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Abstract

The purpose of this work is to provide a robust vision-
based input device. In our system, a programmable retina
is looking at the user who sends commands by moving his
hand. The fusion between the acquisition and the processing
functions of the retina allows a close adaptation to the light-
ing conditions and to the dynamic range of the scene. Thanks
to its optical input and massive parallelism, the retina com-
putes efficiently the contours of the moving objects. This
feature has nice properties in terms of motion detection capa-
bilities and allows a dramatic reduction in the volume of data
to be output of the retina. An external low-power processor
then performs global computations on the output data, such
as extreme points or geometric moments, which are tempo-
rally filtered to generate a command.

1 Introduction

A vision-based interface is a system allowing to send
symbolic commands to a computer just as a mouse or a key-
board does, but with visual interaction only. Using a camera
as an input device is an attractive issue for numerous appli-
cations, from disabled persons assistance to intelligent home
environments. To be really useful, such systems must not be
invasive at all: it must neither impose to the user the wearing
of any equipment, nor induce any constraint in the decora-
tion of the scene observed by the camera. But detecting or
recognizing the visual features independently of the scene
content and its variation is a difficult task.

We are using in this work a vision system composed of
a smart camera (programmable retina) and an external low-
power processor (ARM). The interest of this approach is
twofold:

1. The intimate combination of acquisition and processing
functions of the retina allows to maintain a high fitness
between the scene lighting properties and the further
processing: in our case, the acquisition is adapted ac-
cording to a local contrast criterion, in order to enhance
the stability of the contours, which are the visual fea-
tures chosen to detect the interaction.

2. The massive data reduction which is made between the
optical input of the retina and the contour descriptor ma-
nipulated by the external processor is in perfect adequa-
tion with the I/O flow of the visual interface: image in,
symbol out. By minimizing data transfers thanks to the
massive parallelism and to the global measure output,

Antoine Manzanera
ENSTA - LEI
Paris - FRANCE

antoine.manzanera@ensta.fr

Nicolas Burrus
ENSTA - LEI
Paris - FRANCE

nicolas.burrus@ensta.fr

the system is designed to optimize this flow from an en-
ergetic point of view.

Section 2 presents the Programmable retina within the
vision system, its instruction set, acquisition and program-
ming paradigms. Section 3 deals with image processing al-
gorithms: the moving contour detection is detailed, and its
properties are discussed. In Section 4, the higher level pro-
cessing is presented and our first experiments in a drawing
interface application are exposed. Finally, Section 5 out-
lines the contributions and presents some perspectives of this
work.

2 Programmable retina

The programmable retina concept originates from the
NCP (Neighborhood Combinatorial Processing) retinas [12],
which were SIMD Boolean machines. The NSIP (Near
Sensor Image Processing) concept [7] then allowed to pro-
cess graylevel images. Now, the highly submicronic level
of CMOS technology allows to put more and more power-
ful processing circuitry aside the photoreceptors while pre-
serving good acquisition performance and resolution. The
most recent circuit that has been fabricated and validated is a
200 x 200 retina called Pvisar 34, with an elementary digital
processor and 48 bits of memory within every pixel.

The algorithm presented in this paper was implemented
on the architecture presented in Figure 1). The retina Pvi-
sar 34 is both a CMOS sensor and a parallel machine. It
is a grid of 200 x 200 pixels/processors connected by a reg-
ular 4-connected rectangular mesh. The processors operate
synchronously, on their local data, a sequence of instructions
being sent by the controller, which is the NIOS processor IP
core of an Excalibur FPGA chip. The host processor or cor-
tex is the ARM processor hardware core of the Excalibur. It
can exchange data with the retina, modify the program sent
by the NIOS to the retina, and is in charge of the higher levels
of computation (i.e. non-image processing).

Every pixel/processor p of the grid G is composed of:
e one photoreceptor,

e one Analog to Digital Converter,

e 48 bits of digital memory {p;},1 <i<48.

e one Boolean Unit (BU), which can read some bits of the
digital memory, compute a Boolean operation and write
its output on one bit of the digital memory.
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Figure 1. Architecture of the system composed of a retina
and a cortex, with focus on one elementary processor.

