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Spin-torque transfer magnetic random access memory (STT-MRAM) has emerged as a promising non-volatile memory technology, with advantages such asscalability, speed, endurance and power consumption. This paper presents a STT-MRAM cell operation channel model with write and read operations for information theorists and error correction code designers. This model takes into account the effects of process variations and thermal fluctuations and considers all principle flaws during the fabrication and operation processes.With this model, evaluations are not only made for the write channel, the read channel, but alsothe write and read channel with metricssuch as operation failure rate, bit error rate, channel ergodiccapacity and channel outage probability at certain outage capacity. Moreover, it is proved that the distributions of written-in bit states are not uniformly distributed andare proportional to their respective write success probabilities. Finally, simulation results show that practical code rates and code block lengths can guarantee reliable performances only if the operation success rate difference between state '1' and state '0'is small enough.

I. INTRODUCTION

PIN-TRANSFERtorque magnetic random access memory (STT-MRAM) has become one of the most promising candidate for nextgeneration memory in terms of high-speed, nonvolatility and ultra low-power consumption. All these features make STT-MRAMextremely attractive to become general memories (cache, main memory, disk) for mobile devices.
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which become even more critical as the technology scales down. Moreover, as many electronic devices, STT-MRAM suffers from random thermal fluctuations which are independent of the device process variations.Therefore, complementary to making a difficult cell optimization among different technical parameters mutually correlated, it is possible to reduce the design complexity and tolerate a certain level of device imperfection by introducing another degree-of-freedom, i.e.,error correction codes (ECC) [START_REF] Lin | Error Control Coding[END_REF], [START_REF] Vanstraceele | A Low Complexity Block Turbo Decoder Architecture[END_REF].

In order to design asatisfying ECC, the STT-MRAM cell channel needs to be carefully modeled and investigatedby obtaining metrics such asoperation failure rate, bit error rate (BER), channel ergodiccapacity and channel outage probability at certain outage capacity. This model is extremely important for the efficient selection ofboth the code rate and the code lengthin order to meet the practical performance requirements.The scientific canvas for this design is information theory; STT-MRAM is then considered as a device having an input (i.e., the original information) and an output (i.e., a resistance corresponding to the written/read out information), the output being statistically linked to the input through the physical properties of the media. For more distorted channels, more redundancy should be added by the ECC, i.e. the code rate between the real informationand the coded bits (information and added redundancy) should be lower and Shannon postulated that an asymptotically small error can be achieved if the code rate is less than the channel capacity [START_REF] Shannon | A Mathematical Theory of Communication[END_REF]. However, there are very few works correlating the ECC design with the cell channel. [START_REF] Chen | Channel capacity and soft-decision decoding of LDPC codes for spin-torque transfer magnetic random access memory (STT-MRAM)[END_REF] modeled the STT-MRAM operation channel as an asymmetrical resistance variation channel; both the influence ofthe write and read failures, and the process variations are considered as factors enlarging the standard deviations of resistance distributions which is over-simplifying as the write and read failures are nonlinear processes.Moreover, [START_REF] Wen | CD-ECC: Content-dependent error correction codes for combating asymmetric nonvolatile memory operation errors[END_REF]proposed an asymmetric write channel model taking into account process variations and thermal fluctuations. However, in a STT-MRAM memory system, the write and the readoperations are both important and each of these functions must be modeled carefully; actually the optimization on either the write or the read operation generally does not lead to a global optimization and technical parameters are usually selected to balanceboth write and read performances to reach a global optimum performance.Taking the transistor width as an example, the selection of the transistor width generally determinesthe current drive capacity;on one side,the write operation needs a large current to target the magnetization as An Information Theory Perspective for the Binary STT-MRAM Cell Operation Channel Jianxiao YANG 1 , BenoitGELLER 1 , Meng LI 2 , and Tong ZHANG 3 S quickly as possible, andthe read operationrequires a sufficient current to drive the sense amplifier as fast as possible;on the other side,the read current should be kept small enough to avoid flipping the cell content.Differently from [START_REF] Chen | Channel capacity and soft-decision decoding of LDPC codes for spin-torque transfer magnetic random access memory (STT-MRAM)[END_REF] [START_REF] Wen | CD-ECC: Content-dependent error correction codes for combating asymmetric nonvolatile memory operation errors[END_REF], [START_REF] Fong | Bit-cell level optimization for non-volatile memories using magnetic tunnel junctions and spin-transfer torque switching[END_REF] proposed an optimization technique to minimize both read and write failures and developed a mixed-mode framework to optimize the bit-cell level reliability. This framework captured the transport physics by using the non-equilibrium Green's function method, solved the MTJ magnetization dynamics with the Landau-Lifshitz-Gilbert (LLG) equation, and performed bit-level optimization with HSPICE. [START_REF] Zhao | Failure and reliability analysis of STT-MRAM[END_REF]dealt with the reliability issues by analyzing the impact of the nonpermanent "soft-errors"introduced by various operations,as well as thepermanent "hard-errors" caused by permanent device damages. [START_REF] Fong | Bit-cell level optimization for non-volatile memories using magnetic tunnel junctions and spin-transfer torque switching[END_REF]and [START_REF] Zhao | Failure and reliability analysis of STT-MRAM[END_REF]concentrate on hardware design in order to optimize the memory performance.However, such a performance level can also be reached by using an additional degree-of-freedom -a properly designed ECC [START_REF] Lin | Error Control Coding[END_REF], [START_REF] Wang | Optimizing the Use of STT-RAM in SSDs through Data-Dependent Error Tolerance[END_REF]- [START_REF] Geller | Block Turbo Codes: From Architecture to Application[END_REF]; the hardware design complexity can thus tolerate a certain level of unreliability that will be improved by ECC.

