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instabilities X [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF]X-X [START_REF]Digital Video Broadcasting (DVB) User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite application (DVB-S2)[END_REF]X. [START_REF] Barbieri | On the Cramer-Rao bound for carrier frequency estimation in the presence of phase noise[END_REF]X considered the DA CRB for the phase estimation with some noise variance. X [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF]X has derived a Bayesian CRB restricted to the case of NDA BPSK signals. When a deterministic parameter such as the frequency offset is taken into consideration, the hybrid CRB becomes relevant. HCRBs were derived in the case of NDA signals in [START_REF] Bay | On the general form of the Hybrid CRB and its application to the dynamical phase estimation[END_REF], [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF]X and were applied as benchmarks in [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF], [START_REF] Yang | Near-optimum Low-Complexity Smoothing Loops for Dynamical Phase Estimation[END_REF].

Differently from X [START_REF] Noels | The Cramer-Rao Bound for Phase Estimation from Coded Linearly Modulated Signals[END_REF] X-X [START_REF] Noels | The True Cramer-Rao Bound for Estimating the Carrier Phase of a Convolutionally Encoded PSK Signal[END_REF], [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF], [START_REF] Bay | On the general form of the Hybrid CRB and its application to the dynamical phase estimation[END_REF]X, the goal and the contribution of the paper is to give for the dynamic time-varying phase, both the BCRB and the HCRB in the case of coded and QAM modulated signals. In addition, we give analytical expressions to the various CRBs which greatly reduce the computation complexity. The rest of the paper is organized as follows. In section XIIX, we recall the various kinds of CRBs. After describing the system model in section XIIIX, we derive the BCRBs and the HCRBs for both on-line and off-line estimations for the CA scenario in section XIVX. The derivation for the CA case is different than the one used in X [START_REF] Noels | The Cramer-Rao Bound for Phase Estimation from Coded Linearly Modulated Signals[END_REF]X-X [START_REF] Noels | The True Cramer-Rao Bound for Estimating the Carrier Phase of a Convolutionally Encoded PSK Signal[END_REF]. Moreover, we also present analytical expressions for the various CRBs which do not require to compute the inversion of any information matrix. The various results are finally illustrated in section V. 2 

II. 1BCRAMER-RAO BOUNDS (CRBS) REVIEW

In the following, we briefly review the links between the HCRB, the standard CRB, and the BCRB. In the most general case, the parameters to be estimated include both deterministic and random parameters. Denote this parameter vector as   ûy as an estimator of u where y is the observation vector. The HCRB satisfies the following inequality [START_REF] Bay | On the general form of the Hybrid CRB and its application to the dynamical phase estimation[END_REF] on the MSE:

          1 ,| | ˆr d d dd T d E            y u u u uu u y u u y u H u , (1) 
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The notational convention adopted is as follows: italic indicates a scalar quantity, as in a ; boldface indicates a vector quantity, as in a and capital boldface indicates a matrix quantity as in A . The ( , ) 

Hu

is the so-called hybrid information matrix (HIM)

and is defined as:

    | ,| lo g , | dd r d d d r d Ep           u u uu y u u u H u y u u . (2) 
It is shown in X [START_REF] Bay | On the general form of the Hybrid CRB and its application to the dynamical phase estimation[END_REF]X that inequality (1) is still respected when the deterministic and the random parts of the parameter vector are dependent. The HIM can be rewritten as:

      || , lo g | dd r d d r d d d d r r d E E p              u u uu u u u u u u H u F u u u u (3) 
where

    | |, , lo g | , dd r d d d r d r Ep           u u uu y u u u F u u y u u (4) 
is the Fisher information matrix (FIM). 

If in particular

      | | lo g | d d dd dd d d d Ep            u u uu y u u H u F u y u . ( 5 
)
Then, the inverse of ( 5) is just the standard CRB [START_REF] Trees | Detection, Estimation and Modulation Theory[END_REF]X X.

On the contrary, if r  uu , then (3) becomes:

    lo g r r r r rr E E p         u u u u H F u u (6) 
where

    | lo g | r rr rr Ep      u y u u F u y u . ( 7 
)
In this case, the inverse of ( 6) is the Bayesian CRB X[8]X.

