent angle of attack, so that CL = (∂CL/∂α)αapp

(CL |α=0 = 0 because the airfoil is symmetric). A pseudo-static approach is used,
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Fig. 1 Sketch of the airfoil model as a rigid body in uniform flow U with two dof: pitch (α) and
heave (h)

i.e. the airfoil speed ḣ is not neglected as compared to the upstream airspeed U and
αapp = α + ḣ/U [5].
Lagrange equations lead to the following dynamical system:

[
m Sα

Sα Iα

] [
ḧ

α̈

]
+

[
1
2ρU SCL ,α 0

− 1
2 eρU SCL ,α 0

] [
ḣ

α̇

]

+
[

Kh
1
2ρU 2SCL ,α

0 Kα − 1
2 eρU 2SCL ,α

] [
h
α

]
= 0.

(1)

In nondimensional form (1) reads

[
1 xα

xα r2
α

] [
y′′
α′′

]
+

[
μCL ,α� 0

−μγ CL ,α� 0

] [
y′
α′

]

+
[

�2 μCL ,α�2

0 r2
α − μγ CL ,α�2

] [
y
α

]
= 0,

(2)

y = h
b , τ = Kα t

Iα
, ( )′ = d

dτ
,

rα =
√

Iα
mb2 , μ = ρbS

2m , xα = Sα

mb ,

� = U
b

√
Iα
Kα

, � =
√

Kh Iα
mKα

, γ = e
b .

In order to gain insight on the critical parameter values, the flutter speed � f

can be derived analytically. Indeed, assuming that the airfoil motion is harmonic,
y = � (ỹ exp(pt)) and α = � (α̃ exp(pt)) with (p, α̃, ỹ) ∈ C, replacing α and y by
their new expressions in (2) it yields
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Fig. 2 Real (solid lines) and
imaginary (dotted lines)
parts of the solutions of
det(A) = 0, with A defined
in (3). Parameters of the
problem are listed in Table 1

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

p

A

[
ỹ
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α p2 + r2

α − μγ CL ,α�2
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(3)

Equation (3) has non trivial solutions pi when det(A) = 0. Using the parameter
values of Table 1, the solutions pi versus the flow speed � is plotted in Fig. 2. At the
flutter velocity � f , the real part of one of the solutions pi vanishes. Assuming then
p purely imaginary, separating real and imaginary parts in the equation det(A) = 0,
and grouping the terms to eliminate p, the following expression is found for which
� f is solution

(A1�
2 − A2)(A3�

2 + A4) = 0,

with

⎧⎨
⎩

A1 = μCL ,α(r2
α + γ xα)

A2 = r2
αxα

,

thus � f =
√

A2

A1
=

√
r2
αxα

μCL ,α(r2
α + γ xα)

. (4)

Using values of Table 1 we find � f = 0.87.

2.2 SMA Model

The SMA spring is assumed to have pseudo-elastic behaviour, which is briefly
recalled in Fig. 3. This nonlinear behaviour is characterized by a solid-solid phase
change between two different states. The first one called austenite is stable at large
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Fig. 3 Pseudo-elastic
behaviour of SMA and its
microstructure for each
phase

temperatures and is the natural state of the spring at rest. The microstructure of the
austenite phase is also sketched in Fig. 3. When deformed, the microstructure of the
SMA turns into a new phase called martensite, energetically stable at small tempera-
tures and for which the microstructure is now oriented. The points in the stress-strain
space where the transformations start and finish are usually denoted with the sub-
scripts s (start) and f (finish), so that for instance M f refers to the point where the
martensitic transformation has been fully accomplished in the SMA structure.

The path followed in the stress-strain relationship is not the same when the material
is loaded or unloaded, thus an hysteresis loop appears as illustrated in Fig. 3. This
hysteretic phenomena is the most salient feature of the pseudo-elastic behaviour of
SMA. The dissipated energy during a cycle is proportional to the area of the hysteresis
loop so that the more the loop area is large, the more energy is prone to be dissipated
in the device.