Differently fromthe previous works [START_REF] Chen | Channel capacity and soft-decision decoding of LDPC codes for spin-torque transfer magnetic random access memory (STT-MRAM)[END_REF]- [START_REF] Zhao | Failure and reliability analysis of STT-MRAM[END_REF], this paper intends to propose a channel model to simulatethe reliability of the basic STT-MRAM cells write and read operationsby taking into account both the process variations and thermal fluctuations(without considering the impact of "hard-errors");also differently from the compact models [START_REF] Sun | Spin-current interaction with a monodomain magnetic body: A model study[END_REF]- [START_REF] Faber | Dynamic compact model of spin-transfer torque based magnetic tunnel junction (MTJ)[END_REF], this model targets to bridge the gap between the information theory community and the physical device community by taking into account various process variations and thermal fluctuations without solving any complex equations.Moreover, aiming at an efficient ECC design, operation failure rates, bit error rates and channel capacitiesareevaluated.Comments are also made for the highly asymmetrical characteristics of the STT-MRAM channel. Finally, suggestions are made for the selection of both the code rate and the code block length.

The rest of the paper is organized as follows. The basics of STT-MRAM cell operations, various process variations, thermal fluctuations and capacity definitions arebriefly reviewed in Section II. The proposed channel model including both write and read operations isdetailed in Section III. Simulation and numerical results are given in Section IVwith comments on ECC design. Finally, conclusions are made in Section V.

II. STT-MRAM CELLOPERATIONS

A. STT-MRAM Cell Basics

A datum in a STT-MRAM cell is represented as the resistance state ofa magnetic tunneling junction (MTJ) device, which can be switched by applying programming currents with different polarizations [START_REF] Fert | Historical Overview: From Electron Transport in Magnetic Materials to Spintronics[END_REF], [START_REF] Berger | Emission of Spin waves by a magnetic multilayer traversed by a current[END_REF]. A widely used STT-MRAM cell structure is displayed in Fig. 1 and the so-called "1T-1MTJ" structure consists of one transistor and one magnetic tunneling junction, where a tunneling oxide layer (see the grey bars in Fig. 1) is sandwiched between two ferromagnetic layers; one of these layer is called reference layer (RL) and has a fixed magnetization and the other layer is called free layer (RL) with two possible magnetizations to represent a bit. Writing a "0" or writing a "1" to a cell is achieved by applying reversed direction currents.When writing "0" (MTJ in parallel state), the word line (WL) and bit line (BL) are connected to the supply voltage DD V , and the source line (SL) is connected to the ground (see Fig. 1.(a)). The NMOS transistor is either working in its saturation regionfor a small transistor width or in its linear region for a large transistor width. When writing "1" (MTJ in anti-parallel state), WL and SL are connected to DD V , while BL is connected to the ground (see Fig. 1.(b)). The transistor is then working in its saturation region.

There are two ways to read a cell, the so-called parallel (P) direction read with the same direction as writing "0", and the anti-parallel (AP) read with the same direction as writing "1". Inthe parallel direction reading, a low voltage is applied between BL and SL. After activating WL, a current flows from BL to SL.In the anti-parallel direction reading, the voltage polarity applied to BL and SL is switched and a current flows in the reversed direction -from SL to BL.

B. CMOS Process Variations

The CMOS process variations contribute to the variability of the driving strength of the NMOS transistor due to random dopantfluctuations, line-edge roughness, shallow trench isolationstress, and geometry variations of the transistor channel length/width [START_REF] Ye | Statistical Modeling and Simulation of Threshold Variation Under Random Dopant Fluctuations and Line-Edge Roughness[END_REF]. All these process variations have a direct impact over the transistor's threshold voltage TH V and its equivalent resistance.

C. MTJ Process Variations

The MTJ process variationsare independent from the CMOS process variations and lead to the variability of the MTJ. Thesevariationsstem from the MTJ shaping variations, from the oxide thickness variation, and from the localized fluctuation of magnetic anisotropy [START_REF] Li | Modeling of failure probability and statistical design of Spin-Torque Transfer Magnetic Random Access Memory (STT MRAM) array for yield enhancement[END_REF]. The first two factors cause thevariations of the MTJ resistance and of the MTJ switching current by changing the bias conditions of the NMOS transistor, whereas the third factor is an intrinsic variation of the magnetic material that both affects the MTJ'scritical switching current density C0 J and the magnetization stability barrier height.

