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Abstract

A small control sphere is displaced in a cross flow plane downstream of a main
sphere of diameter D in a uniform flow at Re = 33000. The wake is studied
by means of 4 fixed hot wire probes. It is shown that without the control
sphere (reference case), vortex loops are shed from only one side of the sphere
at a Strouhal number St = 0.19. This reference wake structure has a planar
symmetry defining an azimuthal phase θW that is observed to be random in
time. The secondary smaller sphere is treated as a local disturbance of the
reference wake. It is found that the shedding occurs closer to the symmetry
axis for the control sphere placed at the center of the wake than for the
natural case. When the control sphere is off-centered, a subharmonic at half
the natural frequency appears and the azimuthal phase becomes imposed by
the control sphere position. A pure subharmonic mode is observed when
the control sphere reaches the separated shear, suggesting alternative vortex
loops shedding from both sides of the wake.

Keywords: Sensitivity, Control, Global mode, Turbulent wake

1. Introduction

Recent theoretical efforts have allowed the retrieval of the structural sen-
sitivity of the global mode of two-dimensional wakes in the laminar regime
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(Hill, 1992; Marquet et al., 2008; Luchini et al., 2009) )obtained experimen-
tally by Strykowski and Sreenivasan (1990) and very recently in the turbulent
regime (Meliga et al., 2012) obtained in the experiment of Parezanović and
Cadot (2012). For three dimensional cases, the theory applied to axisym-
metric flows in the laminar regime (Meliga et al., 2009b) predicts a zone of
high sensitivity in the recirculation bubble, particularly around the separa-
trix. Besides this pioneering work, theoretical prediction for three dimen-
sional turbulent wakes still remains an open issue. On the experimental side,
Grandemange et al. (2012) examined the sensitivity of a three dimensional
symmetric blunt body in the turbulent regime using small objects in the
wake. In this experiment, the presence of the supports that hold the axisym-
metric body produce a bi-stable wake, where each state is not axisymmetric
and has an m=1 azimuthal periodicity. Depending on their geometry, the
small objects select the azimuthal phase or force the axisymmetry of the
wake.

The goal of the present experiment is to preserve the axisymmetry of
the body as much as possible. We have chosen the academical case of the
sphere that is well documented in the literature. The dynamics of the sepa-
rated flow over spheres undergoes several transitions associated with different
wake regimes as the Reynolds number increases (Sakamoto and Haniu, 1990;
Szaltys et al., 2012). At very low Reynolds numbers, the flow is steady and
axisymmetric. A first bifurcation is reported for Re ≈ 210 : a steady az-
imuthal mode m = 1 appears. A lift force is generated and a pair of counter-
rotating vortices develops downstream moving the wake off the streamwise
axis so that the flow loses its axisymmetry but keeps a planar symmetry.
The plane of symmetry defines the azimuthal phase of the mode. A second
bifurcation occurs at a higher Reynolds number Re ≈ 277 : the wake starts
oscillating but preserves the same planar symmetry and azimuthal phase.
Becoming turbulent, the preference toward this azimuthal phase vanishes
and the flow becomes statistically axisymmetric (Mittal et al., 2002). The
mixing layer instabilities in the close wake degenerate into large scale vortex
loops developing from the end of the recirculation bubble ; the wake oscillates
randomly (Taneda, 1978; Sakamoto and Haniu, 1990) and may have a helical
structure highly coherent in space (Pao and Kao, 1977; Berger et al., 1990;
Yun et al., 2006; Cannon et al., 1993). This unsteady global mode (dominant
mode m = 1) is reported at 0.1 < St < 0.2 depending on Reynolds numbers.

The present work explores the global mode modification of the turbulent
wake due to the presence of a secondary smaller sphere, treated as a local

2



z

y

x

0.45 m

0.26 m

to 2D axis displacement console
(a)

O

2D

T

B

L

R

d

0.35D

U0

0.9D

yc

xc

O
D

(b)

Figure 1: Sketch of the experimental set-up. Backview (a), the flow comes from behind.
Four hot wire probes (not on scale) denoted by L for left, R for right, T for top and
B for bottom (directions are related to the backview) are symmetrically positioned 2D
downstream from the center of the main sphere (b).

disturbance in its close wake. The impact of the controlled sphere is reported
through sensitivity analysis of the global spatial structure and frequency of
the wake. To our knowledge, such an approach has not been carried out so far.
Wakes interaction have been investigated for identical spheres (Schouveiler
et al., 2004; Yoon and Yang, 2007) in the laminar regime around Re = 300.
They lead to different patterns in the vortex shedding and Strouhal numbers,
that do not result from a disturbance approach.

