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I. INTRODUCTION

here are three types of estimators widely used in communication systems [START_REF] Herzet | Code-aided turbo synchronization[END_REF]: data-aided (DA), code-aided (CA) and non-data-aided (NDA) estimators. DA estimation techniques obtain the better performance but may lead to unacceptable losses in power and spectral efficiency. CA synchronization allows an improved data efficiency but requires additional interactive impairments between decoding and synchronization units. Finally, NDA synchronization algorithms may sometimes lead to poor results but they exhibit the highest transmission efficiency and are still attractive.

To know whether an imposed algorithm is good or not, one often compares its performance with lower bounds. Although there exists many lower bounds, the Cramer-Rao bound (CRB) is the most commonly used and the easiest to determine [START_REF] Trees | Detection, Estimation and Modulation Theory[END_REF], [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF].

Many works [START_REF] Meyr | Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing, ser. Telecommunications and Signal Processing[END_REF]- [START_REF] Noels | The true Cramer-Rao bound for carrier frequency estimation from a PSK signal[END_REF] concern the CRBs for the carrier phase and frequency estimation in DA and NDA scenarios. But all these papers refer to an idealized situation in which the phase offset is constant. However, in modern burst-mode communications, a time-varying phase noise due to the oscillator instabilities has to be considered [START_REF] Mcneill | Jitter in ring oscillators[END_REF], [START_REF] Demir | Phase noise in oscillators: a unifying theory and numerical methods for characterization[END_REF]. Taking into account such a phase noise variance, [START_REF] Barbieri | On the Cramer-Rao bound for carrier frequency estimation in the presence of phase noise[END_REF] considered the DA CRB for the phase estimation with a phase noise variance and [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation[END_REF] derived a BCRB for NDA BPSK signals; [START_REF] Bay | A General Form of the Hybrid CRB. Application to the Dynamical Phase Estimation[END_REF] added the consideration of a deterministic parameter to obtain the HCRB for BPSK signals. However, the synchronization of BPSK signals is relatively simpler than that of QAM signals. The goal of this paper is then two-folded. First we detail the derivation of the BCRB and of the HCRB for QAM modulated signals. Second we want to provide benchmarks for the QAM dynamical phase estimation, since we present a generalization of the off-line synchronizing scheme [START_REF] Yang | Near-optimum Low-Complexity Smoothing Loops for Dynamical Phase Estimation[END_REF] to QAM modulated signals in [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] whose performance can exactly reach the bounds derived in this paper. For lack of space reasons, this study is extended to the code-aided case in [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Coded Aided QAM Dynamical Phase Estimation[END_REF]. This paper is organized as follows. In section II, we recall the various kinds of Cramer-Rao bounds. After describing the system model in section III, we derive the BCRBs and the HCRBs for both on-line and off-line estimations in section IV. Moreover, we also present the analytical expressions for the various CRBs; this avoids computing the inverse of any information matrix. A discussion about the various CRBs and a conclusion are respectively provided in section V and VI. 2 

II. CRAMER-RAO BOUNDS (CRBS) REVIEW

It is known that the parameters to be estimated can be categorized as deterministic or random parameters. Denote this parameter vector as ( )

, T T T r d = u u u
, where is a

d u ( ) 1 n m -×
deterministic vector and is a random vector with an a priori probability density function (pdf) . The true value of will be denoted is the observation vector. The HCRB satisfies the following inequality [START_REF] Bay | A General Form of the Hybrid CRB. Application to the Dynamical Phase Estimation[END_REF] on the MSE:

y ( ) ( ) ( ) ( ) ( ) 1 , | | ˆr d d d d T d E Δ Δ - Δ = = ⎡ ⎤ - - ≥ ⎢ ⎥ ⎣ ⎦ y u u u u u u y u u y u H u , (1) where ( ) d Δ 
H u is the so-called hybrid information matrix (HIM)

and is defined as:

( ) ( ) | , | log , | d d r d d d E p Δ Δ Δ = = r d ⎡ ⎤ = -Δ ⎣ ⎦ u u u u y u u u H u y u u . ( 2 
)
It is shown in [START_REF] Yang | Near-optimum Low-Complexity Smoothing Loops for Dynamical Phase Estimation[END_REF] 

( ) ( ) ( ) | | , l o g | d d r d d r d d d d r rd E E p Δ Δ Δ Δ Δ = = = ⎡ ⎤ ⎡ ⎤ = + -Δ ⎣ ⎦ ⎣ ⎦ u u u u u u u u u u H u F u u u u , (3) 
where ( )

( ) | | , , l o g | , d d r d d d r d r E p Δ Δ Δ = = ⎡ ⎤ = -Δ ⎣ ⎦ u u u u y u u u F u u y u u (4) 
is the Fisher information matrix (FIM).