D. Random Thermal Fluctuations

In general, the magnetization dynamics of the MTJ switching affected by thermal fluctuations can be modeled by the famous [START_REF] Wang | Thermal Fluctuation Effects on Spin Torque Induced Switching: Mean and Variations[END_REF].Due to the random thermal fluctuations, the MTJ switching time becomes unrepeatable and is independent of the process variations.

It has been found that switching modes in MTJ are categorized as a function of the switch current duration and can be classified into three distinct modes [START_REF] Diao | Spin-transfer torque switching in magnetic tunnel junctions and spin transfer torque random access memory[END_REF]: thermal activation, dynamic reversal and precessional switching.

For a long current pulse(longer than 10 ns), the magnetization switching is a thermally activated process. In this regime, the magnetization switching is independent of the initial conditions and is only determined by thermal agitation during the switching process.

For a very short switch current duration(shorter than 3 ns), the magnetization switching is precessional switching and is mainly dependent on the initial thermal distribution. In this regime, both the magnetization switching distribution and the switching probability are independent of the thermal agitation during the switching process.

For an intermediate current pulseduration (between 3 ns and 10 ns), the magnetization switching is dynamic reversal [START_REF] Diao | Spin-transfer torque switching in magnetic tunnel junctions and spin transfer torque random access memory[END_REF]and is determined by the initial thermal distribution and bythe thermal agitation during the switching process.

E. Write Variations

During the write operation, two kinds of failures can occur : 1) The cell fails to be flipped from 0 to 1 and keeps the 0 state while anti-parallel writing is performed;

2) The cell fails to be flipped from 1 to 0 and stays at the 1 state when parallel writing is performed.

These failures come from two factors that can lead to the variation of the MTJ switching current and thus result ona switching time uncertainty [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]: one factor is the CMOS transistor and MTJ process variations, which causea driving ability variation of the transistor; the other factor is therandomthermal fluctuations, inducing a stochastic MTJ magnetization switching process [START_REF] Wang | Thermal Fluctuation Effects on Spin Torque Induced Switching: Mean and Variations[END_REF].

Moreover, these two factors leadto a high asymmetry between the two writing state transitions 01  and 10  . The bias difference condition [START_REF] Zhang | Asymmetry of MTJ switching and its implication to STT-RAM designs[END_REF]of the transistor causes that the 01  transition requires a longer time to perform the transition compared to the 10  transition, and the standard deviation(STD) of the transition 01  is much broader thanthe one of the transition 10  [START_REF] Zhang | STT-RAM Cell Design Considering MTJ Asymmetric Switching[END_REF]. Therefore the write operation 01  contributes prominently to writing failure events [START_REF] Zhang | Asymmetry of MTJ switching and its implication to STT-RAM designs[END_REF]and is considered as an "unfavorable" switching direction.

F. Read Variations

One must achievea compromise on setting a proper read current [START_REF] Fong | Bit-cell level optimization for non-volatile memories using magnetic tunnel junctions and spin-transfer torque switching[END_REF], [START_REF] Zhao | Failure and reliability analysis of STT-MRAM[END_REF], [START_REF] Bayram | ADAMS: Asymmetric Differential STT-RAM Cell Structure for Reliable and High-performance Applications[END_REF] for the read operation: on one side, the read current requiresto be high enough to generate a sufficient sense voltage margin to drive the sense amplifier and to ensure a fast read access time; on the other side, the read current must be kept low enough so as to avoid flipping the stored state to the reversed one.

Therefore, three types of errors can occur during the read operation:

1) The cell stores a 0 but is read out as a 1;

2) The cell stores a 1 but is read out as a 0;

3)The cell stores a 0 (resp. 1) but is flipped to 1 (resp.0) during an anti-parallel (resp.parallel) read operation.

The first two error types come from the process variations of the cell MTJs and transistors, when compared to a reference resistance which is assumed to be ideal with neither process variations nor thermal fluctuations; the third error type stems from too large read current flipping the MTJ cell state.

G. Channel Capacity

In order to design an efficient ECC with reliable performance for STT-MRAM systems, not only should the operation failure ratesbe measured, but also the operational channel capacity, i.e., the maximum ratio that can be reliably written into and read out from 1T-1MTJ cells, needs to be evaluated.

For the STT-MRAM write and read channel, the capacity can be written as:

        m a x ; , px C I X Y  (1)
where

  0 ,1 X 
is the input of the channel, and Y is a continuous output resistance value.

