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A Low Complexity Block Turbo Decoder

Architecture

C. Vanstraceele, B. Geller, J.M. Brossier, J.P. Barbot

Abstract

We present a low-complexity architecture designed for the decoding of block turbo codes. In par-

ticular we simplify the implementation of Pyndiah’s algorithm by not memorizing any of the concurrent

codewords generated by the Chase search.
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A Low Complexity Block Turbo Decoder

Architecture

I. INTRODUCTION

Forward-Error Correction (FEC) is used in many digital communication systems to provide

reliability and coding gains over the overall power budget of the link. Convolutional turbo-codes

allow performance close to Shannon’s theoretical limit. Block Turbo Codes (BTCs), i.e. product

block codes with iterative column and row decodings, also achieve near-capacity decoding with

high coding rates [1].

Pyndiah [2] has devised a low-complexity block turbo decoding algorithm. Each iteration m

of this algorithm can be summarized as follows:

• For each row (or column) of an n × n product word, perform a Chase search [3] in order

to have a list of codewords and a decided code word d = (d0, . . ., dj, . . ., dn−1) with dj ∈

{−1, +1}.

• Evaluate a vector of decision reliabilities Λ = (Λ(d0), . . ., Λ(dj), . . ., Λ(dn−1)) in terms of

normalized log-likelihood ratio (LLR); for each position j (j < n), the reliability of each

decision is:

Λ(dj) ≈

∣

∣r − c
−1(j)

∣

∣

2
−

∣

∣r − c
+1(j)

∣

∣

2

4
, (1)

where c
−1(j) (respectively c

+1(j)) is the codeword in the Chase list at minimum Euclidean

distance of the updated received codeword r = (r0, . . ., rj, . . ., rn−1), such that c−1(j) = −1

(respectively c+1(j) = +1). One of these two codewords is equal to d and the other is then

referred as cd.

• Obtain for each position j the extrinsic information wj:

wj =







Λ(dj) − rj if a competing cd exists,

β(m)dj if no competing word exists.
(2)

• Once the extrinsic information has been evaluated, update the input to the next Soft-

Input/Soft-Output (SISO) decoding stage with:
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r′j = rj + α(m)wj (3)

where α(m) is a weight factor increasing along the convergence process.

There were several refinements to Pyndiah’s original work. For instance, [4] (respectively

[5]) proposes to update the algorithm without the need of using any of the coefficients β(m)

in equation (2) (respectively α(m) in equation (3)). [6] considers parallel rows and columns

decoding of the product code in order to half the latency of the decoder. [7] presents a low-

complexity Chase decoder.

The purpose of this letter is to show that it is absolutely unnecessary to put any of the Chase

codewords into memory and that at each iteration, one can readily update the output of the SISO

decoder.

II. SIMPLIFICATION OF THE IMPLEMENTATION

A. Principle

We consider the decoding process of a given updated received (line or column) vector r of

length n. Let p(c) =
n−1
∑

j=0

rjcj be the ordinary scalar product of r with a codeword c. A codeword

is at minimum distance of r if, and only if, its scalar product is maximum. Equation (1) can be

written as the difference between two scalar products:

Λ(dj) =
1

2

[

p
(

c
+1(j)

)

− p
(

c
−1(j)

)]

(4)

This illustrates that instead of memorizing codewords to evaluate the reliabilities, it is sufficient

to memorize scalar products [8], [9]. One then observes that one such memorized scalar product

can be used several times during the updating of a vector of reliabilities Λ if the corresponding

code word is at minimum Euclidean distance for several different coordinates. More precisely,

a given scalar product will be used every time that the corresponding code word is one of the

possibly two minimum distance competing codewords. For instance, for every coordinate, the

scalar product p(d) of the decided codeword d will necessarily be one of the two competing

scalar product of equation (4) as the decoded word d is at minimum Euclidean distance of r.

We thus adopt the following strategy requiring only two shift registers of n real values.

s
+ = (s+

0 , ..., s+
j , ..., s+

n−1) designates a shift register of scalar products p(c+1(j)).
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s
− = (s−0 , ..., s−j , ..., s−n−1) designates a shift register of scalar products p(c−1(j)).

Initialization :

s
+ and s

−are both initialized at the minimum possible values (−∞).

First step :

Let c1 = (c1,0, . . ., c1,j, . . ., c1,n−1) be the first Chase decoded codeword with scalar

product p(c1),

J+
1 = {j ∈ {0, 1, · · · , n − 1}|c1,j = +1} ,

J−

1 = {j ∈ {0, 1, · · · , n − 1}|c1,j = −1}.

For j ∈ J+
1 , s+

j = P [c1].

For j ∈ J−

1 , s−j = P [c1].

Following steps :

For each different Chase decoded ck = (ck,0, . . ., ck,j, . . ., ck,n−1) with scalar product

P (ck),

J+
k = {j ∈ {0, 1, · · · , n − 1}|ck,j = +1},

J−

k = {j ∈ {0, 1, · · · , n − 1}|ck,j = −1}.

For j ∈ J+
k , if p(ck) > s+

j then s+
j = p(ck).

For j ∈ J−

k , if p(ck) > s−j then s−j = p(ck).