III. 2BSYSTEM MODEL

We consider the transmission of a modulated sequence  . We assume that the channel coding maps a message of  bits to a codeword of N bits denoted as

  12 , , , N c c c  c  with   0 ,1 n c  ( 1 nN  ) and   | 1, , 2 v    cc  
; moreover, the constellation vector corresponding to code  c  is denoted as

        1 ,, L ss     s c c c      
. Hence, the conditional probability based on the known vector phase is:

                    2 2 1 1 2 2 2 2 2 2 1 1 | | , | , Re 1 1 e x p 2 . 2 l v v v v v L j L l l v l v l v l n n n p p p p p y s e s y                                              y θ y c c θ c c y s s c θ s s c c c             (9)
In practice, clocks are never perfect, and oscillators suffer from jitters. This results in a Brownian phase model with a linear drift:

1 l l l w        , ( 10 
)
where l  is the unknown phase offset at time l ,  is the unknown constant frequency offset (linear drift), l w is a white Gaussian noise with zero mean and variance 2 w  . This model is commonly used [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF]X - [START_REF]Digital Video Broadcasting (DVB) User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite application (DVB-S2)[END_REF] XX in order to describe the behavior of practical oscillators for which the frequency is randomly perturbed. The corresponding conditional probability is:

    2 1 1 2 1 | , e x p 2 2 ll ll w w p                 . ( 11 
)
IV. 3BCRB S FOR THE DYNAMICAL PHASE ESTIMATION

In practical receivers, phase estimation can actually be considered following two main scenarios:  Off-line synchronization: the receiver waits until the whole observation frame y has been received. Then afterwards, it processes all the observations to compute the estimates of the carrier phase offsets θ .  On-line synchronization: the receiver estimates l  upon the arrival of the -t h l observation, i.e. .

In this section, we derive some analytical expressions for both the on-line and the off-line CRBs. The parameters of the phase model in [START_REF] Bobrovsky | Some classes of global Cramer-Rao bounds[END_REF] include some random parameters

  1 ,, T L   θ 
(i.e. the dynamical phase) and a deterministic parameter  (i.e. the linear drift). So the parameters vector can be written as:

r d       u θ u u . ( 12 
)
Equation ( 3) thus becomes:

              | | | | | | , lo g | lo g | lo g | lo g | T E p p E p p                                                   θ θ θ (13) 
where  

  | |, , lo g | , Ep              θ θ y θ F θ y θ
.

We then decompose the HIM into several sub-matrices that will be useful in the sequel:

1 1 1 2 1 1 1 2 2 1 2 2 1 2 2 2 , T              H H H H H H H H H (14) 
where

            11 | | , | | 12 | | , | | 22 | | , | | lo g , | lo g | lo g , | lo g | lo g , | lo g | . E p E p E p E p E p E p                                                                                               H y θ ξ θ ξ H y θ ξ θ ξ (15) A. 6BComputation of   | , E       θ F θ
From ( 9), one obtains after some calculation the first derivative with respect to m  :

        2 1 ln | , , ln | , P r | , , m m m v m v v m m y s s p              c y θ c c y θ    (16)
where

  P r | , , v   c c y θ 
is the a posteriori probability of a code word. Discriminating in [START_REF] Demir | Phase noise in oscillators: a unifying theory and numerical methods for characterization[END_REF] the code words according to the M possible values of the m th received constellation symbol, and noting

    P r | , , , m i v ss   cy θ  
the APP when all possible codewords are known, one further obtains:

        M M 2 1 ln | , 2 P r | , , , Im l i j m i v l i s i mn p s s y s e             S y θ cy θ    (17) 
Taking the second derivative with respect to k  and m  , respectively for km  and for km  , one obtains:

              1 2 1 2 1 2 2 M M 2 2 1 1 ln | , ln | , ln | , 2 Im 2 Im P r , | , , , , k m k m k m j j k i m i k i m i v i i n n p p p
y s e y s e s s s s

                                y θ y θ y θ c y θ    (18) 
and:

            1 1 1 1 2 2 2 2 M 2 2 1 ln | , ln | , 2 R e 2 Im + P r | , , , . k k k k j j k i k i k i v i n n p p y s e y s e s s                                                 y θ y θ c y θ  (19)
If the codeword has been sufficiently interleaved before the mapping from bits into symbols, then:

            1 2 1 2 P r , | , , , P r | , , , P r | , , , , k i m i v k i v m i v s s s s s s s s         c y θ c y θ c y θ        (20) 
so that taking into account ( 17), ( 18) just becomes :

  2 ln | , 0. km p      y θ (21) 
It is important to note that differently from [START_REF] Noels | The Cramer-Rao Bound for Phase Estimation from Coded Linearly Modulated Signals[END_REF]X - [START_REF] Noels | The True Cramer-Rao Bound for Estimating the Carrier Phase of a Convolutionally Encoded PSK Signal[END_REF], we take the second derivative to calculate the FIM so as to reduce the complexity of the computation with the help of equation [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF]. Then the FIM can be approximately written as a diagonal matrix and one

 

,, DL EJ      θ F θI [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] where L I is the LL  identity matrix and D J is defined as:

  2 2 ln | , D k p J E            y,θ y θ  . ( 23 
)

B. 7B Computation of the HIM

Like detailed in [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF], [START_REF] Bay | On the general form of the Hybrid CRB and its application to the dynamical phase estimation[END_REF], we now calculate the different sub-matrices of H (see [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF]). From [START_REF] Mcneill | Jitter in ring oscillators[END_REF], due to the model of Section XIIIX and under the assumption that we have no priori knowledge of 1  , i.e. 

0 0 0 1 1 0 0 1 1 A A b A A                    H      , (24) 

H

thus become:

  2 2 12 1 2 1 , , 1 
T w w L          H 0 (26)   2 22 1. w L   H (27)
We now inverse the HIM so as to obtain the analytical HCRB.

C. 8BAnalytical Expressions of HCRBs

Similarly to Appendix I of [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF]X , from ( 24)-(25) one obtains:

      1 1 1 1 1 1 1 1 1 2 2 2 1, 11 l L l L l l b r r b r r b               H H , ( 28 
)         2 2 2 3 2 3 1 1 1 2 2 2 1 11 1 , 2 2 1 1 2 11 1 2 1 2 1 2 L L ll L L l L l L b r r r b r r r r A                                H H , (29) 
where

    1 2 2 1 1 2 2 2 1 1 1 4 2 1 1 1 4 2 w D w D w D w D r J J r J J                                  , ( 30 
)
and

            1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 4 1 2 2 1 4 1 4 1 2 2 1 4 D w D w D w D w D w D w J J J J J J                                                        . ( 31 
)
Thanks to the block-matrix inversion formula X[10]X, we have:

1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 L T                H V H H H HH , ( 32 
)
where we define

1 1 2 1 1 1 2 2 1 T w L      H H H  and 1 1 1 1 1 1 2 1 2 1 1 T L     V H H H H  .
To obtain the analytical expression of  and of the diagonal terms of L V , we just exploit that 12 H in (26) has only two non-zero terms and that 11 H has a particular structure (see [START_REF]ETSI EN 300 744[END_REF]); substituting (26),( 28),(29) into the definition of  and L V , we directly have:

        2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 , L L L w L b r r b r r b b               H (33)
and the diagonal elements   , L ll V written as:

    2 11 1 1 1 1 4 , 1 , 1 , 1 1 L ll l L l w             V H H . ( 34 
)
We now derive an analytical expression of the diagonal elements of 1 11 L

 

HV corresponding to the minimum bound on θ (see (32)). Using (29) and (34), one can also get the analytical expression of the upper diagonal elements H (see [START_REF]ETSI EN 300 744[END_REF]), one also readily obtains the analytical expression of the on-line HCRB associated to the estimation of l  ( 3 l  ):

                    2 2 2 3 2 3 1 1 1 2 2 2 1 1 , 2 2 1 1 2 11 1 2 1 2 2 1 1 1 2 1 1 1 2 2 2 2 2 2 11 1 1 1 2 2 2 1 2 . L L ll L L l L l L l L l L l L l l l b r r b r r b r r r r A b r b r r b r b b r b r r b r                                                               H H H (35) 
                      2 2 2 3 2 3 1 1 1 2 2 2 1 2 2 1 1 2 11 1 2 1 2 2 1 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 1 2 . l l l l l l l l b r r b r r C l b r r r r A b r b r r b r b l r b r r b r                                                       H H H (36) 
One can notice that (35) and (36) do not depend on the value of the parameter  .