The article is organized as follows. First, the experimental set-up and
measurements are presented in section 2. Section 3 analyzes the wake of the
main sphere, especially the global mode structure and the topology of the
shedding are clarified. Section 4 is devoted to results of the disturbed wake
with the small control sphere. Eventually, discussion and concluding remarks
are presented in the final section.

2. Experimental set-up

The main sphere of diameter D = 40 mm is placed in a feedback wind
tunnel having a uniform velocity of U0 = 12.5 m/s with a free stream turbu-
lence level of 0.5%. The diameter D and inlet velocity U0 are used to build
non-dimensional values marked with an asterisk. The Reynolds number is
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Re = U0D/ν = 33000 for the main sphere. The cross section of the wind
tunnel is a square of dimensions 0.45 m×0.45 m and the sphere is attached
from its center to each corner of the test section by four metal wires of di-
ameter 0.5 mm as depicted in Fig.1. A system of tension at the edge of the
frame allows to stretch the wires. The tension is adjusted in order to avoid
any observable or hearable vibrations of the wires and the sphere. This tech-
nique of fixation is commonly used for studies of three dimensional bluff body
wakes, see for instance Cannon et al. (1993); Howe et al. (2001); Jang and
Lee (2008); Sakamoto and Haniu (1995).

The control sphere has a diameter of d = 12 mm= 0.3D. The surface
ratio between the main sphere and the control sphere is sufficiently small,
(d/D)2 = 0.09 to consider the control sphere as a disturbance for the main
sphere wake. The control sphere is also attached by four 0.5 mm metal
wires from its center to the corners of a squared moving frame of dimensions
0.26 m × 0.26 m. They are sufficiently stretched to avoid any vibrations. The
frame is made by four metal profiles with a cross section of 3 mm×15 mm with
smooth edges. The upper part of the frame is fixed to a 10 mm rod driven by
a two-axis displacement console standing on the top floor of the test section
area. The passage is made air proof by adding heavy sliding sheets between
the open part of the roof and the rod. Let xc, yc, zc be the coordinates of
the center of the control sphere whose origin is taken at the center of the
main sphere. The corresponding polar coordinates will be referred to as rc

and θc. The control sphere is positioned at a fixed downstream distance
zc = 0.9D and displaced by steps of 1 mm in the area of the xOy plane:
∆xc ×∆yc = 1.25D × 1.25D.

Four fixed hot wire anemometers measure the velocity in a downstream
transversal plane at z∗ = 2 (Fig. 1b). The four measurement points denoted
by L, T, R and B are located respectively at (x = −0.35, y = 0), (0, 0.35),
(−0.35, 0) and (0,−0.35) in dimensionless quantities. The letters are referring
to the left, top, right and bottom part of the main sphere seen from the
backview in Fig. 1(a). The hot wires are all oriented in such a way to be
sensitive to the velocity component comprised in the azimuthal plane θ (see
Fig. 1a). The four velocity time series are simultaneously recorded using
Labview software and a National Instrument acquisition board at a sampling
frequency of 1 kHz. We denote by ui(t) the measurements obtained with the
i = [L,R, T, B] hot wire anemometers and δui(t), the velocity fluctuation
about the mean. For specific positions of the control sphere, a flying hot
wire probe, sensitive to the (yOz) velocity component is used to explore the
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Figure 2: Time series (a) and averaged autopower spectra (b) of the four velocity measure-
ments ui(t) with i = [L, T,R, B] (as depicted in Fig. 1(b)) for the reference wake without
control sphere. Except uL(t) in (a), each velocity measurement has been vertically shifted
down by a multiple of 10 m/s.

wake in a transversal plane z∗ = 2. In this case the velocity measurement is
simply referred to as u(t) and its standard deviation to urms.