In particular, if d = u u , (4) reduces to:

( ) ( ) ( ) | | log | d d d d d d d d d E p Δ Δ Δ Δ = = ⎡ ⎤ = = -Δ ⎣ ⎦ u u u u y u u H u F u y u . ( 5 
)
The inverse of ( ) 5) is just the standard CRB [START_REF] Trees | Detection, Estimation and Modulation Theory[END_REF].

d Δ H u in (
On the contrary, if (

( ) log r r r r r E E p ⎡ = ⎡ ⎤+ -Δ ⎣ ⎦ ⎣ u u u u H F u u r ⎤ ⎦ , ) 
where ( ) ( )

| log | r r r r E p ⎡ ⎤ = -Δ ⎣ ⎦ u y u u F u y u r , (7) 
and the inverse of H in ( 6) is the Bayesian CRB (BCRB) [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF].

III. SYSTEM MODEL

We consider the transmission of a sequence

[ ] 1 , , T L s s = s of M-QAM signals from a set
, rotated by some random carrier phases , over an additive white Gaussian noise (AWGN) channel. Assuming that the timing recovery is perfect without inter-symbol interference (ISI), the sampled baseband signal can be written as:

M S [ 1 , , T L θ θ = θ [ 1 , , T L y y = y ] ] ( ) l j l l l l l y se n a jb e n θ = + = + + l j θ l , (8) 
where l s , l θ and are respectively the transmitted complex symbol (

l n l l -th l l s a jb = +
), the residual phase distortion and the zero mean circular Gaussian noise with variance 2 n σ .

For the data aided (DA) scenario, the transmitted symbols are independent and identically distributed (i.i.d.) and the conditional probability based on the known phase is:

( ) ( ) { } 2 2 2 2 1 1 Re 1 | e x p e x p2 l L j L L l l l l k k l l n n y s e s y p py θ θ πσ σ σ - * = = ⎧ ⎫ ⎧ ⎫ + ⎛ ⎞ ⎪ ⎪ ⎪ = = - ⎜ ⎟ ⎨ ⎬ ⎨ ⎝ ⎠ ⎪ ⎪ ⎪ 2 n ⎪ ⎬ ⎩ ⎭ ⎩ ⎭ ∏ ∏ r | θ ⎪ (9) 
For the non-data aided (NDA) case, the transmitted symbols are also i.i.d and thus ( )

p r | θ has a similar form: ( ) ( ) { } M 1 2 2 2 2 1 | 2Re 1 1 exp . M l l L l l l L j L l l ll s l n n p py s y yse θ θ πσ σ = - * ∈ = = ⎧ + + ⎛ ⎞ ⎪ ⎪ = - ⎜ ⎟ ⎨ ⎬ ⎝ ⎠ ⎪ ⎩ ∏ ∑ ∏ S r | θ ⎫ ⎪ ⎭ l (10)
In practice, the oscillators are never perfect and suffer from jitters. [START_REF] Mcneill | Jitter in ring oscillators[END_REF] and [START_REF] Demir | Phase noise in oscillators: a unifying theory and numerical methods for characterization[END_REF] have provided a mathematical model which has been widely used to describe the oscillator behavior: σ . The corresponding conditional probability can be expressed as:

( ) ( ) 2 1 1 2 1 | , exp 2 2 l l l l w w p θ θ ξ θ θ ξ σ πσ - - ⎧ ⎫ - - ⎪ = - ⎨ ⎪ ⎪ ⎩ ⎭ ⎪ ⎬ ] . ( 12 
)
IV. CRBS FOR THE DYNAMICAL PHASE ESTIMATION

In practice, phase estimation can be considered using the off-line scenario and the on-line scenario. The former uses the whole observations frame and only begins estimation when the whole frame has been received, while the latter directly uses the current and previous observations. In the following, we will give both the on-line and the off-line lower bounds.

The parameters of the phase model in ( 9), (10) include some random parameters (i.e. the dynamical phase) and a deterministic parameter

[ 1 , , T L θ θ = θ
ξ (i.e. the scalar linear drift). So the parameter vector can be written as:

r d ξ ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ = = ⎢ ⎥ ⎣ ⎦ u θ u u (13) 
Equation ( 3) thus becomes:
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where ( )
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22

. We then decompose the HIM into smaller matrices that will be useful in the sequel: 

T ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ H H H H H H H H H , (15) 
where