The nonlinear behaviour of single dof SMAs can be derived from a general, three-
dimensional model inferred from thermodynamical laws and then reduced by con-
sidering ad-hoc assumptions, see e.g. [2, 7, 10, 11]. In this case the model contains,
in-built within the oscillator equation, additional equations governing the evolution
of the fraction of martensite, the description of heat transfer, and the thermodynamic
force, which expression is derived from a pseudopotential of dissipation that can
include yields functions in order to express the phase transformations [11]. These
modeling features are typical of hysteretic systems [15] and give rise to a complex
formulation which, in turn, induces numerical difficulties for solving the whole sys-
tem. Contrary to this general approach, we use in this contribution a simple heuristic
model instead, as it has the capacity to retrieve the main features of the dynamical
behaviour within a light computational framework. It is built following the sketch in
Fig. 3 by approximating each part of the diagram by a linear relationship, hl mod-
elize the beginning of the martensitic transformation and H the end of the marten-
sitic transformation. An internal auxiliary variable playing the role of the fraction of
martensite is defined so as to keep the memory of the precedent state of the mate-
rial in a dynamical simulation. For simplification, it is assumed that the slopes of
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Table 1 Nondimensional 

aeroelastic parameters
rα μ xα � γ CL ,α

0.5 1/10π 0.2 0.5 0.4 2π

the purely austenitic and purely martensitic phases are equal, as well as the slopes
during the reverse or transverse transformations, so that the stiffness of the SMA are
defined by K1 and K2, only as shown in Fig. 3. It is also assumed that the behaviour
of the spring is symmetric in traction and compression. Internal loops are described
following the sketch in Fig. 3 and we call ASM A the area of the maximal internal
loop. The area ASM A is completely defined by the four parameters K1, K2, hl and
H with the following relationship

ASM A = hl H
√

1 + K 2
1

√
1 + K 2

2 cos(tan−1(1/K1) + tan−1(K2)).

For the remainder of the study, the four parameters that will be considered are ASM A,
K1, K2 and hl (ASM A instead of H as it is more physically meaningful).

After the flutter instability, with the physical parameters from Table 1 the wing
experiences large-amplitude motions especially on the pitch mode, whereas the
amplitude of the motion of the heave mode remains fairly small. In order to take
advantage of the dissipative properties of the SMA, it appears logical to include a
SMA spring on the torsional motion, whereas the flexural spring is left unchanged
with a linear behaviour law.

2.3 Final Model

To ensure a LCO after bifurcation occurs (no matter using SMA or not) a cubic
stiffness is added on both modes (ξy for heave and ξα for pitch). The final model
with a SMA torsional spring is then derived by replacing r2

αα from (2) with the
nonlinear behaviour of the SMA spring f SM A

N L depicted in Fig. 3. It reads:

[
1 xα

xα r2
α

] [
y′′
α′′

]
+

[
μCL ,α� 0

−μγ CL ,α� 0

] [
y′
α′

]
+

[
�2 μCL ,α�2

0 −μγ CL ,α�2

] [
y
α

]
=

[ −ξy y3

− f SM A
N L (α) − ξαα3

]
.

(5)
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3 Results and Discussion

The aeroelastic parameters for the two-dofs system have been selected according
to [5], they are listed in Table 1. Equation (5) is integrated in time with a fourth-
order Runge-Kutta scheme. The initial condition is generally prescribed as a small
perturbation on the heave mode. The results shown in Fig. 4 are made for ξy = ξα = 0,
thus the nonlinearity is exclusively due to the SMA.

When � < � f , the airfoil motion decreases and tends to zero, see Fig. 4a. When
� ≥ � f , the flutter instability occurs and the position at rest is not stable anymore.
However, the energy of the LCO can be dissipated by the SMA, so that for a certain
range of reduced velocity, the amplitude of the motion saturates thanks to the nonlin-
ear behaviour of the SMA, as illustrated in Fig. 4b. When the motion amplitudes of
the LCO are beyond the end of the martensitic transformation, the potential of dis-
sipation of the SMA is reached, so that divergent motions are retrieved. The critical
speed above which the motion diverges is denoted �c. The first observed and awaited
effect of adding the SMA is to increase �c thanks to the damping property of the
hysteresis loop, an intermediate stage where LCO with small amplitude is present.
In a first step the energy evolution is investigated to ensure the LCO is entirely due
to the hysteresis loop of the SMA and in a second step, a parametric study of the
SMA is made to understand its influence on the LCO.