3. Reference wake

We first study the case of the main sphere without the control sphere, for
which velocities are recorded during 600 s. The time series are very intermit-
tent as shown in Fig. 2(a). One can observe on each signal, time windows
of varying durations having lack of fluctuations. The averaged spectra per-
formed over 1 s duration all present a dominant frequency at f1 = 60 Hz.
The frequency f1, that we will refer to as the mode 1 frequency corresponds
to a Strouhal number of 0.19. Another, but less significant characteristic
frequency is observed around f2 = 27 Hz which might correspond to a sub-
harmonic of the mode 1 frequency. We computed the coherence functions
defined as :

γij(f) =
〈ũi(f)ũcc

j (f)〉
〈|ũi(f)|〉〈|ũj(f)|〉 , (1)

where ũi(f) is the Fourier transform of ui(t), ”cc” stands for complex con-
jugate and the averaging 〈...〉 is performed over 1s duration. The coherence
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Figure 3: (a): Modulus |γ| (bottom) and phase φ (top) of the horizontal γLR (thick line)
and vertical coherence function γTB (thin line). Joint probability density function (b),
PDF(δuRrms, δuLrms), see text for definitions of the variables δuLrms and δuRrms.

is computed between the left and right probes (ij) = (LR) and between the
top and bottom probes (ij) = (TB). For simplicity, we will call γLR the hori-
zontal correlation and γTB, the vertical correlation. The coherence functions,
modulus and phase are displayed in Fig. 3(a). The modulus of the coherence
presents a peak around 60 Hz with a corresponding phase shift of π for both
the horizontal and vertical coherence functions. The mode 1 can be then
viewed as a combination of two equivalent asymmetric oscillations, a vertical
one and an horizontal one. However, these oscillations cannot result from
an alternative vortex shedding between both side of the wake as commonly
observed for the 2D Kármán street. This is demonstrated in the following
by considering the time dependant mean fluctuation on each probe over a
period T :

δu2
irms(t) =

1

T

∫ t+T

t

[ui(t)− 1

T

∫ t+T

t

ui(t)dt]2dt, i = [L, T, R, B]. (2)

The joint probability distribution PDF(δuLrms, δuRrms) calculated over 600 s
is shown in Fig.3(b) for T = 0.025 s corresponding to 1.5 shedding at
f1 = 60 Hz. If alternate shedding should occur between the left and right
probe, they should record the same averaged velocity fluctuations over 1.5
period and then a single peak on the diagonal of the joint distribution would
appear in Fig.3(b). Instead, two symmetric peaks are observed revealing
that the shedding is always either located on one side of the wake or on the
other side. It confirms the shedding wake structure proposed by Mittal et al.
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Figure 4: Sketch (a) of the vortex shedding at Strouhal number 0.19. Map of velocity
fluctuations urms(x∗, y∗) in a plane z∗ = 2 for (b) natural reference case and (c) with a
steady m = 1 disturbance introduced by a vertical rod placed above the summit of the
sphere. The grayscale in (b) and (c) are identical with a contour interval of 0.2 m/s.

(2002), which consists of vortex loops that are shed from a same side of the
wake as sketched in Fig.4(a). This wake structure has a planar symmetry
defining the azimuthal phase θW of the mode. The random behavior of θW

in time is responsible for the intermittent behavior of the signals in Fig. 2(a).
As also mentioned by Mittal et al. (2002), the random azimuthal phase ren-
ders the wake statistically axisymmetric. Using a single probe mounted on
the displacement console, we measured the standard deviation of the velocity
urms(x, y) in the transversal plane z∗ = 2. The obtained map in Fig. 4(b)
is nearly axisymmetric as expected, although a m = 4 periodicity due to
the support is also observable. We did a test experiment by placing roughly
a vertical rod (4 mm in diameter) from the roof of the test section to the
summit of the sphere. The result is shown in Fig. 4(c), the fluctuations con-
centrate in the opposite region of the rod. The region of large fluctuation
reveals the region of the vortex loops shedding and its position defines the
azimuthal phase θW of the mode. This simple test experiment shows that
the random phase can actually be fixed by imposing a strong m = 1 steady
disturbance. It also explains the presence of the m = 4 periodicity of the
reference case in Fig. 4(b) because the four wires used to hold the sphere
influence the azimuthal phase as four m = 1 steady disturbances. The ran-
dom azimuthal phase cannot be uniformly distributed over all angles θ and
Fig. 4(b) contains four situations as in Fig. 4(c) but shifted of π/4.
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Figure 5: Azimuthal phase of the wake θW (a) and radial position of the shedding r∗W
(b) vs. the position of the control sphere (x∗c , y

∗
c ). Radial position of the shedding r∗W (c)

obtained on the horizontal path (y∗c = 0).