For a given memory index i, the set X; = U pi is a
peG

200 x 200 binary image called “bit plane”. The elementary
operations of the retina are massively parallel instructions of
the form ¥ = OP(X;,X,), where X;,X;,Y are 3 bit planes
(not necessarily distinct) of the digital memory, and OP is
any binary Boolean function (e.g. AND, XOR, AND NOT,
etc). Every pixel of the retina shares 1 bit of its memory with
each one of its 4 closest neighbours. This enables spatial
interactions and image translations.

Regarding data extraction, there are two ways to output
information from the retina:

e by transfering sequentially (translating) the image, to
get the exact content of one or more bit planes of the
digital memory.

e by using the Analog Global Summer, which provides in
constant time an approximate measure of the number of
1s in any bit plane of the digital memory.

Although simple, this last feature is important as it pro-
vides efficiently global measures that are very useful to get
spatial statistics or to detect the convergence of relaxation
algorithms.

The Analog to Digital Conversion is performed during the
acquisition, and is a plain part of the retinal program. In-
deed, the acquisition of a n graylevels image is done by mul-
tiple readings of the photoreceptor which provide (n — 1) bi-
nary images (level sets) along the time (Figure 2). The pho-
toreceptor (photodiode) is loaded to tension V., and then
unloads linearly with time, with a slope proportional to the
amount of photons received. The graylevel is then computed
in every pixel by counting (on log,(n) bits), the number of
times the tension at the bounds of the photodiode is below a
threshold tension V;. Thus, an acquisition is defined by the
set of time indices {x;};—_,—1, corresponding to the reading
instants of the photodiode.

The acquisition and digital coding of a n graylevels im-
age is performed in n + log(n) operations, corresponding to
the sequence of Boolean operations performed to add the
(n—1) level sets. Of course, the resulting digital image occu-

Figure 2. Graylevel acquisition by multiple reading of the
photodiode.

pies log(n) bits of memory in every pixel. Then, the retinal
program applies a sequence of arithmetic and logic opera-
tions that are completely written in software, at the bit level.
However, if the number of operations (and thus the energy
consumption), is not critical, the possibility of processing
during acquisition allows a lot of elegant computations of
image operators. In particular, many operators of mathemat-
ical morphology are naturally computed by combining their
binary counterparts over the level sets of the image (this is
a consequence of the extension scheme of the mathematical
morphology from sets to functions) [11]. In our application
for example, the morphological gradient (see Section 3) can
be computed by summing the level lines (i.e. the contours of
every level set) instead of the level sets.

But a more immediate consequence of this mode of acqui-
sition is that it allows to control very simply the histogram of
the image, by modifying the reading instants of the photore-
ceptor (e.g. logarithmic compression, gamma correction).
Furthermore, it can be coupled with the analog global sum-
mer to adapt the reading instants to the graylevels repartition
(e.g. histogram equalization). In the following of this sec-
tion, we describe the adaptive acquisition we actually per-
form in our system.

As we wish to describe the static background of the scene
(and then, by discrimination, the moving objects) by their
contours, we need to compute contours that are both rich (to
get all the structure from the objects, without regard to their
contrast) and temporally stable. Meeting these two require-
ments is very hard, in particular when coding a high dynamic
scene with a limited number of bits, because in this case, the
contrast within the extreme (i.e. very light or very dark) re-
gions is inexistent (saturation effect).

On the retina, a triple acquisition is performed: at each
frame time ¢, 3 graylevels images are coded B;, M; and
D, corresponding respectively to bright, medium and dark
regions of the graylevel distribution. Then 3(n— 1) level sets
are computed instead of n — 1, corresponding to the 3 sets
of time indices {6’ }i—1. n—1, {m}}i=1 n—1, and {d!}iz1 1
respectively. These time indices are related as follows.
First, the first index of the medium acquisition is temporally
updated by a small increment:

if M| < (wx h)/2 then mit'=m te

else m’l+1

t
=m —¢
where M/ is the (binary) n/2-level set of M, (or equiva-
lently, the most significant bit of the binary code of M;), |X|

is the cardinality (the number of 1s) of X, w and & are the



dimensions of the image (here w = h = 200). This first con-
dition corresponds to adapting incrementally the time refer-
ence such that the median value of the medium image M, is

half of the n graylevels dynamics. \M;l/ 2 , which is the only
global measure needed by this algorithm, is computed thanks
to the analog summer.