Fig. 4 Effect of the SMA on
the linear flutter instability
(ξy = ξα = 0) for three
different reduced velocities:
a Linear stability case,
� = 0.86 b Instability case,
with LCO due to SMA
dissipation, � = 0.91 c
Instability case where SMA
cannot dissipate enough
energy, and an exponential
growth is observed,
� = 0.93 (� f = 0.87 and
�c = 0.926). Blue heave
motion y, green pitch α. The
curves are normalized to
their maximal value
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Fig. 5 Total energy etot
versus time for the
aeroelastic system
(parameters of Table 1), with
and without SMA, and for
� = 0.9
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3.1 Energy Exchange

We investigate the energy evolution with time for the case � f < � < �c. The
energy contained in the airfoil reads

Etot = T + V = 1

2

(
mḣ2 + Iαα̇2 + Kαα2 + Khh2

)
+ Sα ḣα̇.

Then the nondimensional energy is

etot = 1

2

(
ẏ2 + r2

αα̇2 + kαα2 + �2 y2
)

+ xα ẏα̇. (6)

Its evolution is plotted in Fig. 5 for system with and without SMA. For each cycle
the energy increase of the system without SMA corresponds exactly to the energy
dissipated by the SMA in its internal loop (for example right after the system with
SMA enters in its first internal loop this loop dissipates 1.198 10−4 and during this
time the system without SMA grew 1.189 10−4). Hence in this regime, the energy
saturates to a finite value. This clearly shows that the LCO appearing when � f <

� < �c is entirely due to the SMA hysteresis loop. We now explore the influence
of the SMA parameters on the LCO.

3.2 Influence of SMA Parameters

The global effect of the SMA parameters on the behaviour of the flutter instability is
studied through the bifurcation diagram for varying flow velocities �. Fig. 6 shows
such a bifurcation diagram for a given SMA spring (the amplitude of pitch motion
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Fig. 6 Bifurcation diagram
of the 2 dof aeroelastic
system with cubic stiffness
(ξy = ξα = 1). Black
Without SMA spring. Red
With SMA spring (selected
values: hl = 0.05,
K1 = 10 K2 and
ASM A = 2.35 × 10−3)

LCO is represented versus �). The diagram is obtained numerically by direct inte-
gration in time of (5). The flow velocity is increased step by step, one time forward
and one time backward, in order to get all the solution branches. When changing �

to � + δ�, the initial condition for � + δ� is selected as the steady state of the
previous simulation launched for �. The black line in Fig. 6 shows the bifurcation
diagram when only a cubic nonlinear restoring force is considered, no SMA is added
to the system. In this case the classical supercritical bifurcation is retrieved. The
diagram with a given SMA is represented with the red line.

The first striking feature one can observe is that due to the softening effect brought
by the SMA, the bifurcation is now subcritical. The gain in using enhanced damping
properties thanks to the hysteresis loop is illustrated through the appearance of the
points denoted �s (flow velocity for which the oscillations enters the loop and thus the
enhanced damping capacity is present) and �c (the point for which the martensitic
transformation is finished so that the damping capacity has been fully exploited).
Above �c, a jump is observed to a branch parameterized by αJ (amplitude at �c)
where the LCO amplitudes are larger than without SMA. Hence the advantage of
the enhanced damping capacity is here completely lost due to the appearance of this
subcritical branch where large-amplitude motions are observed. Finally, the point
where this subcritical branch disappears when decreasing the flow velocity, denoted
�e, defines a dangerous range of flow velocities where the system could jump to the
higher branch.

The SMA parameters can be optimized in order to fulfill the following targets:

• decrease the amplitude αJ of the secondary branch as much as possible. In the
best case, avoid subcriticality,

• decrease �s so as to bring this point as close as possible to the flutter velocity,
• increase �c as much as possible so as to take full advantage of the enhanced

damping capacity of the SMA,
• increase �e so as to avoid the large range of subcriticality where the two solution

branches coexist.