D. 9BThe Bayesian Cramer-Rao Bounds (BCRBs)

When there is no linear drift i.e. 0   , the parameter vector u contains only random parameters θ , i.e. r  uu θ . In this scenario, the BCRB is the lower bound of the MSE. Moreover, the Bayesian information matrix (BIM) L B is equal to the upper left sub-matrix of the hybrid information matrix (HIM): of the inverse of matrix L B is the off-line BCRB associated to the estimation of l  . Consequently, from the previous sections, the corresponding analytical expressions associated with the off-line and the on-line BCRB are respectively:

        2 2 3 3 1 1 1 2 2 2 1 1 , 2 2 1 1 2 1 2 1 2 1 , 2 L L L ll L L l L l L L b r r b r r b r r r r A                                B B ( 38 
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where 1 r , 2 r , 1  and 2  are given by ( 30) and (31). Note that (38) (resp. ( 39)) is the first term on the right side of (35) (resp. (36)). The second terms in (35) and (36) represent the additional positive uncertainty brought by  so that the HCRB is always lower bounded by the BCRB.

V. 4BSIMULATION AND DISCUSSION

We assume the transmission of Gray mapped symbols. We display results for the rate 12 and 64 states non-recursive convolution code adopted in DVB-T [START_REF]ETSI EN 300 744[END_REF]X with a pseudo random interleaver. For codes that are described by means of a trellis, the marginal symbol APPs can be computed from the trellis state APPs and state transition APPs, which in turn can be determined efficiently by the famous BCJR algorithm. Constrained by the paper size, only the HCRB will be discussed in the following. First like in [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF]X , one readily sees on XFig. 1 the superiority of off-line approach compared to the on-line approach in the different positions of the block. Also, there is little improvement for the CA scenario (compared to the NDA scenario) when using a BPSK modulation but the gain becomes obvious for a larger constellation. Moreover, as the observation number increases, both the on-line and off-line CRBs decrease and tend to reach the corresponding asymptote values. We now illustrate the behavior of the HCRB on l  as a function of the SNR (Fig. 2 to Fig. 4).  At high SNR (above 30dB), we notice that the various CRBs logically merge independently of the constellations, on-line/off-line and DA/CA/NDA schemes. The received symbols are reliable enough to make a correct decision and the additive noise can be neglected. Hence, the estimation problem tends to a deterministic phase estimation problem where we estimate L independent phases l  with L independent observations. ) for a 16QAM.

 In mid-range SNRs, the on-line HCRBs leave their corresponding off-line HCRBs, because one observation is not sufficient to estimate the phase offset and a block of observations can improve the estimation performance. This also explains why the NDA CRBs do not merge anymore with the CA and the DA CRBs. Moreover, we note on XFig. factor of 4, the thresholds where the CA bounds leave the DA bound are increased by 6dB.  At low SNR, the lack of symbol knowledge directly affects the estimation on l  . This illustrates why the NDA CRBs increase quicker at low SNR than at high SNR. Note that the CRBs of the BPSK do not merge with the CRBs of the other two-dimensions constellations. ) for BPSK and QPSK. 

VI. 5BCONCLUSION

In this paper, we have applied the general form of the CA BCRB and of the CA HCRB in order to evaluate the ultimate performance of a dynamical phase estimator. This illustrates the respective possible advantage of decoding and of the off-line scenario on the synchronization performance. In particular, besides the off-line synchronization gain, there is some space for additional CA synchronization gain at low SNR.
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  l y . The phase estimate is then computed based on the current and previous observations only, i.e.
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 11 which has a particular mathematical structure just like in X[START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF] 

  ) i.e. the off-line HCRB associated to the estimation of k  :

Fig. 1

 1 Fig. 1 HCRBs in the various block positions for two constellations (BPSK, QPSK) and two block lengths ( 30 L  , 120 L ).

Fig. 2

 2 Fig. 2 HCRBs in the center of the block ( 60 l 

Fig. 3

 3 Fig. 3 HCRBs in the center of the block ( 60 l 

Fig. 4

 4 Fig. 4 Off-Line CA HCRBs in the center of the block ( 60 l ).
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