
HAL Id: hal-01229088
https://ensta-paris.hal.science/hal-01229088

Submitted on 4 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Low Complexity Block Turbo Decoder Architecture
Christophe Vanstraceele, Benoit Geller, Jean-Marc Brossier, Jean-Pierre

Barbot

To cite this version:
Christophe Vanstraceele, Benoit Geller, Jean-Marc Brossier, Jean-Pierre Barbot. A Low Complexity
Block Turbo Decoder Architecture. IEEE Transactions on Communications, 2008, 56 (12), pp.1985-
1987. �10.1109/TCOMM.2008.050636�. �hal-01229088�

https://ensta-paris.hal.science/hal-01229088
https://hal.archives-ouvertes.fr


A Low Complexity Block Turbo Decoder

Architecture

C. Vanstraceele, B. Geller, J.M. Brossier, J.P. Barbot

Abstract

We present a low-complexity architecture designed for the decoding of block turbo codes. In par-

ticular we simplify the implementation of Pyndiah’s algorithm by not memorizing any of the concurrent

codewords generated by the Chase search.

Index Terms

Block codes, Iterative decoding, Low-complexity design, Turbo codes.

Affiliations of the authors:

C. Vanstraceele, B. Geller and J.P. Barbot are with Laboratory SATIE, ENS Cachan, 61 av. du Président Wilson, 94235

Cachan cedex, France.

J.M. Brossier is with Laboratory LIS, UMR 5083, INP Grenoble, 961 av. de la Houille Blanche, B.P. 46 38402 Saint Martin

d’Hères cedex, France.

Corresponding author: B. Geller, Laboratoire SATIE, ENS Cachan, 61 av. du Président Wilson, 94235 Cachan cedex, France.

Tel:(33)680473174. Fax:(33)147402199.e-mail: benoit.geller@satie.ens-cachan.fr

July 16, 2007 DRAFT



1

A Low Complexity Block Turbo Decoder

Architecture

I. INTRODUCTION

Forward-Error Correction (FEC) is used in many digital communication systems to provide

reliability and coding gains over the overall power budget of the link. Convolutional turbo-codes

allow performance close to Shannon’s theoretical limit. Block Turbo Codes (BTCs), i.e. product

block codes with iterative column and row decodings, also achieve near-capacity decoding with

high coding rates [1].

Pyndiah [2] has devised a low-complexity block turbo decoding algorithm. Each iteration m

of this algorithm can be summarized as follows:

• For each row (or column) of an n × n product word, perform a Chase search [3] in order

to have a list of codewords and a decided code word d = (d0, . . ., dj, . . ., dn−1) with dj ∈

{−1, +1}.

• Evaluate a vector of decision reliabilities Λ = (Λ(d0), . . ., Λ(dj), . . ., Λ(dn−1)) in terms of

normalized log-likelihood ratio (LLR); for each position j (j < n), the reliability of each

decision is:

Λ(dj) ≈

∣

∣r − c
−1(j)

∣

∣

2
−

∣

∣r − c
+1(j)

∣

∣

2

4
, (1)

where c
−1(j) (respectively c

+1(j)) is the codeword in the Chase list at minimum Euclidean

distance of the updated received codeword r = (r0, . . ., rj, . . ., rn−1), such that c−1(j) = −1

(respectively c+1(j) = +1). One of these two codewords is equal to d and the other is then

referred as cd.

• Obtain for each position j the extrinsic information wj:

wj =







Λ(dj) − rj if a competing cd exists,

β(m)dj if no competing word exists.
(2)

• Once the extrinsic information has been evaluated, update the input to the next Soft-

Input/Soft-Output (SISO) decoding stage with:

July 16, 2007 DRAFT



2

r′j = rj + α(m)wj (3)

where α(m) is a weight factor increasing along the convergence process.

There were several refinements to Pyndiah’s original work. For instance, [4] (respectively

[5]) proposes to update the algorithm without the need of using any of the coefficients β(m)

in equation (2) (respectively α(m) in equation (3)). [6] considers parallel rows and columns

decoding of the product code in order to half the latency of the decoder. [7] presents a low-

complexity Chase decoder.

The purpose of this letter is to show that it is absolutely unnecessary to put any of the Chase

codewords into memory and that at each iteration, one can readily update the output of the SISO

decoder.