Second, the first indices of the two other acquisitions are
placed in the time axis according to the relation:

btl +Opm = m’l = dll — O

where Jp,, (resp. 9,,4) represents the time offset - manually
fixed - between the bright and medium (resp. between the
medium and dark) regions.

Finally, every image is coded according to a logarithmic

representation of the graylevels:
Xipy = 0K
with x = b, m, and d respectively.

Figure 3(1-3) shows the 3 resulting images B;, M; and D;.
Recomposing a high dynamic range image from these 3 im-
ages, or reducing the representation of the image (e.g. from
3log(n) to log(n) bits) can be done using different techniques
that have been addressed in the literature [4] [6]. But in our
application, we do not wish to recompose an image, but only
to estimate the local contrast to compute the contour. We
then simply compute a reduced representation of the con-
trast by computing the maximum of the local contrast in the
3 images:

Gy = max(gp(B:),85(M;),g5(D1))
where gp is the morphological gradient (see Section 3).
Some other results that have been achieved by using the
artificial retina can be found in the [2] and [10] papers.

3 Moving Contour detection

The static part of the algorithm used in the detection of the
moving contours is based on the morphological edge detec-
tor described by Lee et al in [9]. This non-linear framework,
using essentially min and max operations, is well suited
to the Boolean computational model of the programmable
retina. The morphological edge detection provides a mea-
sure of local contrast within every pixel, thanks to the dila-
tion residue operator: let f(x,y) be a grayscale image and b
the structuring element, which is a set containing the origin
(0,0). The dilation of f by b if defined as:

(f®b)(x,y) = max f(x—i,y—j)
(i,j)eb

The edges obtained by using the dilation residue, or
(dilation-) gradient, noted by g, (x,y), will be:

8 (f)(xy) = (F&b)(x,y) = f(x,y)

Like [9], we combine different gradients ob-
tained using several structuring elements: gp(f) =
min(gp, (f),....&p,(f)), in order to be less sensitive to
noise and edge orientation. And according to Section 2,
we maximize the gradient over the three acquired images:
Gy = max(gg(By),g8(M;),gp(Dy)): see Figure 3(4).

Once the (grayscale) edge map computed, we get the
(binary) contours by employing a non-maximal suppresion
technique, adapted from [3] to suit the massive parallelism
of the retina. The method of suppresion is the following: let
p be the pixel that is currently being processed (do not forget
that the other 39,999 pixels of the retina are simultaneously

undergoing the same sequence of operations) and his twelve
neighbours, denoted using cardinal directions indices as fol-
lows:
PNN
PNw PN DPNE
pww  Pw p PE  PEE
psw  Ps  DSE
Dss

p will be selected as a contour point if at least one of the
following four conditions is true:

L. pnw + pw + psw < pN + P+ ps > PNE + PE + PsE
(corresponding to a horizontal ridge)

2. pnw +pn + pNE < pw + P+ PE > psw + PN + PsE
(corresponding to a vertical ridge)

3. pnN+PNw +pww < PNE+ D+ Psw > PEE +PSE + Dss
(corresponding to a ridge with an orientation of 135°)

4. pww +psw + pss < pnw + P+ DPse > PNN + PNE + DEE
(corresponding to a ridge with an orientation of 45°)

After this local maxima selection two last operations are
completed to compute the contour image C;: first, the con-
tour with a gradient value of 1 are discarded to avoid the fake
edges induced by the quantization effect on a grayscale ramp
(those for example, due to the vignetting effect of the lens).
Then, to eliminate salt-and-pepper-like detections, we also
impose the condition that a pixel can be taken into account as
a contour pixel only if it has at least two neighbours classified
as contours too. This gives a lower rate of false detections,
although it lowers the quantity of information theoretically
obtainable from an image. Figure 3(5) shows an example of
contours image.

To discriminate the moving contours from those of the
static scene, we need to compare the current occurrences
with the past edges. The basic approach is the following
one: we keep track of the number of times when a pixel
was a contour, by computing, for any instant ¢, two de-
scriptors attached to every pixel, and related to two differ-
ent timescales: the short term history (STH) and the long
term history (LTH). At every frame, if the pixel belongs to
an edge, then STH is increased. If not, it is decreased. The
increment/decrement is adjusted to not exceed the interval
allowed by the dynamics of STH. The update for the LTH
is almost the same, except that instead of the contour C;, the
most significant bit of STH is used, and the timescale (i.e.
the update period) is larger.

