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Summary   
We propose in this work a method to predict the variability in wind turbine noise calculations 
due to wind speed and direction fluctuations. First, wind lidar data measurements during a 24-
hour period are analyzed, and four periods with different atmospheric stability conditions are 
selected. Then, a wind turbine noise model based on Amiet's theory for trailing edge noise is 
presented and used to predict the sound pressure level at a fixed receiver during the 24-hour 
period. Finally, a Monte Carlo sampling method is described that allows us to accurately predict 
the statistics of sound pressure level during each selected period. The variability is seen to be 
much more pronounced during the day than during the night, and statistical quantities are 
shown to depend on the period duration considered. 

1. Introduction   
Wind turbine noise depends on numerous factors such as wind turbine characteristics, receiver 
position, atmospheric conditions, ground type and terrain features. The accurate modelling of 
all these factors is a difficult task. Furthermore, the accuracy of the models may be limited by 
uncertainties, that can be classified as either epistemic or aleatory. Epistemic (or reducible) 
uncertainty comes from incomplete information or imprecise measurement of a quantity (e.g. 
source-receiver geometry). On the other hand, aleatory (or irreducible) uncertainty, also called 
variability, is inherently random (e.g. atmospheric turbulence). 

In this paper, we propose a method to predict the variability in wind turbine noise calculations 
due to atmospheric conditions. We consider a trailing edge noise model based on Amiet's 
theory, applied to a full-scale 2.3 MW wind turbine. Both wind speed and direction are 
considered random, and the variability of wind turbine noise is calculated using the Monte Carlo 
sampling method. To do so, high frequency wind lidar data measured at the SIRTA, an 
atmospheric observatory located South of Paris, are analyzed in order to obtain realistic 
probability density functions for different atmospheric conditions (stable and unstable 
atmospheres). Convergence and validation tests are performed to ensure the reliability of the 
method. Finally, predictions of the statistics of the sound pressure level for various periods are 
detailed.  

2. Meteorological data measured at SIRTA                                                                             
SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) is an atmospheric 
observatory located 20 km south of Paris (Haeffelin et al., 2005). In this work, we used data 
from two SIRTA instruments : 

• a wind lidar that provides the wind speed and direction between 40-meter and 200-meter 
height with a time resolution of 4 seconds ; 

• a sonic anemometer at 10-meters height that provides estimates of the friction velocity 
u*, temperature scale T* and Obukhov length L* every 10 minutes. 



2 
 

The parameters u*, T* and L* are useful to determine the type of stratification occurring in the 
atmospheric boundary layer (Stull, 1991). The atmosphere is typically stable (L* > 0) during a 
clear night, with temperature increasing with increasing altitude, which discourages vertical air 
motion. On the contrary, the atmosphere is typically unstable (L* < 0) during daytime, with 
significant vertical air motion. 

We analyzed 24 hours of data between 8:30am the 19th and 8:30am the 20th of October 2011. 
This day was selected because no rain occurred, the cloud cover was low and the wind was 
mostly blowing from the West where the terrain is open and flat. In Figure 1, the wind speed U 
at 80-meter height and the angle τ are plotted for the whole 24-hour period, where τ is the 
difference between the wind direction at 80-meter height and its mean over the whole period. 
The mean wind speed is 6.7 m/s, and the mean wind direction is 296°, where 0° corresponds to 
the North ; by definition the mean of τ is 0° over the whole period. 

We observe in Figure 1 than during the night - between approximately 6:54 pm and 8:17 am at 
this time of the year - the fluctuations of wind speed and direction are much weaker than during 
the day, which can be linked to the stability of the atmospheric boundary layer. Four periods of 
duration 40 to 60 minutes, noted by letters A to D in Figure 1, will be analyzed in more details in 
the following. During each period, the friction velocity u*, temperature scale T* and angle τ vary 
by a small amount. The corresponding mean meteorological quantities for these four selected 
periods are given in Table 1. 

Table 1 : Mean meteorological quantities for the four selected periods. 