II. SIMPLIFICATION OF THE IMPLEMENTATION

A. Principle

We consider the decoding process of a given updated received (line or column) vector r of

length n. Let p(c) =
n−1
∑

j=0

rjcj be the ordinary scalar product of r with a codeword c. A codeword

is at minimum distance of r if, and only if, its scalar product is maximum. Equation (1) can be

written as the difference between two scalar products:

Λ(dj) =
1

2

[

p
(

c
+1(j)

)

− p
(

c
−1(j)

)]

(4)

This illustrates that instead of memorizing codewords to evaluate the reliabilities, it is sufficient

to memorize scalar products [8], [9]. One then observes that one such memorized scalar product

can be used several times during the updating of a vector of reliabilities Λ if the corresponding

code word is at minimum Euclidean distance for several different coordinates. More precisely,

a given scalar product will be used every time that the corresponding code word is one of the

possibly two minimum distance competing codewords. For instance, for every coordinate, the

scalar product p(d) of the decided codeword d will necessarily be one of the two competing

scalar product of equation (4) as the decoded word d is at minimum Euclidean distance of r.

We thus adopt the following strategy requiring only two shift registers of n real values.

s
+ = (s+

0 , ..., s+
j , ..., s+

n−1) designates a shift register of scalar products p(c+1(j)).

July 16, 2007 DRAFT



3

s
− = (s−0 , ..., s−j , ..., s−n−1) designates a shift register of scalar products p(c−1(j)).

Initialization :

s
+ and s

−are both initialized at the minimum possible values (−∞).

First step :

Let c1 = (c1,0, . . ., c1,j, . . ., c1,n−1) be the first Chase decoded codeword with scalar

product p(c1),

J+
1 = {j ∈ {0, 1, · · · , n − 1}|c1,j = +1} ,

J−

1 = {j ∈ {0, 1, · · · , n − 1}|c1,j = −1}.

For j ∈ J+
1 , s+

j = P [c1].

For j ∈ J−

1 , s−j = P [c1].

Following steps :

For each different Chase decoded ck = (ck,0, . . ., ck,j, . . ., ck,n−1) with scalar product

P (ck),

J+
k = {j ∈ {0, 1, · · · , n − 1}|ck,j = +1},

J−

k = {j ∈ {0, 1, · · · , n − 1}|ck,j = −1}.

For j ∈ J+
k , if p(ck) > s+

j then s+
j = p(ck).

For j ∈ J−

k , if p(ck) > s−j then s−j = p(ck).

Result :

Λ = (Λ(d0), . . ., Λ(dj), . . ., Λ(dn−1)) = 1
2
(s+ − s

−) (The indexes where there is no

competing codeword cd are simply β positions - see equation (2) or reference [4]).

B. Example

We now illustrate the previous procedure with a simple example. Let ci, be the four codewords

generated by a Chase search with their scalar product p(ci) (i ∈ {1, 2, 3, 4}) evaluated by the

decoder.

July 16, 2007 DRAFT



4

First step :

c1 = (−1, +1,−1, +1, +1,−1,−1, +1), p(c1) = 1.6

s
+ = (−∞, 1.6,−∞, 1.6, 1.6,−∞,−∞, 1.6)

s
− = (1.6,−∞, 1.6,−∞, 1.6, 1.6,−∞).

Second step :

c2 = (+1,−1, +1,−1, +1, +1,−1,−1), p(c2) = 2.5

s
+ = (2.5, 1.6, 2.5, 1.6, 2.5, 2.5,−∞, 1.6)

s
− = (1.6, 2.5, 1.6, 2.5,−∞, 1.6, 2.5, 2.5).

Third step :

c3 = (+1, +1, +1, +1,−1, +1,−1, +1), p(c3) = 6.4

s
+ = (6.4, 6.4, 6.4, 6.4, 2.5, 6.4,−∞, 6.4)

s
− = (1.6, 2.5, 1.6, 2.5, 6.4, 1.6, 6.4, 2.5).

Fourth step :

c4 = (+1,−1, +1, +1,−1,−1, +1,−1), p(c4) = 2.4

s
+ = (6.4, 6.4, 6.4, 6.4, 2.5, 6.4, 2.4, 6.4)

s
− = (1.6, 2.5, 1.6, 2.5, 6.4, 2.4, 6.4, 2.5).

Result :

Λ = 1
2
(s+ − s

−) = (+2.4, +1.95, +2.4, +1.95,−1.95, +2.0,−2.0, +1.95).

We notice that the maximum scalar product vector c3 = d is such that

c3 = (sign[Λ(d0)], . . ., sign[Λ(dj)], . . ., sign[Λ(dn−1)]).

C. Further discussion

The previous procedure simplifies the whole architecture of a BTC decoder. Not only there is

no need to put into memory the competing codewords, but also, with the simplification of the

reliabilities evaluation, many of the existing functionalities of a BTC decoder [10] disappear as,

for instance, the search for every bit of a relevant competing codeword. It is even unnecessary

to identify which is the maximum likelihood vector d among the competing codewords.