Since the a priori information about the input bit X is highly content dependent, it is reasonable to assume an equiprobable distribution for X , i.e.,    

0 1 0 .5 p x p x    
. Therefore, the channel capacity is equal to the mutual information   ; I X Y , given by:

      ; |, C I X Y H Y H Y X   (2) 
where   HY is the entropy of the channel output:

        2 lo g H Y p y p y d y   (3) 
and the probability density function   pyis:

      1 0 | x p y p x p y x    ; (4) moreover,   | H Y X
is the conditional entropy of the channel output Y given the channel input X , defined as:

          1 2 0 | | lo g | x H Y X p y x p x p y x d y     (5) 
Note that (2) can be applied to the capacity evaluation of the write channel, the read channel, the write and read channel in order to balance write and read operations. The capacity (2), also called ergodic capacity, is obtained by averaging overall possible channel realizations (i.e., an infinite number of 1T-1MTJ cells). This implies that the ergodic capacitycan be achieved only by a theoreticinfinite length ECC.

However, in practice, for a finite code length, the channel capacity varies from one block to another due to the limited number of channel realizations. The outage probability o  [START_REF] Du | Wireless Communication Systems[END_REF]ismore useful in this case; o  is defined as the probability that a capacity . Mathematically, the definition of the outage probability is given by:  

Pr N o o CC    , (6) 
where the terms

N C ,   N HX and   | Nn H X y
can be computed as follows:

      1 1 | N N n n n n C H X H X y N    , (7) 
        1 2 0 lo g n n n n x H X p x p x    , (8) 
        1 2 0 | | lo g | n n n n n n n x H X y p x y p x y    , (9) 
          1 0 | | | n n n nn n x p x p y x p x y p x p y x    . ( 10 
)
It is noted that n y is just onerealizationof Y anda finite block of N realizations cannotcover the whole distribution of Y .

III. STT-MRAM CELL OPERATION CHANNEL

In this section, a complete STT-MRAM cell operation channel model with both write and read operations is proposed. This model considerstransistor and MTJ process variations, random thermal fluctuations, writing failures, reading flipping errors and resistance variations. The proposed complete cell channel model is shown in Fig. 2 and includestwo operationsand three states. The two operations -write channel and read channel are further elaborated inFig.3 and Fig. 6, respectively.The three states -target bit (TB), written-in bit (WIB) and read-out bit (ROB) represent the three different livingstates where a bit message resides respectively before writing, after writing (or before reading), and after reading.

A. WriteOperation Channel

The write operation channel model is divided into 5 consecutivesteps:

1) Generate the mean write current value PV , the written-in bit z is successfully updated asthe target bit w ; otherwise, the write operation fails and the WIB z keeps the previous state 

w T T z z         . ( 12 
)
Moreover, the soft WIB state z , i.e., the MTJ resistance value Z R [START_REF] Li | Modeling of failure probability and statistical design of Spin-Torque Transfer Magnetic Random Access Memory (STT MRAM) array for yield enhancement[END_REF], [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF], is such that:

  o x M T J e x p Z R t A  , ( 13 
)
where ox t and M T J A are the MTJ's tunneling oxide thickness and shape area. The previous steps of the write operation channel model aredisplayed in Fig. 3 and will be further detailed in the rest of this subsection. 

P V P V ww P V P V P V w w w PV w II pI         , ( 14 
)
where w = 0 (resp. )for both transitions 01  and10  isgiven inFig.4 [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF].

The ratio T F P V is calibrated as:

  E 1 T F T F ww T     , ( 15 
)
wherethe probability density function (PDF) of E  is given by:

    E x p o n e n tia l E E e x p p   . ( 16 
)
With this calibration, both the mean and STD of F S T w T satisfy with Fig. 4 and Fig. 5.

For a very short switching time

3 n s PV w T 
, the thermal-induced switching time variation F S T w T followsthe Gaussian distribution [START_REF] Zhang | Asymmetry in STT-RAM Cell Operations[END_REF]:

T F T F w w G T   , (17) 
where :

    2 G G a u s s ia n G 1 e x p 2 2 p         . ( 18 
)
For an intermediate switch time is a mixture of the two previous distributions [START_REF] Zhang | Asymmetry in STT-RAM Cell Operations[END_REF]:

    E 1 0 3 7 TF T F P V P V P V w w w G w w T T T T         . ( 19 
)
Therefore, the final switching time Both, the MTJ's tunneling oxide thickness ox t and the shape area M T J A follow Gaussian distributions [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]:

      2 ox ox 2 1 e x p 2 2 to x to x to x tu pt         , (20) 
      2 M T J A M T J M T J 2 A M T J A M T J 1 e x p 2 2 Au pA         , (21) 
where Taking into account [START_REF] Geller | Block Turbo Codes: From Architecture to Application[END_REF], the equivalent resistance of the MTJ with technical variations can be approximatedas: 22)are obtained from [START_REF] Li | Modeling of failure probability and statistical design of Spin-Torque Transfer Magnetic Random Access Memory (STT MRAM) array for yield enhancement[END_REF]. The other parameters to x u and A M T J u are taken from [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]in which an elliptical shaped 45nm  90nm in-plane MTJ under a Predictive Technology Model (PTM) 45nm model [START_REF]Predictive Technology Model (PTM)[END_REF]was proposed. These parameters were calibrated with the measurement data from a leading magnetic recording company and are recalled in Let us turn now to the evaluation of the write channel capacity. Given the equiprobableassumption made over the input TB w , the capacity of the write channel can be written as:

      o x M T J A M T J A M T J
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wherethe key terms   z pR and   | z p R w are given by:

      1 0 | zz w p R p w p R w    , ( 25 
)       1 0 | | , zz z p R w p z p R w z      ; (26) 

 

pz, according to the previous state distribution   pz  can be computed as:

        11 0 0 |, w z p z p w p z p z w z       ; (27) 
From Section II.A and step 5of Section III.A, the transition probability  

|, p z w z

 can be expressed in terms of write success and fail probabilities, i.e. : 
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Substituting ( 28)into [START_REF] Zhang | STT-RAM Cell Design Considering MTJ Asymmetric Switching[END_REF],   0 pz  and   1 pz  can be further written as:
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             . ( 30 
)
Since the previous state z  has asymptotically the same distribution as z , (29) can be reformulated as: 
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, the ratio of  

1 pz   and   0 pz  
can readily be obtained as: 

       
(32)simplymeans thatthe WIB z distribution depends only on the write operation success rate and that the state distribution ratio is exactly equal to the ratio of the anti-parallel and parallelwrite success probabilities.In other words, with no a priori information onthe TB, the distribution of the WIB converges to the distribution given by [START_REF] Kang | Variation-Tolerant and Disturbance-Free Sensing Circuit for Deep Nanometer STT-MRAM[END_REF]. Therefore, theequiprobable assumption does not hold anymore for theWIB 

B. Read Channel Model

Due to unbalanced driving ability of the transistor,the failure probability of anti-parallel ( 01  ) writing is much higher than that of parallel ( 10  ) writing. However, the higher write operation failure probability gives a favor of lower flipping probability to the read operation. Therefore, differently from the write channel, the AP direction is preferable to the P directionfor read operation.

The read operation channel model can also be divided into 5 consecutive steps: 

V RR VV    . ( 38 
)
It should be mentioned that there are many kinds of sense amplifiers [START_REF] Kang | Variation-Tolerant and Disturbance-Free Sensing Circuit for Deep Nanometer STT-MRAM[END_REF]- [START_REF] Cheng | A high-speed current mode sense amplifier for Spin-Torque Transfer Magnetic Random Access Memory[END_REF] and none of them has really become a "standard" cell. Because of this, the sense amplifier in the read channel is assumed to be an ideal current sense amplifier with a reference current value simply being the mean of the current values of the low and high resistance states; in other words, this sense amplifier does neither take into account the process variations, nor the thermal fluctuations.

Apart from thecurrent direction and the current strength, the read operation is analogous to the write operation (see Fig. 6). In this way, most of the technical parameters and all the distribution models already used for the write channel can be used again for the read channel.and the reference resistance is assumed to be ideal with neither process variations nor thermal fluctuations.

For the AP read operation over the 1T-1M cell, there are three types of reading errors:

1) The cell stores a 0 but is read out as a 1;

2) The cell stores a 1 but is read out as a 0;

3) The cell stores a 0 but is flipped to 1. The capacity of the read channel can be written as:

                    ˆˆˆˆ2 1 ˆˆ2 0 ;| lo g | lo g | , r r r r r r r r r z I z R H R H R z p R p R d R p R z z p R z d R        ( 39 
)
where the resistance distribution   r pR of the nominal resistance value in (38) can be written as:

      1 ˆ0 |, rr z p R p z p R z    (40)
and   pz is obtained from (32) by computing   w rite s u c c e s s p . Therefore, in order to evaluate the PDF   ˆ| r p R z and to compute (39), one has to simulate both the write and read operations. 

C. Write and Read Channel Capacity

The combinedwrite and read channel capacity can be written as:

                    ˆˆˆˆ2 1 ˆˆ2 0 ;| lo g | lo g | , r r r r r r r r r w I w R H R H R w p R p R d R p R w p w p R w d R        (41)
where   r pR and   ˆ| r p R w are: 

      1 ˆ0 | rr w p R p w p R w    , ( 42 
)                 1 ˆ0 11 

IV. SIMULATIONS AND RESULTS

In this section, the proposed channel model is first validated by comparing simulation results to the experimental results published in [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]. After validation,the reliability of the 1T-1MTJ operation channel is evaluated in terms of probability density function, operation failure rate, bit error rate and channel capacity.All the process variations and thermal fluctuations mentioned in SectionIII are included in these simulations.