4. Wake with control sphere

For each position of the control sphere in the transversal plane z∗ = 0.9,
the four velocity signals captured by the L, T, R, and B probes are recorded
during 200 s. At each position, we compute the time dependant fluctuation
δuirms(t) as defined in Eq. 2 with T = 0.025 s. We expect that the barycenter
of these four fluctuation signals will locate instantaneously the maximum of
the shedding in the transversal plane z∗ = 2. The barycenter (x∗F (t), y∗F (t))
is defined as :

x∗F (t) = 0.35
δuRrms(t)− δuLrms(t)

δuRrms(t) + δuLrms(t)
, (3)

y∗F (t) = 0.35
δuTrms(t)− δuBrms(t)

δuTrms(t) + δuBrms(t)
. (4)

We measure the azimuthal phase of the shedding θW from the mean position
of the fluctuation barycenter and its radial position rW , as the most probable
position of the fluctuation barycenter. For the reference wake, we find r∗W =
0.3.

The control sphere acts as a m = 1 disturbance except for the position
at the center (x∗c , y

∗
c ) = (0, 0). The azimuthal phase θW vs. the position of

the control sphere is plotted in Fig. 5(a). We can see that the phase θW is
related to the sphere polar angle as θW ≈ θc + π implying that the shedding
always occurs on the opposite side of the control sphere location. The radial
position of the shedding r∗W is plotted in Fig 5(b). The maps are clearly
not axisymmetric but actually contain all the symmetry properties of the
experimental set-up (that takes into account holding systems and velocity
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probes) with four axis of symmetry at θ = nπ
4

with n = 1...4. On the
diagonals, the radial position of the shedding is not very sensitive to the
control sphere position. This effect can be explained by the alignment of the
wire holding the main sphere with the wire holding the control sphere (see
Fig. 1). This special configuration of the wires might create a disturbance
as important as the control sphere itself imposing a radial position close to
the natural reference case r∗W = 0.3. The largest sensitivity is observed on
the horizontal and vertical axis. Figure 5(c) and (d) restrict the sensitivity
analysis to the control sphere displaced on an horizontal path (x∗c > 0, y∗c =
0). Figure 5(c) displays the radial position of the wake r∗W . Figure 6(a) is
the auto power spectrum density 〈|ũ′L(f, x∗c)|2〉. We only show the spectrum
recorded by the probe L located on the opposite side of the control sphere
path (i.e. where the shedding occurs) which actually contains all the spectral
information. One can see in Fig. 5(c) that the effect of the control sphere is
almost to bring the shedding closer to the symmetry axis compared to the
reference case. The closest positions are obtained for the centered control
sphere (r∗W ≈ 0.15) and off-centered at r∗c ≈ 0.37 (r∗W ≈ 0.07). It is also for
these two positions that the energy of the fluctuations is more concentrated in
the spectra of Fig 6(a) because the shedding is also closer to the measurement
points. The two energy concentrations points are around the fundamental
frequency f1 = 55.5(±1.5) Hz for the centered control sphere and around a
lower frequency f2 = 38(±1.5) Hz for off-centered control sphere. The modes
are pure only for these two cases. Between these two positions, 0.1 < r∗c <
0.35 the radial position rW is similar to that of the reference case and both
the fundamental and the low frequency are present. The same measurements
have been performed in Fig 6(a) but with a removed control sphere. In that
case we can see that the effect of the control sphere supporting system (frame
and crossed wires) on the the global frequency is negligible since the natural
frequency is retrieved whatever the supporting system position is.

We show in the sequence in Fig. 7(a-f), the joint probability distribution
of the time dependant mean fluctuation δuirms(t) (Eq. 2 with T = 0.025 s)
measured by the right and left probe for different positions of the control
sphere. The centered position exhibits the same behavior as for the natural
reference wake (Fig. 3) meaning that vortex loops are shed from one side of
the wake with a random azimuthal phase. Once the control sphere is slightly
shifted (Fig. 7b-d and Fig. 7h-j), the vortex loops are shed from the left side
only (opposite location of the control sphere), showing that the azimuthal
phase is now fixed to θW = π. The special position corresponding to a
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pure mode at frequency f2 is shown in (Fig. 7e,k). The barycenter of the
fluctuation (see Fig. 7e) is actually moving back to the center because the
fluctuations are no longer recorded by only the left probe, but simultaneously
by the left and right probe (see Fig. 7k). This observation associated with the
dominance of the subharmonic mode is consistent with an alternate shedding
between the side of the control sphere and the opposite side.