One can take advantage of the reduction in architecture complexity to use more test patterns

dedicated to the Chase search. Figure 1 illustrates in the case of a BCH(128, 113)2 product code

July 16, 2007 DRAFT



5

the Bit Error Rate (BER) improvement at the fourth iteration when one increases the number of

least reliable bits used for the generation of the test patterns from t = 4 to t = 6. A gain of 0.3

dB is then observed at a BER of 10−5 which leads this code of coding rate R = 0.78 to be at

2.1 dB from the Shannon’s capacity in only 4 iterations.

The proposed procedure is particularly light when used in conjunction with a Fast Chase

algorithm [7]; this is because if two words c and c
′

differ in one position k (c
′

k = −ck), their

scalar products are linked by the equality p(c
′

) = p(c
′

) − rkc
′

k.

We now display the improvement on the complexity brought by the proposed architecture in

terms of required memory. This architecture being totally independant on the way the concurrent

codewords are generated, we suppose that for a given row (or line) of the product code, one has

obtained a list of codewords. Most often, a Chase algorithm is chosen to generate this codewords

list for both Pyndiah’s original architecture and the present proposal.

Let q be the number of quantification bits and Nc be the number of generated codewords;

in the sequel we display numerical results where Nc is equal to 2p. With Pyndiah’s traditional

algorithm, one has to store Nc codewords with the associated Euclidean distance. One thus has

to store NPY
b bits where:

NPY
b = Nc(n + q) (5)

With the proposed algorithm, one has to store two real vectors s
+ and s

−; one thus needs NPR
b

bits where:

NPR
b = 2qn (6)

The following table allows to compare the required memory for typical parameters values :

NPY

b NPR

b

n = 32, NC = 16, q = 4 576 256

n = 32, NC = 16, q = 5 592 320

n = 32, NC = 64, q = 4 2304 256

TABLE I

COMPARISON OF THE REQUIRED MEMORY

July 16, 2007 DRAFT



6

It is straightforward that when one wants to store more codewords, the required memory with

the traditional Pyndiah’s decoder becomes large and this becomes critical as in practice several

elementary decoders are used in parallel. To circumvent this inconvenient, practical decoders just

take into account a limited number of codewords. This leads to a Bit Error Rate degradation;

on the contrary, the required memory of the proposed method is not affected by the number of

generated codewords.

III. CONCLUSION

This letter presented a particularly low-complexity procedure to implement block turbo de-

coding and giving exactly the same results as Pyndiah’s work [2]. This low-complexity allows

the implementation of larger codes for which Pyndiah’s algorithm gives near-capacity results.

This algebraic based decoding scheme seems particularly suited for high data rate systems.

REFERENCES

[1] S. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inform.

Theory, vol. 42, no. 2, pp. 429–445, March 1996.

[2] R. Pyndiah, “Near optimum decoding of product codes : Block Turbo Codes,” IEEE Trans. Commun., vol. 46, no. 8, pp.

1003–1010, August 1998.

[3] D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform.

Theory, vol. 18, no. 1, pp. 170–182, January 1972.

[4] P. Adde and R. Pyndiah, “Recent simplifications and improvements in Block Turbo Codes,” in Proc. 2nd int. Symposium

on Turbo Codes and related Topics, Brest, Sept. 2000, pp. 133–136.

[5] Z. Chi, L. Song, and K. Parhi, “On the performance/complexity tradeoff in block turbo codes,” IEEE Trans. Commun.,

vol. 52, no. 2, pp. 173–175, February 2004.

[6] C. Argon and S. McLaughlin, “A parallel decoder for low latency decoding of turbo product codes,” IEEE Commun.

Letters, vol. 6, no. 2, pp. 70–72, February 2002.

[7] S. Hirst, B. Honary, and G. Markarian, “Fast Chase algorithm with an application in turbo decoding,” IEEE Trans. Commun.,

vol. 49, no. 10, pp. 1693–1699, October 2001.

[8] B. Geller, “Contribution à l’étude des systèmes de communications numériques,” Habilitation à diriger des recherches,

Université Paris 12, 2004.

[9] C. Vanstraceele, “Turbo-Codes et estimation paramétrique pour les communications à haut débit,” Ph.D. dissertation, Ecole

Normale Superieure de Cachan, France, 2005.

[10] S. Kerouedan, P. Adde, and R. Pyndiah, “How we implemented Block Turbo Codes,” Annals of telecommunications,

vol. 56, no. 7-8, pp. 447–454, 2001.

July 16, 2007 DRAFT



7

Fig. 1. Bit Error Rates at iteration m = 4 for different numbers of tested bits using QPSK signalling on an additive white

Gaussian noise channel.

July 16, 2007 DRAFT