A. Model Validation

In this subsection, all the curves with "REF" represent the original experimental results published in [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF], whereas the curves with "SIMU" represent the recreated results via the proposed channel model. Fig. 7 and Fig. 8 (see Fig. 7 (a) in [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]) show our simulation results of the write error rates (WERs) with awriting pulse duration (WPD) equal to 10 ns and 20 ns. It can be observed that the recreated results obtained by the proposed STT-MRAM operation model follow closely the already published corresponding results. Fig. 9 (see Fig. 7 (b) in [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]) displays the required WPDs for different NMOS transistor widths. In this figure, the ideal switching time represents the results based on the mean device parameters without considering any process variations and thermal fluctuations. It can be observed that the recreated 1% and 5% WER switching time also follow closely the corresponding already published curves. The limited differences between the 1% (resp. 5%) WER switching time curves are mainly due to the small difference between the recreated ideal switching time and the corresponding published ideal switching time.

Fig. 10 (see Fig. 3 in [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF]) gives the read error rates (RERs) for different transistor widths. As [START_REF] Zhang | STT-RAM Cell Design Optimization for Persistent and Non-Persistent Error rate Reduction: A statistical Design View[END_REF] uses a practical sense amplifier, the recreated results with an ideal sense amplifier lead to slightly better results in most cases.

B. Write Operation Channel

In this subsection, the write channel is evaluated according tothe model illustrated by Fig. 3in SectionIII.A.The TBs are assumed to be equiprobable. We recall that the switching current parameters for the write operations are listed in TABLE.I, the conversion from switching current to switching time is displayed inFig.4 and the thermal-induced switching timeis generated by using ( 15)- [START_REF] Fert | Historical Overview: From Electron Transport in Magnetic Materials to Spintronics[END_REF]. highlights even larger expansions of the final switching time
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of (11) affected by thermal fluctuations; a large difference can be noticed between Fig. 11 (b) and Fig. 11 (c) with and without thermal fluctuations, respectively. Moreover, in Fig. 11 (c), a green dash line indicates a given WPD = 10ns serving as the boundary between a write operation success (left-hand side) region with required cell flipping time inferior to this given WPD and a write operation failure (right-hand side) region. Fig. 11 (d) gives the written-in resistance distributions generated from [START_REF] Li | Modeling of failure probability and statistical design of Spin-Torque Transfer Magnetic Random Access Memory (STT MRAM) array for yield enhancement[END_REF] for a WPD = 10ns. The write failure for the 01  transition, i.e., the small red peak around the low resistance state (around 1000 Ohm) can be clearly observed, and this peak stems from the large tail existing at the right-hand side of the green 10 ns dash line in Fig. 11 (c) for too long switching durations. Therefore, for WPD=10 ns, the high write operation failure rate can be predicted.

Fig. 12 display the whole process of the write operation channel with even more critical parameters (720 nm transistor size and WPD = 5.5 ns). Differently from Fig. 11, due to the insufficient WPD, the reliability of writing "0" is also affected and a write operation failurefor both transitions can be observed in the lower subfigures (c) and (d). Fig. 13 shows the write operation failure rates for different transistor widths and different WPDs. It is easy to notice that the write failure rate for the 01  transition is several orders of magnitude higher than the failure rate for the 10  transition. The larger the transistor, the larger the drive current strength so that the required switching time is shorter and thus the write operation failure rate tends to be lower. Similarly to increasing the transistor width, the same improvement for the write operation failure can be easily observed by increasing the WPD. Since the operation failure rate involves only 01  and 10  transitions, the performance is not influenced by the original cell state before writing operation.Differently from Fig. 13, Fig. 14 measures the written-in bit error rate and the corresponding simulations logically involves the original cell state before the writing operation. Therefore, the fact that the TB can be successfully written into the STT-MRAM cell depends also of the original cell state. To simplify the simulations, we assume that there are originally as much "0"s as "1"s. Fig. 15 displays the write channel capacity (see [START_REF] Diao | Spin-transfer torque switching in magnetic tunnel junctions and spin transfer torque random access memory[END_REF]) for various transistor widths and various WPD. Similarly to Fig. 14, since Fig. 15 is related with the bit reliability, the capacity simulations also involve the original cell state. From Fig. 15for a WPD = 10 ns, a target channel code rate equal to 0.85 cannot meet the capacity requirement due to the too high write failure rate of the AP direction; moreover, solutions with transistor widths inferior to 200 nm can neither satisfy the system requirements. As the target code rate slightly increases to 0.9, solutions can only be selected among the designs with transistor width being superior to 360 nm. Fig. 16 illustrates the result given by [START_REF] Kang | Variation-Tolerant and Disturbance-Free Sensing Circuit for Deep Nanometer STT-MRAM[END_REF]. It shows that the distribution of the WIB is not equiprobable in general and that writing '0' is always easier than writing '1'. Moreover, solutions with WPD = 10 ns and solutions with a transistor width smaller than 270 nm cause large differences between  

0 pz  and   1 pz 
. By comparing the results ofFig.13 with Fig. 16, it can be further observed that the WIB approaches to the equiprobability as the write operation failure rate decreases. It can then be concluded by comparing with Fig. 15 that the hypothesis that WIBs areequiprobableholds for reliable write channels with write channel capacity being superior to 0.9 bit/cell. 