The computation of the moving contours is obtained from
a logical AND between the current contour C; and the pixels
with a low LTH. As, obviously, a pixel can belong to both
the contour of a moving object and the contour of the static
scene, one iteration of reconstruction (or geodesic dilation)
is performed: a dilation is computed on the intersection set,
followed by a logical AND with C;. This step allows to limit
the disconnection on the resulting moving contours image
E;. The relevance of this basic approach is based on the fact
that - by construction - the contours are one-pixel-thick, and
then an object must be very still to let his contours be taken
into account by the LTH. To enhance this behavior, however,
and avoid the blurry, low-value disturbances which may be
caused by the contours of a moving object in STH, we lower
the increment frequency in STH for the pixels belonging to



E;.

Another problem in the basic approach is generated by
the fact that, generally, the moving objects are not transpar-
ent, which makes possible for a part of the background con-
tours to be erased by the overlapping objects. The solution
has been provided by the introduction of discrimination be-
tween the increment and the decrement of the LTH, the latter
being discouraged. Thus, even if an object is obstructing the
background scenery for a large amount of time (adjustable
through parameterisation), it is possible for the object’s con-
tours to integrate themselves in the background (if the object
is standing still) and, at the same time, for the background
contours to stay longer in the scene, as if the new object was
transparent. This property, together with the intrinsic thin-
ness of the contours, significantly reduces the “ghost effect”
(part of the static scene appearing as moving contours after
being covered for a long time by a moving object). See Fig-
ure 3(6) for an example of moving contours image.

The measured times of execution for the different parts
of the algorithm are the following: 10ms are needed by the
retina to do its job (determination of the gradients, update of
STH and LTH, extraction of moving contours, etc.), 8.6ms
are needed for the ARM to compute the new trace (see Sec-
tion 4) and 50ms are necessary to acquire the three initial im-
ages. The time needed to capture the three images is largely
scene-dependent, a darker scene will demand a longer expo-
sure time. As one can observe, the bottleneck is not induced
by the processors in the retina themselves, but by the images’
capture time. From an energetic point of view, the power
consumption of the system is only a few tens milliwatts, 3 to
4 orders of magnitude as small as that of a PC.

Because of the high sensitivity induced by this algorithm,
we get some false detections in addition to the true contours
of the moving objects. Since some local filtering has already
been applied, those false detections are gathered into small
connected components. As objects of interest generally have
important areas, we reduce the number of false alarms by
filtering out small regions. This requires non-local compu-
tations on the image, surpassing the present possibilities of
the retina. Thus, this step is performed by the host (ARM)
processor. The further analysis, consisting in extracting and
exploiting regional and global quantities on the moving con-
tours is discussed in the next section.

4 Vision-based interface

The purpose of the image processing techniques pre-
sented above is to allow a stable and complete extraction of
the contours of the moving objects, without imposing con-
straint of uniformity in the background. With respect to the
input data flow, this feature represents a small amount of data
which can be quickly extracted from the retina and processed
by the external processor. We are currently beginning the
exploitation of this visual feature for higher level process-
ing. We present in this section the first experiments of visual
interaction we have performed.

In these experiments, we are testing a drawing interface:
the user draws a bidimensional curve by moving his finger
or a pen above the retina, which is oriented toward the ceil-
ing. Such interface can be used to input hand drawn char-
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Figure 3. Acquisition and processing within the pro-
grammable retina: (1) short exposure acquisition B;.
(2) medium exposure acquisition ;. (3) long exposure
acquisition D;. (4) maximum of the morphological gra-
dient over the three acquisitions GtB . (5) binary contours
C;. (6) moving contours detected E;,.

acters or sketches [5], but also some simple hand gestures
[8], for which the curve represents a 2d model to be further
processed and recognized.

One difficulty in developping visual interface is the neces-
sity of several modalities in the interaction, just like the ac-
tion of a mouse stops if it is dropped, or changes if its button
is depressed. We wish to use the visual interface alone, with-
out interaction of the mouse or keyboard. This implies that
several parameters of the visual feature must be exploited, in
order to define not only the position of the “tool”, but also
the action modality. In our example, the 3 modalities are
(1) Draw, (2) Do nothing, (3) Erase.