Finally, the spatial distribution of the rms fluctuations in the plane z∗ =
2 measured with the flying probe is shown in Fig. 8 for the two extreme
positions r∗c = 0 (Fig. 8a) and r∗c = 0.35 (Fig. 8b). We can actually check
that for the centered position, the fluctuations are closer to the wake center
compared to the reference case in Fig. 4(b). For the off-centered case we can
see two maxima of fluctuations; around the edge of the control sphere and
on the opposite side, around the edge of the main sphere.

5. Discussions and conclusions

When the control sphere is at the center of the wake of the main sphere, we
find similar global properties to that of the reference case, with a pure mode
having a frequency close to St = 0.19 as described in the sketch of Fig. 4(a)
and a random azimuthal phase. The remarkable effect is the rapprochement
of the shedding with the center of the wake (r∗W ≈ 0.15 with centered control
sphere and 0.3 for the reference case).
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In the cases of the off-centered control sphere, the corresponding distur-
bance which has an m = 1 wavenumber sets the turbulent wake at a fixed
azimuthal phase. This result generalizes to an axisymmetric situation, the
previous observation of Grandemange et al. (2012) for which only two az-
imuthal phase were observable due to the properties of the natural wake. It
was also found that depending on the downstream distance of the pertur-
bation to the body, the shedding could be either on the same side of the
steady perturbation or on the opposite side. In the present experiment we
only explore one downstream location z∗c=0.9. For radial positions such that
r∗c < 0.3 the shedding occurs on the opposite side of the control sphere loca-
tion θW = θc +π. We do not exclude that for different downstream positions,
azimuthal phase of θW = θc could be observed. In any cases, the fixation of
the azimuthal phase by a m = 1 steady disturbance is a property known for
laminar wake that induces the so-called imperfect bifurcation (Meliga et al.,
2009a). This major effect avoids the investigation of a complete experimen-
tal sensitivity analysis of the global mode using a steady disturbance as in
Parezanović and Cadot (2012), since it seems impossible to place the distur-
bance anywhere else than in the plane of planar symmetry of the mode. The
control sphere also modifies the spectral content of the fluctuations and a
clear transition between two modes having a factor two in frequency is ob-
served. At the centered position, the global frequency is close to that of the
natural wake. A subharmonic, at half the global frequency appears as soon
as the control sphere is off-centered. Once the radial position of the sphere
reaches r∗c = 0.3 only the subharmonic mode is observed (Fig. 5d). We can
explain the factor 1/2 in the frequency jump by the appearance of a new shed-
ding pattern, for which vortex loops are not shed from mostly one side of the
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wake as for the reference wake, but alternatively from the edge of the control
sphere and the edge of the main sphere. These two positions can be repaired
by the two maxima of velocity fluctuations in Fig.8(b). To illustrate this
interpretation, we show instantaneous velocity fields in Fig. 9 measured with
a particle image velocimetry. For the reference wake in Fig. 9(a), the vortex
loops are observable at the top of the field by the periodic over-velocities
in red color. In the second field in Fig. 9(a), over-velocities are distributed
alternatively at the top and at the bottom of the wake.

It is noteworthy to mention that the subharmonic frequency is also observ-
able in Fig. 2(b) for the reference wake but at a low amplitude. The alternate
vortex loops shedding mode should also exists for the natural wake, meaning
that the wake might switch during small duration from the single sided vor-
tex loops shedding (mode 1) to the alternative vortex loops shedding (mode
2). The control sphere plays a role in the selection of the dominant mode.

We also observed slight but significant variations of the frequencies of the
modes in Fig. 5(b). Whatever the mode, the frequency is increased when the
control sphere approaches the inner part of the separated layers. This seems
to be consistent with the cylinder turbulent wake analysis of Parezanović and
Cadot (2012) who also observed an increase of the global frequency when the
control cylinder approaches the inner part of the shear layer. Same arguments
can probably be used: the separated shear may reattach on the control sphere
which concentrates the vorticity compared to that of the natural case. This
thinner shear will lead to a higher frequency of the global mode. For larger
values of the radial position (r∗c > 0.45 in Fig. 5d), the control sphere must
widen the wake which tends to decrease the frequency.
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