Numerous simulations have been done to obtain the best parameters hl and
K1/K2, in order to fulfill at best these objectives. Figure 7c sums up some of the
results obtained for illustration. One can conclude that in order to decrease the value
αJ describing the upper branch, one has to select a large value for hl , and in this case
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Fig. 7 a LCO amplitude
versus flow speed for
different SMA parameters
(ξh = ξα = 1 and ASM A
constant). b Corresponding
restoring force for � = �c,
on the left hl = 0.05 and
K1/K2 = 10 and on the
right hl = 0.12 and
K1/K2 = 10
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it appears then more appropriate to take smaller values for the ratio K1/K2. One can
also observe the advantageous effect of using a small value for K1/K2 when hl has
been selected small, as it increases substantially the value of �e. Table 2 summarizes
the effect of the coefficients with respect to the targeted objectives relative to the dif-
ferent remarkable points �s , �e, �c and αJ . A simple plus/minus sign code is used
for a quick understanding of the effect of each coefficients: a plus sign indicates an
advantageous effect whereas a minus sign indicates a detrimental effect with respect
to the target. From this table and Fig. 7c it appears clear that the best choice is a large
hl together with a small ratio K1/K2.

Figure 7a, b show the restoring force at two particular points in order to get physical
insight in the results obtained. In Fig. 7a, a disadvantageous case is selected and
one can observe that the softening effect is the dominating feature of the nonlinear
restoring force of the SMA, explaining the enforced subcriticality observed on the
bifurcation diagram. This adverse case helps also in understanding that increasing
blindly the hysteresis loop area ASM A is not a solution as it may have no effect on
the subcriticality. When K2 is too small, the sudden jump in amplitude observed
for a small variation of force is detrimental as the system jumps to large amplitude
motions and the energy of this vibratory state is too important. Figure 7b illustrates
an advantageous case where the softening effect is not too important and thus leads
to an improved global behaviour in the bifurcation diagram.
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Table 2 Influence of the SMA constants on the identified points in the bifurcation diagram

SMA parameters K1/K2 hl

Bif. pt Small Large Small Large

�s = = +++ −−−
�e +++ −−− −−− +++

�c − + −−− +++

αJ ++ − − −−− +++

A plus sign shows an advantageous effect, whereas a minus sign indicates a detrimental effect on
the targeted behaviour, while an equal sign shows no effect. The number of the sign is proportional
to the magnitude of the effect
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Fig. 8 a Bifurcation diagram with hl = 0.05, K1/K2 = 1.5 and ξα = 3.4. b Restoring force at
� = 0.95

This analysis shows undoubtedly that the best choice would be to have both
the case of the hysteresis loop together with a stronger hardening effect at very
large amplitude. To fulfill these requests, the full martensite branch should have a
hardening behaviour stronger that the one of the reference case (without SMA). Such
a configuration is obtained for example with hl = 0.05, K1/K2 = 1.5 and ξα = 3.4.
Figure 8 shows the bifurcation diagram obtained in this case. One can observe that
supercriticality is enforced. Secondly a large range of small amplitudes of LCOs are
observed between 0.875 and 0.93, where the enhanced damping capacity of the SMA
plays its role. Finally the improved hardening effect at large amplitude gives rise to
a branch where amplitudes of LCOs are smaller, even when the transformation has
been completed.
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4 Conclusion

Whether one wants to harvest energy or avoid devastating intabilities, the control
of aeroelastic flutter is a critical issue. An option is discussed here by using SMA
springs in pseudo-elastic behaviour, in order to use the potential of dissipation of
such materials. A numerical study with a simple heuristic model for the behaviour
of the SMA has shown that the amplitude of the LCO after the flutter velocity can
be significantly reduced by adding a SMA spring on the pitch mode of the two-
dofs aeroelastic system. More precisely, the study of the bifurcation diagram clearly
exhibits an advantageous effect of using the enhanced damping capacity of the SMA
with the appearance of a branch of small amplitudes LCOs. However a detrimental
effect appears because of the softening effect created by the solid-solid phase change.
The optimized case is obtained by hardening the stiffness of the martensite phase. In
this case it has been shown that subcriticality together with small amplitudes LCOs
can be obtained.

The next steps of this research is to confront these preliminary findings with
experiments. Complicating effects such as the dependence of the hysteresis loop on
frequency, asymmetry of the SMA restoring force, aeroelastic nonlinearities due to
stall phenomenon, will be studied and included in the model in order to obtain a
global picture of the passive control of the flutter instability with SMA springs.
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