Jianxiao Yang 
  
Benoit Geller 
email: geller@ensta.fr
  
Cedric Herzet 
email: cedric.herzet@irisa.fr
  
Jean-Marc Brossier 
email: jean-marc.brossier@gipsa-lab.inpg.fr
  
  
  
  
Smoothing PLLs for QAM Dynamical Phase Estimation

Keywords: Dynamical Phase Estimation, Phase-Locked Loop (PLL), QAM, Smoothing Algorithm. I. 0BINTRODUCTION

published or not. The documents may come   L'archive ouverte pluridisciplinaire

proposed a CA belief-propagation (BP) algorithm for the BPSK dynamical phase estimation but the computation complexity of the proposed BP algorithm is rather high. This paper is concerned with a very simple synchronizing scheme for any QAM modulated signal which is able to operate near the off-line time-varying phase bounds. To our knowledge, it was first proposed without any justification and without any performance evaluation in X [START_REF] Brossier | Procédé d'estimation de la phase dans un système de communication numérique et boucle à verrouillage de phase[END_REF]X-X [START_REF] Geller | Contribution à l'étude des systèmes de communications numériques[END_REF]X; contrarily to X [START_REF] Noels | Performance Analysis of ML-Based Feedback Carrier Phase Synchronizers for Coded Signals[END_REF]XX, [START_REF] Noels | Effectiveness Study of Code-Aided and Non-Code-Aided ML-Based Feedback Phase Synchronizers[END_REF]X, it takes advantage of averaging two phase trajectories provided by two PLLs, so that this S-PLL algorithm is able to have such a near off-line Cramér-Rao bound performance.

The rest of the paper is organized as follows. In section XIIX, we give the system model. In section XIIIX, we derive from the MAP estimation theory the proposed algorithm where the smoothing effect is achieved through two PLLs working in opposite time directions. Finally in section XIVX, we present the simulation results before giving some conclusions.

II. 1BSYSTEM MODEL

We consider the transmission of a complex-valued QAM modulated sequence ), the residual phase distortion and the zero mean complex-valued circular Gaussian noise with known variance 2 n  . We suppose that the system operates in a non-data aided (NDA) mode. Hence, the conditional probability based on the known phase k  is:
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In practice, due to the rapid variant channel and the imperfections of the functional blocks before the phase Smoothing PLLs for QAM Dynamical Phase Estimation estimation, the residual phase distortion can be modeled efficiently by a Brownian motion. The corresponding phase model is:
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where k  is the unknown phase offset at time k ,  is the unknown constant frequency offset (linear drift), k w is a realvalued white Gaussian noise with zero mean and variance 2 w  . This model is commonly used X [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF]X-X [START_REF]Digital Video Broadcasting (DVB) User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite application (DVB-S2)[END_REF] X in order to describe the behavior of practical oscillators for which the frequency is randomly perturbed. Based on (3), the corresponding conditional probability can be expressed as:
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III. 2BRATIONALE FOR A FORWARD / BACKWARD APPROACH BY MAP ESTIMATION THEORY

In the MAP estimation approach, one classically chooses θ to maximize the posterior pdf X [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF]:
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Based on the model described by ( 2) and ( 4), the joint pdf of the observations and the parameters can be written as: 
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y θ [START_REF] Yang | Near-optimum Low-Complexity Smoothing Loops for Dynamical Phase Estimation[END_REF] where

      2 ,, 2 , , Im k k k k j k k k k k kn cy c y y c e         
. Looking for the MAP estimator implies that one must set the first derivative
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equal to 0, so that:
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as below in order to get the physical meaning of the term: Thus the term
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can be interpreted as the soft decision phase detector output. ( 9) can then be written as:
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can be regarded as softdecision based first-order PLL outputs which are respectively updated in the increasing (Forward) and decreasing (Backward) time directions. The physical meaning of (9) can thus be summarized as following; assuming that we do not have any a priori information about the initial phase 
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From ( 8) the "Forward / Backward" (F/B) estimator can thus be written as: [START_REF] Zhang | Iterative Carrier Phase Recovery suited for Turbo-Coded systems[END_REF] Note that this structure is similar to that of the Kalman smoother valid for linear Gaussian problems. The name "Forward / Backward" stems from the fact that the off-line phase estimation is just the average of a classical (Forward) phase-locked loop and of a Backward phase-locked loop working in the reverse time direction and that can be initialized at the end of the forward PLL. This process can then be iterated, i.e. the estimation error at the end of the previous backward loop can be further used as the estimation error at the beginning of the next forward recursion, and several forward and backward recursions can sequentially be proceeded. We call this process in the sequel as "multiple forward / backward". Restricted by the paper size, we shall give further analysis of the proposed algorithm at the oral presentation.