Periods <U> (m/s) <τ> (°) <u*> (m/s) <T*> (K) <L*> (m) 

A : 10h15-11h05 6.4 -29 0.44 -0.16 [-98 , -79] 

B : 13h55-14h35 7.7 -10 0.46 -0.08 [-280 , -128] 

C : 19h05-20h05 7.5 +7 0.08 +0.05 [1.6 , 20] 

D : 6h15-6h55 6.9 +19 0.18 +0.07 [21 , 47] 

 

Figure 1: Wind speed U at 80-meter height, angle τ and calculated sound pressure level SPL. 
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3.  Wind turbine noise calculations
3.1 Wind turbine noise model based on Amiet's theory

In a recent paper (Tian et al., 2014), we showed that the 
proposed by Amiet (1976) can be applied to a full
model is to estimate the spectrum of wall pressure fluctuations
results were obtained considering the empirical model proposed by Rozenberg 
that takes into account the effect of an 
mechanisms such as turbulence inflow noise and separation 
consider only trailing edge noise in this work.

This model is applied to a Siemens SWT 2.3
height is 80 meter, and it has three
previous work  (Tian et al., 2014), where w
wind speed is constant with altitude. 
atmospheres, but not necessarily in stable atmospheres characterized by a stronger wind 
shear. The rotational speed is supposed to increase linearly from 6
speed of 4 m/s to 16 rpm at the rated wind speed of 12
The calculations are performed for a spectrum of 58
octave band spectrum between 50

The receiver is fixed at a distance R
with respect to the wind direction as shown in Figure
to the wind direction. For the sake of simplicity, the receiver is placed on a ground that is 
supposed rigid, such that the sound pressure level (SPL) is 6
SPL. Note that it would be possible to consider a more realistic ground effect, a
companion paper (Tian and Cotté

The third octave band spectrum of sound power level (SWL) 
at τ=0° (downwind) is plotted in Figure
the spectrum is around 800 Hz for all wind speeds. The overall SWL is also plotted 
to wind speed in Figure 3(b). Finally, the directivity of SPL 
amplitude modulation is plotted in Figure
is the difference between the maximum and minimum SPL during one blade rotation. When the 
SPL is maximum, for downwind and upwind directions, the AM is close to 0, while AM reaches 
a maximum of 6 to 8 dB(A) for crosswind directions, where t
directivities are very similar for the three wind speeds considered.

Figure 2: Angle τ between the 
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ind turbine noise calculations  
noise model based on Amiet's theory   

, 2014), we showed that the trailing edge noise analytical model 
proposed by Amiet (1976) can be applied to a full-size wind turbine. The main difficulty of this 
model is to estimate the spectrum of wall pressure fluctuations at the trailing edge

sidering the empirical model proposed by Rozenberg 
effect of an adverse pressure gradient. Although other noise 

such as turbulence inflow noise and separation noise may be important, we 
iling edge noise in this work. 

mens SWT 2.3-93 wind turbine of nominal power 2.3
and it has three B45 blades of length 45 meters. In contrast with our 

, 2014), where wind shear were considered, we assume here that the 
wind speed is constant with altitude. This is usually a good approximation for unstable 
atmospheres, but not necessarily in stable atmospheres characterized by a stronger wind 

s supposed to increase linearly from 6 rpm at the cut
rpm at the rated wind speed of 12 m/s, with a pitch angle equal to zero.

The calculations are performed for a spectrum of 58 frequencies in order to estimate the third 
e band spectrum between 50 Hz and 2500 Hz. 

a distance R = 200 meters from the wind turbine, and makes an angle 
wind direction as shown in Figure 2 ; the rotor plane is always perpendicular 

direction. For the sake of simplicity, the receiver is placed on a ground that is 
supposed rigid, such that the sound pressure level (SPL) is 6 dB greater than the free field 
SPL. Note that it would be possible to consider a more realistic ground effect, a

and Cotté, 2015). 

spectrum of sound power level (SWL) in dB(A) estimated from the SPL 
=0° (downwind) is plotted in Figure 3(a) for a wind speed of 4, 8 and 12