Result :

Λ = (Λ(d0), . . ., Λ(dj), . . ., Λ(dn−1)) = 1
2
(s+ − s

−) (The indexes where there is no

competing codeword cd are simply β positions - see equation (2) or reference [4]).

B. Example

We now illustrate the previous procedure with a simple example. Let ci, be the four codewords

generated by a Chase search with their scalar product p(ci) (i ∈ {1, 2, 3, 4}) evaluated by the

decoder.
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First step :

c1 = (−1, +1,−1, +1, +1,−1,−1, +1), p(c1) = 1.6

s
+ = (−∞, 1.6,−∞, 1.6, 1.6,−∞,−∞, 1.6)

s
− = (1.6,−∞, 1.6,−∞, 1.6, 1.6,−∞).

Second step :

c2 = (+1,−1, +1,−1, +1, +1,−1,−1), p(c2) = 2.5

s
+ = (2.5, 1.6, 2.5, 1.6, 2.5, 2.5,−∞, 1.6)

s
− = (1.6, 2.5, 1.6, 2.5,−∞, 1.6, 2.5, 2.5).

Third step :

c3 = (+1, +1, +1, +1,−1, +1,−1, +1), p(c3) = 6.4

s
+ = (6.4, 6.4, 6.4, 6.4, 2.5, 6.4,−∞, 6.4)

s
− = (1.6, 2.5, 1.6, 2.5, 6.4, 1.6, 6.4, 2.5).

Fourth step :

c4 = (+1,−1, +1, +1,−1,−1, +1,−1), p(c4) = 2.4

s
+ = (6.4, 6.4, 6.4, 6.4, 2.5, 6.4, 2.4, 6.4)

s
− = (1.6, 2.5, 1.6, 2.5, 6.4, 2.4, 6.4, 2.5).

Result :

Λ = 1
2
(s+ − s

−) = (+2.4, +1.95, +2.4, +1.95,−1.95, +2.0,−2.0, +1.95).

We notice that the maximum scalar product vector c3 = d is such that

c3 = (sign[Λ(d0)], . . ., sign[Λ(dj)], . . ., sign[Λ(dn−1)]).

C. Further discussion

The previous procedure simplifies the whole architecture of a BTC decoder. Not only there is

no need to put into memory the competing codewords, but also, with the simplification of the

reliabilities evaluation, many of the existing functionalities of a BTC decoder [10] disappear as,

for instance, the search for every bit of a relevant competing codeword. It is even unnecessary

to identify which is the maximum likelihood vector d among the competing codewords.

One can take advantage of the reduction in architecture complexity to use more test patterns

dedicated to the Chase search. Figure 1 illustrates in the case of a BCH(128, 113)2 product code
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the Bit Error Rate (BER) improvement at the fourth iteration when one increases the number of

least reliable bits used for the generation of the test patterns from t = 4 to t = 6. A gain of 0.3

dB is then observed at a BER of 10−5 which leads this code of coding rate R = 0.78 to be at

2.1 dB from the Shannon’s capacity in only 4 iterations.

The proposed procedure is particularly light when used in conjunction with a Fast Chase

algorithm [7]; this is because if two words c and c
′

differ in one position k (c
′

k = −ck), their

scalar products are linked by the equality p(c
′

) = p(c
′

) − rkc
′

k.

We now display the improvement on the complexity brought by the proposed architecture in

terms of required memory. This architecture being totally independant on the way the concurrent

codewords are generated, we suppose that for a given row (or line) of the product code, one has

obtained a list of codewords. Most often, a Chase algorithm is chosen to generate this codewords

list for both Pyndiah’s original architecture and the present proposal.

Let q be the number of quantification bits and Nc be the number of generated codewords;

in the sequel we display numerical results where Nc is equal to 2p. With Pyndiah’s traditional

algorithm, one has to store Nc codewords with the associated Euclidean distance. One thus has

to store NPY
b bits where:

NPY
b = Nc(n + q) (5)

With the proposed algorithm, one has to store two real vectors s
+ and s

−; one thus needs NPR
b

bits where:

NPR
b = 2qn (6)

The following table allows to compare the required memory for typical parameters values :

NPY

b NPR

b

n = 32, NC = 16, q = 4 576 256

n = 32, NC = 16, q = 5 592 320

n = 32, NC = 64, q = 4 2304 256

TABLE I

COMPARISON OF THE REQUIRED MEMORY
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It is straightforward that when one wants to store more codewords, the required memory with

the traditional Pyndiah’s decoder becomes large and this becomes critical as in practice several

elementary decoders are used in parallel. To circumvent this inconvenient, practical decoders just

take into account a limited number of codewords. This leads to a Bit Error Rate degradation;

on the contrary, the required memory of the proposed method is not affected by the number of

generated codewords.

III. CONCLUSION

This letter presented a particularly low-complexity procedure to implement block turbo de-

coding and giving exactly the same results as Pyndiah’s work [2]. This low-complexity allows

the implementation of larger codes for which Pyndiah’s algorithm gives near-capacity results.

This algebraic based decoding scheme seems particularly suited for high data rate systems.
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Fig. 1. Bit Error Rates at iteration m = 4 for different numbers of tested bits using QPSK signalling on an additive white

Gaussian noise channel.
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