                                2 1M 1 M 2 / 1 2 1 1 2 1 1 2 / 2 / 11 2 2 ˆˆˆP r | , Im , 1 ˆˆˆ for 2 1, 2 2 ˆˆˆP r | , Im . B F F B B B j w c n F B F B k k k F B F F j w c n c y y c e k c y y c e                                                            S S
IV. 3BS IMULATION AND DISCUSSION In a practical system, a frame header can be used and one could take advantage of it to get rid of the phase ambiguities. In our simulations, we thus assume that the phase ambiguity problem is solved. We evaluate the MSEs in the centre position of the block after 3 F/B iterations over 5 10 Monte-Carlo trials. The block length  for BPSK and QPSK is 60, and is 800 for the 16QAM constellation. We use the following notations in the figures of the present paragraph. "Forward (Sim)" means that the simulation MSE is measured after one (on-line) forward estimation without any backward estimation. The "Forward / Backward (Sim)" means that the MSE of the F/B estimation is measured after three (off-line) F/B iterations.

A.

5BPerformance with no linear drift Since all the parameters are random, we compare the estimation MSE of the "Forward (Sim)" (resp. "Forward / Backward" (Sim)) with the on-line BCRB (resp. the off-line BCRB) X [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF], [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF], [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF], on Fig. 1 to Fig. 3 for different constellations. At high SNR, we notice that the forward MSE and the F/B MSE curves logically merge. In this case the observations are reliable enough to only take into account the present observation k y in order to estimate k  ; this is why the off-line BCRBs (corresponding to the F/B MSE) converge to the online BCRBs (corresponding to the forward MSE), and this is also why the NDA bounds converge to the DA bounds. As the a priori distribution of θ then has very little influence, the Bayesian problem tends to a deterministic phase estimation problem where we estimate independent observations. In more realistic mid-range SNRs, the F/B performance is definitely superior to the forward only recursion and the maximum difference is 3dB. In this range of SNRs, the a priori knowledge on θ plays a very important role in the phase estimation and this is why there is a larger difference between the F/B and forward recursions compared to higher and lower SNR range.

Finally, at low SNRs, because of the decision error, the MSE increases rapidly and the non-data-aided (NDA) BCRBs do not coincide anymore with the DA BCRBs. However, generally, the performance gain using a data-aided scenario is relatively low compared to the performance difference between the off-line and the on-line scenarios, and logically, when comparing with the forward recursion, there is still an appreciable gain in favor of the F/B recursion. Since the parameters contain both some random parameters k  and a deterministic linear drift  , we compare the MSEs to HCRBs of interest X[4]- [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF] for different constellations on Fig. 4 to Fig. 6.

At high SNR, the off-line HCRB coincides with the on-line HCRB, and so are the corresponding MSEs. Because in this range of SNR, the information provided by the observation is dominating over the a priori knowledge on θ , the observation k y is self-sufficient to estimate k  and the error on  does not disturb the estimation performance on k  . At mid-range SNRs, there is not enough information provided by k y to estimate the phase and one can take advantage of the a priori knowledge on θ (see the difference between the on-line and the off-line BCRBs). The F/B estimation is definitely superior (up to 5 dB on Fig. 4) to the forward MSE not only thanks to the a priori knowledge on θ ; this superiority also comes from the fact that the F/B scheme remains unbiased contrarily to the forward 1 st order loop which suffers from the high linear drift as the corresponding MSE does not coincide anymore with the on-line HCRB. At low SNRs, there is still an advantage for the F/B recursion; however the F/B performance of Fig. 4 deteriorates rapidly, because in practice the F/B recursion is made out of two unidirectional loops, and these loops are not able to operate anymore as wanted with the considered large linear drift. This phenomenon is attenuated with a smaller linear drift (see Fig. 6) or if we had replaced our simple first order PLL components by other component loops such as second order PLLs. The classical on-line PLL has a very low gradient-like complexity and has been employed in real systems for several decades. The complexity price for the off-line improvement is only two times that of the on-line algorithm as we combine two elementary PLLs. In addition, three forward-backward needs to be proceeded which both involves a very reasonable delay and the memorization of K symbols and of 2K phase values.

V.

4BCONC LUSION

In this paper, we presented a near-optimum smoothing phase locked loop (S-PLL) algorithm made out of two very simple first order PLLs. The performance of the S-PLL algorithm does not suffer from the poor transient behavior even with a small number of observations. The proposed scheme provides a gain of several dBs over a forward only on-line algorithm and its performance is near the Cramer-Rao bounds of interest. Finally it is very easy to implement and should be very useful in practice.
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