Hz for all wind speeds. The overall SWL is also plotted 
Finally, the directivity of SPL normalized by its maximum 

amplitude modulation is plotted in Figure 4 for different wind speeds. Amplitud
is the difference between the maximum and minimum SPL during one blade rotation. When the 
SPL is maximum, for downwind and upwind directions, the AM is close to 0, while AM reaches 

dB(A) for crosswind directions, where the SPL is minimum.
directivities are very similar for the three wind speeds considered. 
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(a) (b) 

Figure 3: (a) Third octave band spectrum of sound power level, and (b) overall sound power 
level with respect to wind speed U for τ=0° (downwind). 

 
Figure 4: Directivity of the normalized SPL (top) and of amplitude modulation AM (bottom) for a 

wind speed of 4, 8 and 12 m/s. 

 
3.2 Reference calculations using SIRTA meteorologic al data  

The noise model is now used to calculate the overall SPL for each lidar measurement (U,τ) 
during the 24-hour period presented in Figure 1. First, the calculation is performed for each of 
the 20 459 measurement. This takes a long computation time since each calculation requires 
about 30'' to run on a regular PC. Second, the calculation is performed by linear interpolation 
between pre-calculated values. A total of 19 wind speed values between 4 and 13 m/s (step of 
0.5 m/s) and 30 angular values for τ between -85° and 60° (step of 5°) are considered, which 
includes all the data plotted in Figure 1. The SPL values calculated by linear interpolation are in 
agreement with exact values within 0.1 dB, and are obtained almost immediately. Thus this 
interpolation technique will be used in the next section to predict SPL variability. 

Figure 5 shows the SPL for all pre-calculated values. Because the angle τ is limited to the 
interval [-85° , 60°], the influence of the wind direction is quite weak. This τ interval is also 
delimited by the dashed vertical lines in Figure 4, which shows that AM will not exceed 
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2.5 dB(A) for this set of data. The SPL results for all measured data is shown in the bottom of 
Figure 1, where it is seen that the noise level fluctuations follow clearly the wind speed 
fluctuations.  

 

Figure 5: SPL as a function of wind speed U and angle τ for all pre-calculated values. 

4. Prediction of wind turbine noise variability 
4.1 Monte-Carlo method for predicting sound pressur e level variability  

We consider here a stochastic (Monte Carlo) sampling technique to predict the variability of the 
noise radiated by wind turbines. This technique is widely used and effective for uncertainty and 
sensitivity analysis (Helton et al., 2006; Leroy et al., 2010; Wilson et al., 2014). Two random 
variables are taken into account, namely the wind speed U and the angle τ, characterized by 
their probability density functions (pdf) f(U) and g(τ). Thus the expected value of sound 
pressure level can be obtained by (Wilson et al., 2014): 
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Each SPLn calculation is performed by linear interpolation using the method described in 
Section 3.2. 
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4.2 Estimation of probability density functions for  wind speed and wind direction  

To be able to apply the Monte Carlo sampling method to our problem, we first need to estimate 
the pdf of wind speed and direction from the meteorological data. For wind speed, we consider 
the normal and Weibull distributions, the latter being widely used in wind speed analysis (Lo 
Brano et al., 2011). For the wind direction (angle τ), only the normal distribution is used. 

The quality of the pdf fitting for the four selected periods is assessed using the Kolmogorov-
Smirnov (K-S) statistical test (Lo Brano et al., 2011). This test measures the distance of a 
random sample with a theoretical pdf by comparing the empirical cdf with the cdf of the  
reference distribution ; this distance is given by the K-S statistic D. Let the null hypothesis be 
that the samples are drawn from the reference distribution. The null hypothesis is rejected if the 
K-S statistic D is greater than a critical value that depends on the significance level α. The p-
value is the probability of having a test statistic D as large or larger than observed, or otherly 
stated the probability that the empirical cdf is as far apart from the reference cdf. If p is smaller 
than α taken as 1% here, the null hypothesis is rejected. 

