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J. Yang, B. Geller, and A. Wei 1

Bayesian and Hybrid Cramer-Rao Bounds for 
QAM Dynamical Phase Estimation 

Abstract—In this paper, we study Bayesian and hybrid 
Cramer-Rao bounds for the dynamical phase estimation of QAM 
modulated signals. We present the analytical expressions for the 
various CRBs. This avoids the calculation of any matrix inversion 
and thus greatly reduces the computation complexity. Through 
simulations, we also illustrate the behaviors of the BCRB and of 
the HCRB with the signal-to-noise ratio.  

Index Terms—Bayesian Cramer-Rao Bound (BCRB), Hybrid 
Cramer-Rao Bound (HCRB), Synchronization Performance 

I. INTRODUCTION 
here are three types of estimators widely used in 
communication systems [1]: data-aided (DA), 
code-aided (CA) and non-data-aided (NDA) estimators. 

DA estimation techniques obtain the better performance but 
may lead to unacceptable losses in power and spectral 
efficiency. CA synchronization allows an improved data 
efficiency but requires additional interactive impairments 
between decoding and synchronization units. Finally, NDA 
synchronization algorithms may sometimes lead to poor results 
but they exhibit the highest transmission efficiency and are still 
attractive.  

To know whether an imposed algorithm is good or not, one 
often compares its performance with lower bounds. Although 
there exists many lower bounds, the Cramer-Rao bound (CRB) 
is the most commonly used and the easiest to determine [2], [3]. 
 Many works [4]-[10] concern the CRBs for the carrier phase 
and frequency estimation in DA and NDA scenarios. But all 
these papers refer to an idealized situation in which the phase 
offset is constant. However, in modern burst-mode 
communications, a time-varying phase noise due to the 
oscillator instabilities has to be considered [11], [12]. Taking 
into account such a phase noise variance, [13] considered the 
DA CRB for the phase estimation with a phase noise variance 
and [14] derived a BCRB for NDA BPSK signals; [15] added 
the consideration of a deterministic parameter to obtain the 
HCRB for BPSK signals. However, the synchronization of 
BPSK signals is relatively simpler than that of QAM signals. 
The goal of this paper is then two-folded. First we detail the 
derivation of the BCRB and of the HCRB for QAM modulated 
signals. Second we want to provide benchmarks for the QAM 
dynamical phase estimation, since we present a generalization 
of the off-line synchronizing scheme [16] to QAM modulated 
signals in [17] whose performance can exactly reach the 
bounds derived in this paper. For lack of space reasons, this 
study is extended to the code-aided case in [18]. 
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This paper is organized as follows. In section II, we recall the 
various kinds of Cramer-Rao bounds. After describing the 
system model in section III, we derive the BCRBs and the 
HCRBs for both on-line and off-line estimations in section IV. 
Moreover, we also present the analytical expressions for the 
various CRBs; this avoids computing the inverse of any 
information matrix. A discussion about the various CRBs and a 
conclusion are respectively provided in section V and VI. 2 

II. CRAMER-RAO BOUNDS (CRBS) REVIEW 
It is known that the parameters to be estimated can be 

categorized as deterministic or random parameters. Denote this 
parameter vector as ( ),

TT T
r d=u u u  , where  is a du ( ) 1n m− ×  

deterministic vector and  is a  random vector with an a 
priori probability density function (pdf) . The true value 

of  will be denoted

ru m

d

1×

( )rup

du Δu  and ( )û y  is the estimator of u  
where  is the observation vector. The HCRB satisfies the 
following inequality [15] on the MSE: 
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ΔH u  is the so-called hybrid information matrix (HIM) 

and is defined as: 
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It is shown in [16] that inequality (1) still holds when the 
deterministic and the random parts of the parameter vector are 
dependent. By expanding ( )log , |r dp y u u  as 

( ) ( )log | , log |r d r dp p+y u u u u  , the HIM can be rewritten as:  
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is the Fisher information matrix (FIM).  
In particular, if d=u u , (4) reduces to:  
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log |d

d d dd d
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u
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The inverse of ( )d
ΔH u  in (5) is just the standard CRB [2]. 

On the contrary, if r=u u , (4) becomes:   
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( ) ( )logr

r r rrE E p⎡= ⎡ ⎤ + −Δ⎣ ⎦ ⎣
u

u u uH F u ur ⎤⎦ ,        (6) 

where ( ) ( )| log |r

r rr E p⎡ ⎤= −Δ⎣ ⎦
u
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and the inverse of H  in (6) is the Bayesian CRB (BCRB) [3]. 

III. SYSTEM MODEL 

We consider the transmission of a sequence [ ]1, , T
Ls s=s  of 

M-QAM signals from a set , rotated by some random carrier 

phases , over an additive white Gaussian noise 
(AWGN) channel. Assuming that the timing recovery is perfect 
without inter-symbol interference (ISI), the sampled baseband 
signal   can be written as: 

MS

[ 1, , T
Lθ θ=θ

[ 1, , T
Ly y=y

]

]
( )lj

l l l l ly s e n a jb e nθ= + = + +ljθ
l ,     (8) 

where ls , lθ  and  are respectively the  transmitted 
complex symbol (

ln

l l

-thl

ls a jb= + ), the residual phase distortion and 
the zero mean circular Gaussian noise with variance 2

nσ .  
 For the data aided (DA) scenario, the transmitted symbols 
are independent and identically distributed (i.i.d.) and the 
conditional probability based on the known phase is: 
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 For the non-data aided (NDA) case, the transmitted symbols 
are also i.i.d and thus ( )p r | θ  has a similar form: 
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In practice, the oscillators are never perfect and suffer from 
jitters. [11] and [12] have provided a mathematical model 
which has been widely used to describe the oscillator behavior: 

1l l wθ θ ξ−= + + ,        (11) 
where lθ  is the unknown phase offset at time l , ξ  is the 
unknown constant frequency offset (linear drift),  is a white 
Gaussian noise with zero mean and variance 

lw
2
wσ . The 

corresponding conditional probability can be expressed as: 
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IV. CRBS FOR THE DYNAMICAL PHASE ESTIMATION 
In practice, phase estimation can be considered using the 

off-line scenario and the on-line scenario. The former uses the 
whole observations frame and only begins estimation when the 
whole frame has been received, while the latter directly uses the 
current and previous observations. In the following, we will 
give both the on-line and the off-line lower bounds. 