So the first parameter computed from the visual feature
is a global one ; it is the orientation of the moving object.
Like [1], we compute the second order moments (vx,vy),
i.e. the variances of the two coordinates of the moving con-
tour points. The rough orientation is then used to define the
modality: if v,/v, is superior to a given threshold op, then
the “Draw” action is selected. If v, /v, is superior to a given
threshold o, then the “Erase” action is selected. Otherwise,



the “Do nothing” action is selected.

The second parameter extracted from the moving contour
is a local one: the extreme left position of the moving ob-
jects, if any (there must be a connected curve with at least
Npin points) is used as the candidate position of the tool. This
candidate position is checked according to a predictive filter-
ing (it must not be too far from the previous position of the
same tool). If the position is confirmed, then the following
action is applied on the drawing widget: if “draw” is selected
then create a line between previous and current position ; if
“erase” is selected, then erase all points situated at the right
of the current position.

On Figure 4, we can see the tracking system in action.
Special attention should be paid to the transitions over the
very textured areas (the neon grid, for instance). Because
we work with contours only, we could expect some difficul-
ties when crossing these areas, but by using a wisely chosen
set of filters (enclosure and selection based on the elements’
size), we are able to obtain a very high detection rate of the
fingertip.

3) “

Figure 4. Drawing example using the visual mouse

5 Conclusion

We have presented in this paper a project of visual inter-
face based on the extraction and processing of the contours of
the moving objects. At the moment, we have mainly devel-
opped the low-level part of the project, which corresponds to
the extraction of the moving contours, using a programmable
retina, both as camera and parallel computer. The combi-
nation of acquisition and image processing allows a smart
adaptation to the lighting properties of the scene. The vi-
sual interaction can be seen as a huge data reduction, turn-
ing video flow into symbols. The computational model of
the programmable retina limits the data transfers to the min-
imum, and then reduces the energy consumed by this data

reduction.

The higher level (interpretation of the moving contours)
is being investigated, and will be pursued in the following
months. We have presented our first experiments, based on
single point/multiple actions interface. The perspectives of
this work are also: global hand posture estimation for con-
trolling a 3d mouse, and traking a 3d model to recover the
complete posture of the arm/hand/fingers.

6 References
[1] S. Ahmad. A usable real-time 3d hand tracker. In 28th

Asilomar Conference on Signals, Systems and Comput-
ers, pages 1257-1261, 1995.

[2] N. Burrus and T.M. Bernard. Adaptive vision lever-
aging digital retinas: Extracting meaningful segments.
In Advanced Concepts for Intelligent Vision Systems,
pages 220-231, 2006.

[3] B. Chanda, M.K. Kundu, and Y.V. Padmaja. A multi-
scale morphologic edge detector. Pattern Recognition,
31(10):1469-1478, 1998.

[4] P. Debevec and J. Malik. Recovering high dynamic
range radiance maps from photographs. In SIGGRAPH
97, pages 369-378, aug 1997.

[5] L.A. Erdem, ML.E. Erdem, V. Atalay, and A.E. Cetin.
Vision-based continuous graffiti-like text entry system.
Optical Engineering, 43:553-558, 2004.

[6] R. Fattal, D. Lischinski, and M. Werman. Gradient do-
main high dynamic range compression. In ACM SIG-
GRAPH 2002, pages 249-256, july 2002.

[7]1 R. Forchheimer and A. Astrgm. Near-sensor image
processing: a new paradigm. I[EEE trans. on Image
Processing, 3:736-746, 1994.

[8] T. Huang and V. Pavlovic. Hand gesture modeling,
analysis, and synthesis. In International Workshop on
Automatic Face and Gesture Recognition, pages 73-79,
1995.

[9] J. Lee, R. Haralick, and L. Shapiro. Morphologic edge
detection. IEEE Journal of Robotics and Automation,
3:142-156, 1987.

[10] J. Richefeu and A. Manzanera. A morphological dom-
inant points detection and its cellular implementation.
In ISSPA 2003 Proceedings, volume 2, pages 181-184,
2003.

[11] J. Serra. Image analysis and mathematical morphol-
0gy. London Academic, 1982.

[12] B. Zavidovique and G. Stamon. Bilevel processing of
multilevel images. In Pattern Recognition and Image
Processing, Dallas, TX, August 1981.