C. Read Operation Channel

In this subsection, the read channel is evaluated according to the model illustrated by Fig. 6in SectionIII.B. The WIBsare assumed to be uniformly distributed to eliminate any write channel influence. Theparameters for the read operation are listed inTABLE.IIand are applied to( 20)- [START_REF] Wang | Thermal Fluctuation Effects on Spin Torque Induced Switching: Mean and Variations[END_REF]. Fig. 17 and Fig. 18 present the read operational failure rate and the read channel capacity for different transistor widths and for different read pulse durations (RPDs). Because of the lowvalues taken by read currents, the flipping error i.e., the third type of read error nearly never happens even with RPD=15ns and operational failures are mainly due to process variations of the MTJ resistanceand to the threshold voltage variations. As the threshold voltage STD decreaseswhenthe transistor width increases, the operation failure rate for a large transistor width is better than the rate for a small transistor width. Since the MTJ resistance distribution is independent of thetransistor width, the read failure rate is no affected by the short RPDs. Moreover, because of the larger resistance variations of state '1', thefailure rate to read a '1' is higher than that to read a '0'.Theread channel capacity ofFig.18 is much higher than the write channel capacity of Fig. 15; this is due to the small current values used for read operations, and consequently the flipping error rate is near zero. Fig. 19 gives the read-out bit (ROB) distributions after that the cell write and read operations are both completed. It can be seen that the ROB distributions are similar to the WIB distributions in Fig. 16. However, as the channel width increases, the ROB distribution difference is slightly larger than the WIB distribution difference (compare the curves within the grey dashed circle in Fig. 19 with the corresponding curves in Fig. 16). This fact comes from the difference of MTJ resistance deviations for state '0' and state '1' due to process variations of the MTJ's shape surface and tunnel oxide thickness. However, the equiprobable assumption still approximately holds for the cases of a transistor size larger than 270 nm and a WPD longer than 10 ns. Fig. 20 and Fig. 21respectively present the operation failure rate and the BER of the combined write and read operation channel. Due to the process variations of the MTJ resistance, Fig. 22 gives the combined channel capacities, i.e., the maximum bit number that can be reliably written in and read out in one cell. This metric gives the upper bound for the channel coding rate with infinite code length. Note that as the transistor drive capacity increases, the reduced operation failure rate and the increased channel capacity indicate that an ECC can have less redundancy (i.e., higher efficiency) to protect messages. If the target code rate is 0.7, the transistor width needs to be larger than 270 nm and the WPD has to be kept longer than 17.5 ns. If the target code rate is 0.9, the minimum transistor width is 350 nm for a minimum WPD equal to 20 ns.

D. Combined Write and Read Channel

Finally, Fig. 23 gives the outage probability for an outage capacity It can be observed that the outage probability can be improved as the block length increases; this is simply due to the fact that an increased block length has more channel realizations and thus leads the block capacity to approach the ergodic capacity limit. Moreover, as the transistor width or the WPD increases, the decreased outage probability should be attributed to both improved operation channel quality and lower write operation failure rate. Note that for large outage probabilities the gain obtained with an increased block length is usually smaller than the gain obtained with improved technical parameters; this is because the former only induces that the block capacity approaches the ergodic capacity while channel conditions are not improved, however, improving technical (i.e., physical) parameters directly increases the channel capacity.

Obviously, there is a price for improved technical parameters. For example, increasing the transistor width does improve the channel capacity and thus allows the use of higher code rate ECCs; however, both the memory area and power consumptionthenincrease.Therefore, for a specific application, the optimum solution will be selected by balancing the various requirements among latency, throughput, size, andpower constrain.

V. CONCLUSION

This paper proposed a complete channel model to simulate write and read operations of the 1T-1MTJ STT-MRAM cells. This model considered both process variations and thermal fluctuations. Based on the proposed cell operation channel, reliabilities including operation failure rate, bit error rate (BER), channel ergodic capacity and channel outage probabilitywere evaluated from an information theory perspective. Moreover, it is proved that the distributions of the WIB states are not equiprobable and that their ratio isdetermined by their respective write success probabilities. Finally, simulation results show that practical code rates and code block lengths can guarantee reliable performances only if the difference between state '1' and state '0' operation success rates is small enough.
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 1 Fig.1. STT-MRAM 1T-1MTJ cell structure: (a) bit "0".(b) bit "1".
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  measured over a finite sample of size N is lower than a given capacity threshold o C , where N C represents the actual data rate and o C represents a target data rate that is able to be correctlymemorized and delivered. When theactual block-wise channel capacity N C is smaller than the required data rate o C , no ECC exists to guarantee a zero errorevent and a decoding failure isthus declared. In other words, if a design target with a block code of length N bits and a decoding failure rate o  are set, the maximum useful information bit number is N NC and the minimum redundant bit numberintroduced by the ECC should be  
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 2 Fig.2. Block diagram of STT-MRAM operation channel model.
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 2 Add a random variation to the mean write current PV w , a writing operation success/failure decision is made by comparing the given write pulse duration (WPD) W P D w T with the required final switchingtime F S
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 3 Fig.3. Block diagram of thewrite operation channel. Thewriting switching current PV w
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 45 Fig.4. Switching current to switching frequency mapping.