The parameters of the phase model in (9), (10) include some 
random parameters  (i.e. the dynamical phase) 

and a deterministic parameter 

[ 1, , T
Lθ θ=θ

ξ  (i.e. the scalar linear drift). So 
the parameter vector can be written as: 
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Equation (3) thus becomes: 
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. We then 

decompose the HIM  into smaller matrices that will be useful 
in the sequel: 
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A. Computation of ( )|
E
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F θ  

From (9) (resp. (10)) in the DA (resp. NDA) scenario, 
( )ln | ,p ξy θ  can be expanded as:  
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Using the i.i.d condition among data, the FIM can be written as:  
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 Starting with the DA scenario, from (9) we have that: 
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We now turn to the NDA scenario, and from (10), one has that: 
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and ( )| , ,l l lp y s θ ξ has been shown in (10). Unfortunately, the 
expectation of (21) has no simple analytical solution and one 
must resort to numerical methods. 

B.  Analytical Expressions of HCRBs 
From (16), due to (12) and without any a priori knowledge 



on 1θ  (i.e. ), we obtain matrix : ( )1
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where  and 2 2w DA Jσ= − − 21 wb σ= − .                  (25) 
For both the DA and NDA scenarios (see (9) and (10)), we 
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We now invert the HIM. Starting with  and just similarly 
to Appendix I of [15], we find: 
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Thanks to the block-matrix inversion formula [3], we have: 
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From the definition of LV , the diagonal elements [ ] ,L l l
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be written as: 
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Using (29) and (34), we can then get the analytical 
expression of the upper diagonal elements  in (32) i.e. 

the off-line HCRB associated to the estimation of
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Finally, just replacing 11H  by ( )11 lH  in (35), one also 
obtains the analytical expression of the on-line HCRB 
associated to the estimation of lθ  ( ): 3l ≥
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where ( )11 lH  is the left-upper  submatrix of (see (24)). 
We can notice that (35) and (36) do not depend on the value of 
the parameter

l l× 11H

ξ . 

C.  Analytical Expressions of BCRBs 
When there is no linear drift i.e. 0ξ = , the parameter vector 
contains only random parameters θ , i.e. u r= =u u θ  and the 

BCRB is the lower bound of the MSE. Moreover, the Bayesian 
information matrix (BIM) LB  is equal to the upper left 
sub-matrix of the hybrid information matrix :  H

11L =B H .         (37) 

The diagonal element  is the off-line BCRB 

associated to the estimation of

1

,L l l
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lθ . The corresponding analytical 
expressions for respectively the off-line and on-line BCRB are: 
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Note that (38) (resp. (39)) is the first term on the right side of 
(35) (resp. (36)). The second terms in (35) and (36) represent 
the additional positive uncertainty brought by ξ  and the 
HCRB is always lower bounded by the BCRB. 

)

⎫⎪
⎬
⎪⎭

⎫⎪
⎬

 (35) 

V. DISCUSSION 
Constrained by the paper size, only the HCRB will be 

discussed in the following. First, one readily sees on Fig. 1 the 
superiority of the off-line approach compared to the on-line 
approach in the different positions of the block. Also, there is 
little improvement for the DA scenario (compared to the NDA 
scenario) when using a BPSK modulation but the gain becomes 
obvious for a larger constellation. Moreover, as the observation 
number increases, both the on-line and off-line CRBs decreases 
and tends to reach the corresponding asymptote values. 

We now illustrate the behavior of the M-QAM (M=4, 16, 64 
and 256) HCRB of lθ  as a function of the SNR in Fig. 2. 

At high SNR (above 30dB), we notice that the various 
off-line CRBs logically merge and do not depend on the 
constellation. In this range of SNR, the received constellations 
are reliable enough to make correct decisions and it is sufficient 
to only take the present observation  into account to estimate ly

lθ ; thus the estimation problem tends to a deterministic phase 



estimation problem where we estimate L  independent phases 
lθ  with L  independent observations. 
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Fig. 1  HCRBs in the various block positions (  and 30L = 60L = ). 
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Fig. 2  HCRBs in the center of the block ( ) for various constellations. 30l =
In mid-range SNRs, one observation is not sufficient to 

estimate the phase offset and a block of observations can 
improve the estimation performance. This explains why the 
NDA CRBs do not merge anymore with the DA CRBs. 
Moreover, we notice that every time the constellation size is 
multiplied by 4, the threshold where the NDA bounds leave the 
DA bound is increased by 6dB. 

At low SNR, the AWGN has more influence than the phase 
noise and that results in many decision errors. That is why the 

NDA CRBs increase quicker at low SNR than at high SNR, and 
particularly for the 2-dimension QAM signals (compared to the 
real BPSK signals).  

VI. CONCLUSION 
In this paper, we have applied the general analytical form of 

the BCRBs and HCRBs to evaluate the performance of 
dynamical phase estimation. We have illustrated the phase 
estimation performance for arbitrary constellations. In particular, 
we can measure the advantage of using an off-line scenario. We 
also point out the difference between the QAM bounds and the 
traditionally studied BPSK bounds. 
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