( ) ( ) ( ) ( ) ( ) ( ) 11 | | , | | 12 | | , | | 22 | | , | | log , | log | log , | log | log , | log | . E p E p E p E p E p E p ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ = = = = = = = = = = = = ⎧ ξ ξ ξ ξ ξ ξ ⎡ ⎤ ⎡ = -Δ + -Δ ⎤ ⎣ ⎦ ⎣ ⎪ ⎪ ⎦ ⎡ ⎤ ⎡ = -Δ + -Δ ⎨ ⎤ ⎣ ⎦ ⎣ ⎪ ⎦ ⎡ ⎤ ⎡ ⎪ = -Δ + -Δ ⎤ ⎣ ( ) ( ) ( ) ln | , ln | , p p ξ ξ = y θ y θ s ∑ s p . (17) 
Using the i.i.d condition among data, the FIM can be written as:

( ) [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Coded Aided QAM Dynamical Phase Estimation[END_REF] where L I is the L L × identity matrix and D J is defined as:

, D L J = θ F I E⎡ ⎤ ⎣ ⎦ θ
( )

2 2 log | , l l D l p y J E ⎡ ξ θ θ ⎤ ∂ - . ( 19 
) ⎢ ⎥ ∂ ⎣ ⎦ y,θ
Starting with the DA scenario, from [START_REF] Steendam | Low-SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PSK or QAM waveform[END_REF] we have that:

( )

2 2 2 2 ln | 2 2 SNR . s l n p E σ θ σ ⎧ ⎫ ∂ ⎪ ⎪ = - ⎨ ⎬ ∂ ⎪ ⎪ ⎩ ⎭ y θ = -⋅ (20)
We now turn to the NDA scenario, and from [START_REF] Noels | The true Cramer-Rao bound for carrier frequency estimation from a PSK signal[END_REF], one has that: p y s θ ξ has been shown in [START_REF] Noels | The true Cramer-Rao bound for carrier frequency estimation from a PSK signal[END_REF]. Unfortunately, the expectation of (21) has no simple analytical solution and one must resort to numerical methods.

( ) ( ) ( ) ( ) ( ) 
θ ξ θ ξ ξ θ θ ξ θ ξ ∈ ∈ ∈ ∂ ⎛ ∂ ⎞ ⎜ ⎟ ∂ ∂ ∂ ⎜ ⎟ = -⎜ ⎟ ∂ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ S S S y θ S , (21 

B. Analytical Expressions of HCRBs

From ( 16), due to [START_REF] Demir | Phase noise in oscillators: a unifying theory and numerical methods for characterization[END_REF] and without any a priori knowledge on 1 θ (i.e.

), we obtain matrix :

( )

1 1 1 1 log 0 E p θ θ θ θ ⎡ Δ ⎣ ⎤ = ⎦ 0 1 11 H 11 1, 1 0 0 1 1 0 0 0 1 1 0 0 1 A A b A A + ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + ⎣ ⎦ H , ( 24 
)
where and (25) For both the DA and NDA scenarios (see ( 9) and ( 10)), we can see that 

2 12 1 2 1 , , 1 
T w L σ × - ⎡ = - ⎣ H 0 2 w σ ⎤ ⎦ (26) ( ) 2 22 1 w L . σ = - H (27)
We now invert the HIM. Starting with and just similarly to Appendix I of [START_REF] Bay | A General Form of the Hybrid CRB. Application to the Dynamical Phase Estimation[END_REF], we find:

1 11 - H ( ) ( ) ( 1 1 1 1 11 1 1 1 2 2 2 1, 11 l L l L l l b r r b r r b ρ ρ - - -- -- ⎡ ⎤ = + + ⎣ ⎦ H H ) + , (28) ( ) ( ) ( ) ( 
)

2 2 2 3 2 3 1 1 1 2 2 2 1 11 1 , 2 2 1 1 2 11 1 2 1 2 1 2 L L l l L L l L l L b r r b r r b r r r r A ρ ρ - - - - - -- -- - ⎧ + + + ⎪ ⎡ ⎤ = ⎨ ⎣ ⎦ - + - ⎪ ⎩ H H ⎫ ⎪ ⎬ ⎪ ⎭ , (29) where ( ) ( ) 1 2 2 1 1 2 2 2 1 1 1 4 1 1 1 4 w 
D w w D w r J r J σ σ σ σ - - ⎧ ⎛ ⎞ = + - + ⎜ ⎟ ⎪ ⎪ ⎝ ⎠ ⎨ ⎛ ⎞ ⎪ = + + + ⎜ ⎟ ⎪ ⎝ ⎠ ⎩ 2 2 D D J J , (30) and ( ) ( ) ( ) ( ) ( ) ( ) 
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)
Thanks to the block-matrix inversion formula [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF], we have:

1 1 1 1 11 11 12 1 1 1 12 11 L T λ λ λ - - - - - - - ⎡ + - = ⎢ - ⎣ H V H H H H H , (32) 
where we define Due to the particularly light structures of and , we find:

1 1 1 11 12 12 11 T L λ -- - V H H H H 11 H 12 H ( ) ( ) { 2 2 2 1 1 1 2 2 2 2 11 1 2 L L w L b r r b r r b b λ ρ ρ σ - - - = - + + + + H } 1 L - . ( 33 
)
From the definition of L V , the diagonal elements [ ] ,

L l l V can be written as:

[ ] ( ) ( ) 2 1 1 11 11 , 1, 1, 1 4 L w l l l L l λσ - - + - ⎡ ⎤ ⎡ ⎤ = - ⎣ ⎦ ⎣ ⎦ V H H 1 2 l l l l l l b r r b r r C b r r r r A ρ ρ - - - -- - - ⎧ ⎫ + + + ⎪ ⎪ = ⎨ ⎬ - + - ⎪ ⎪ ⎩ ⎭ B B . ( 39 
)
Note that (38) (resp. (39)) is the first term on the right side of (35) (resp. (36)). The second terms in (35) and (36) represent the additional positive uncertainty brought by ξ and the HCRB is always lower bounded by the BCRB.

) ⎫ ⎪ ⎬ ⎪ ⎭ ⎫ ⎪ ⎬ (35) V. DISCUSSION
Constrained by the paper size, only the HCRB will be discussed in the following. First, one readily sees on Fig. 1 the superiority of the off-line approach compared to the on-line approach in the different positions of the block. Also, there is little improvement for the DA scenario (compared to the NDA scenario) when using a BPSK modulation but the gain becomes obvious for a larger constellation. Moreover, as the observation number increases, both the on-line and off-line CRBs decreases and tends to reach the corresponding asymptote values.

We now illustrate the behavior of the M-QAM (M=4, 16, 64 and 256) HCRB of l θ as a function of the SNR in Fig. 2.

At high SNR (above 30dB), we notice that the various off-line CRBs logically merge and do not depend on the constellation. In this range of SNR, the received constellations are reliable enough to make correct decisions and it is sufficient to only take the present observation into account to estimate In mid-range SNRs, one observation is not sufficient to estimate the phase offset and a block of observations can improve the estimation performance. This explains why the NDA CRBs do not merge anymore with the DA CRBs. Moreover, we notice that every time the constellation size is multiplied by 4, the threshold where the NDA bounds leave the DA bound is increased by 6dB.

At low SNR, the AWGN has more influence than the phase noise and that results in many decision errors. That is why the NDA CRBs increase quicker at low SNR than at high SNR, and particularly for the 2-dimension QAM signals (compared to the real BPSK signals).

VI. CONCLUSION

In this paper, we have applied the general analytical form of the BCRBs and HCRBs to evaluate the performance of dynamical phase estimation. We have illustrated the phase estimation performance for arbitrary constellations. In particular, we can measure the advantage of using an off-line scenario. We also point out the difference between the QAM bounds and the traditionally studied BPSK bounds.
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  and ( ) û y is the estimator of u where
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  The notational convention adopted is as follows: italic indicates a scalar quantity, as in ; boldface indicates a vector quantity, as in a and capital boldface indicates a matrix quantity as in . The entry of matrix A is denoted as . The transpose matrix of is indicated by a superscript , is the determinant of . represents the vector [, where and are positive integers ( and are respectively the real and imaginary parts of a . ] denotes the expectation over y ∇ u and Δ v u represent the first and second order derivative operators.

  l θ is the unknown phase offset at time l , ξ is the unknown constant frequency offset (linear drift), is a white Gaussian noise with zero mean and variance l w 2 w

  θ is independent of ξ , i.e.

θFig. 1

 1 Fig. 1 HCRBs in the various block positions ( and 30 L = 60 L = ).

Fig. 2

 2 Fig. 2 HCRBs in the center of the block () for various constellations. 30 l =

u u u u , the HIM can be rewritten as:

  

											that inequality (1) still holds when the
	deterministic and the random parts of the parameter vector are dependent. By expanding ( ) log , | r d p y u u as
	log	p	(	y	| , r	d	)	+	log	p	(	r	|	d	)
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.

(34)

Using ( 29) and (34), we can then get the analytical expression of the upper diagonal elements in (32) i.e.

the off-line HCRB associated to the estimation of

11 l H in (35), one also obtains the analytical expression of the on-line HCRB associated to the estimation of l θ ( ):

where ( )

is the left-upper submatrix of (see ( 24)).

We can notice that ( 35) and (36) do not depend on the value of the parameter

C. Analytical Expressions of BCRBs

When there is no linear drift i.e. 

) ( )