  characterized by the process variation induced by both the switching time PV w T and the STD. The write operation failure rate of the STT-MRAM cell at step 5 can be defined as the probability that the write access to the STT-MRAM cell cannot becompleted within a givenwrite pulse duration (WPD) W P D w T , i.e., the probability that the given WPD W P D w T is shorter than the final switching time F S T w T .
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  achieved by Monte-Carlo simulations of the proposed write channel model.
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 123 Generate the mean read current value PV AP I Add a random variation to the mean read current PV AP I so as to generate the process variation affected read current PV AP I Map the process variation affected read current PV AP I , a readflipping error is decided by comparing the given read pulse duration (RPD) 1 and the read-out bit state 1 r  ; otherwise, no flipping error occurs and the ROB r is updated as the WIB z decidedbit (DB) r is obtained by comparing the actual sensing current   Îr with an ideal sense current R E F I :
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 6 Fig.6. Block diagram of the read operation channel.

  are computed by simulating the write channel and the read channel respectively.
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 789 Fig.7. Write error rate for a 10 ns writing pulse width.

Fig. 10 .

 10 Fig.10. Reading failure rate for different transistor widths.
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 11 Fig.11. STT-MRAM write operational channel (transistor size = 540 nm, WPD = 10 ns).
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 12 Fig.12. STT-MRAM write operational channel (transistor size = 720nm, WPD = 5.5 ns).
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 11 Fig.11 displays the whole process of the write operation channel with a 540 nm transistor size; Fig.11 (a) presents the distributions of write currents PV w I under the impact of process variations, (see (14)). Fig.11 (b) illustrates the distribution of switch time PV w T
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 13 Fig.13. STT-MRAM writeoperation failure rates with different transistor widths and different WPDs.
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 14 Fig.14. STT-MRAM write-in bit error rates with different transistor widths and different WPDs.
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 15 Fig.15. STT-MRAM write channel capacities with different transistor widths and different WPDs
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 16 Fig.16. STT-MRAM written-in bits (WIBs) distributions with different transistor widths and different WPDs.
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 17 Fig.17. STT-MRAM read operation failure rates with different transistor widths and different RPDs.
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 18 Fig.18. STT-MRAM read channel capacitywith different transistor widths and different RPDs.
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 19 Fig.19. STT-MRAM read-out bits (ROBs) distributions with different transistor widths and different WPDs (RPD = 5ns).
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 20 Fig.20. STT-MRAM written-in bits (WIBs) distributions with different transistor widths and different WPDs (RPD = 5ns).
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 21 Fig.21. STT-MRAM written-in bits (WIBs) distributions with different transistor widths and different WPDs (RPD = 5ns).
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 101022 Fig.22. STT-MRAM written-in bits (WIBs) distributions with different transistor widths and different WPDs (RPD = 5ns).
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 23 Fig.23. STT-MRAM outage probability as outage capacity o C = 0.9 bit/cell with different transistor widths (including infinite block length) and different WPDs (RPD = 5ns).
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	720	315.41	27.31	416.69	23.49									
	The mapping of step 3) froma mean of the MTJ switching									
	current PV w I	w toa switching frequency PV f	(reciprocal of the									
	switching time PV T													
		w													
						(TB) Target Bit	w		Ideal 1T-1MTJ	I	P V w	Variation Process	I	P V w	Mapping Current-Time
																P V
											Write Operation	w T
													(WO)		Thermal
		Target Bit (TB)	Write Channel (WC)			Written-In Bit	z				WIB Unchanged w WPD w T T w FST   , if	Fluctuation No	FST w T Write
			Written-In Bit (WIB)	(WIB)				z		 	WIB = TB , else z 	Yes	w Success? w T T  WPD FST	?
		Read-Out Bit	Read Channel												
		(ROB)	(RC)												
						I 1T-1MTJ WRITE CURRENT DISTRIBUTION UNDER TRANSISTOR AND
										MTJ PROCESS VARIATIONS [25]
						Transistor Width (nm)	I	1	PV	(µA)		1 PV	(µA)	I	0	PV	(µA)		0 PV	(µA)
						180		148.28			14.35	186.00	14.02
						270		194.75			18.11	263.03	15.64
						360		230.18			20.68	323.27	15.34
						450		258.18			22.76	362.77	17.15

  TABLE.II.

TABLE .

 . 

		IIMTJ and Transistor Technical Parameters	
	Device	Parameter	Mean	STD
	Transi -stor	Channel Length		

  TABLE.II) is the mean threshold voltage,

	V is the actual threshold voltage depending of process
	th		
	variation,	R	is the actual resistance value
		r	
	corresponding to ROB state	r and R E F R	= 1500 Ohm
	(see TABLE.II).Due to the	V variation, the nominal
				th
	resistance value for the bit decision is:
			s e n s e	0 .4 6 6
			rr ˆs e n s e th