  
(a) Period A (b) Period B 

  
(c) Period C (d) Period D 

Figure 6 : Fitted wind speed probability density functions for the four selected periods estimated 
using 10 bins.  

The results of the K-S test are summarized in Table 2, and associated pdf for wind speed are 
compared to the empirical pdf in Figure 6 using 10 bins. Table 2 shows that only two wind 
speed distributions are rejected (p < 1%), namely the normal distribution for period C and the 
Weibull distribution for period D. No normal distribution is rejected for wind direction. For 
period A, the Weibull distribution yields a better fit for wind speed than the normal distribution, 

2 4 6 8 10
0

50

100

150

200

250

U(80m) (m/s)

 

 

empirical
normal
Weibull

4 6 8 10 12
0

50

100

150

200

U(80m) (m/s)

 

 

empirical
normal
Weibull

6 6.5 7 7.5 8 8.5
0

50

100

150

200

250

U(80m) (m/s)

 

 

empirical
normal
Weibull

6 6.5 7 7.5 8
0

20

40

60

80

100

120

140

U(80m) (m/s)

 

 

empirical
normal
Weibull



7 
 

so it will be used in the next section. Both normal and Weibull distributions fit well the wind 
speed of period B. We choose arbitrarily to use the normal distribution in the Monte Carlo 
simulations of the next section. 

 

Table 2 : Kolmogorov-Smirnov goodness of fit test with a significance level of 1% using a 
normal or Weibull distribution for the wind speed U and a normal distribution for angle τ. 

The bold values correspond to the distributions that are used for the Monte Carlo 
simulations. 

Period A B C D 

Time frame 10h15-11h05 13h55-14h35 19h05-20h05 6h15-6h55 

p-value of K-S test for a 
normal distribution of U 9.6% 12% 5.5x10-5 1.9% 

p-value of K-S test for a 
Weibull distribution of U 16% 12% 6.9% 6.2x10-7 

p-value of K-S test for a 
normal distribution of τ 

21% 98% 16% 47% 

 

4.3 Results and discussion 

In this Section, we will present results for the four periods selected in Section 2, using the 
distributions obtained in Section 4.2. To assess the quality of the results, we compare the 
statistics of the Monte Carlo simulations with the statistics of the reference data. More 
specifically, we look at the mean value <SPL>, the standard deviation σ(SPL), the median 
µ(SPL) and the interquartile range IQR(SPL). The standard deviation and the interquartile 
range are two different measures of variability. The standard deviation is useful when the 
distribution is normal; in this case 68% of the data are in the interval <SPL>±σ(SPL), and 95% 
of the data are in the interval <SPL>±2σ(SPL). The interquartile range is more general: it is the 
range of the middle 50% of the scores in a distribution. It is calculated as the difference 
between the 75th percentile and the 25th percentile. 

First, we look at a typical convergence curve for the Monte Carlo simulations in Figure 7(a). 
The median and interquartile range of SPL is obtained using different number of simulations 
between 500 and 10 000. It is seen that the results do not vary anymore when the number of 
simulations is greater than 5000. In the following, N = 10 000 simulations are used for all Monte 
Carlo simulations. Second, the empirical cdf obtained from reference data and from Monte 
Carlo simulations are plotted in Figure 7(b) for the four periods. An overall good agreement is 
found between both curves, but small discrepancies are visible, especially for periods A and B 
corresponding to daytime. These cdf curves give us a lot of information about the probability of 
particular events. For instance, it appears that the probability of obtaining a sound pressure 
level greater than 45 dB(A) is significantly different from 0 only for period B. 

The statistics for reference data and Monte Carlo simulations are given in Table 3, and also 
plotted as box plots in Figure 8. In the box plots, the central red line is the median, and the 
edges of the box are the 25th and 75th percentiles; thus the height of the box is the interquartile 
range. The whiskers extend to the most extreme data points not considered outliers; their 
length is 1.5 times the IQR. Outliers are plotted individually in red only for the reference data, 
since there would be too many outliers for the Monte Carlo simulations using N = 10 000. 
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(a) (b) 

Figure 7 : (a) Convergence of Monte Carlo simulations for median and IQR of SPL of period B, 
and (b) empirical cumulative distribution functions for the four periods obtained from the 

reference data (solid lines) and from Monte Carlo simulations with N = 10 000 (dashed lines). 

 

Table 3 : Comparison of statistical quantities for SPL obtained from the reference data 
from Monte-Carlo simulations with N = 10 000. 

Periods Type of 
calculation 

<SPL> 
(dBA) 

µ(SPL) 
(dBA) 

σ(SPL) 
(dBA) 

IQR(SPL) 
(dBA) 

A : 10h15-11h05 
Reference 37.8 38.1 2.5 3.2 

Monte Carlo 37.8 38.2 2.7 3.5 

B : 13h55-14h35 
Reference 41.7 42.0 2.7 3.0 

Monte Carlo 41.7 41.9 2.6 3.4 

C : 19h05-20h05 
Reference 41.5 41.6 1.0 1.1 

Monte Carlo 41.5 41.6 1.0 1.2 

D : 6h15-6h55 
Reference 39.7 39.7 1.0 1.3 

Monte Carlo 39.7 39.7 1.0 1.3 

 

We observe in Table 3 and Figure 8 that Monte Carlo simulations predict quite well the 
reference data statistics. The main discrepancies are for the IQR of periods A and B where a 
maximum difference of 0.4 dB(A) can occur. We note also that the measures of variability, 
σ(SPL) and IQR(SPL), are approximately three times larger during the 2 daytime periods the 
during the 2 night-time periods, as was already visible in the SPL plot of Figure 1. 
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(a) (b) 

Figure 8 : Box plots of SPL for the four selected periods using (a) reference data, and (b) Monte 
Carlo simulations with N =10 000. Outliers are shown only for reference data. 

 

Finally, we look at the variability at an intermediate time scale of 10 minutes inside each 
interval. In Figure 9, the box plots for each 10-minute interval inside periods A and D are plotted 
using the reference data (similar results would be obtained using Monte Carlo simulations). The 
scale is different for both periods, extending over 18 dB(A) for period A and only 6 dB(A) for 
period D. It appears quite clearly that the SPL shows as much variability in all 10-minute 
intervals during the daytime period A, with an IQR between 2.7 dB(A) and 3.7 dB(A). The 
median value varies by a small amount, remaining between 37.4 dB(A) and 38.9 dB(A). On the 
contrary, the median value varies significantly during night-time period D, decreasing from 
40.9 dB(A) in the first 10-minute interval to 38.5 dB(A) in the last one; the variability is small 
during this period, with the IQR remaining below 0.7 dB(A). 

 

  

(a) (b) 

Figure 9 : Box plots of SPL using reference data for each 10-minute interval of (a) period A, and 
(b) period D. 
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5. Conclusion 
In this paper, we describe a Monte Carlo sampling method that can be use to predict wind 
turbine noise variability. The wind turbine noise model we use is based on Amiet's theory for 
trailing edge noise. From wind lidar data measured at SIRTA, we estimate the probability 
density functions of wind speed and direction during four selected periods, which allows us to 
predict the statistics of sound pressure level during these periods. The method is shown to yield 
accurate results by comparison with reference calculations. The variability is seen to be much 
more pronounced during the daytime periods than during the night-time periods, with an 
interquartile range approximately three times larger during the daytime periods. We also show 
that statistical quantities depend on the period duration considered. During night-time period D, 
the median value changes by more than 2 dB(A) between the four 10-minute intervals.  

In this work, we use the ordinary or "brute-force" Monte-Carlo sampling method because we 
are able to obtain a good convergence in a small amount of computation time. For more 
computationally intensive models (e.g. with more random variables), it might be useful to use 
more advanced sampling strategies such as importance sampling or Latin hypercube sampling 
(Helton et al., 2006; Wilson et al., 2014). In the future, it could be interesting to account for the 
effect of wind shear (Tian et al., 2014) and/or ground effect (Tian and Cotté, 2015) in the 
variability analysis. 
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