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Abstract— Mobile  IP  allows  a  mobile  node  to  maintain  a 
continuous  connectivity  to  the  Internet  when  moving  from  one 
access point to another. However, due to the link switching delay 
and to the Mobile IP handover operations, packets designated to 

mobile nodes can be delayed or lost during the handover period. 
This  paper  presents  a  new  control  function  called  Extended 
Handover  Control  Function  (E-HCF)  in  order  to  improve  the 

handover   performance   in   the   context   of   Mobile   IPv6   over 
wireless  networks.  With  an  analytical  model  and  some  OPNET 
simulations,  we  show  in  this  paper  that  our  solution  allows  to 

provide low latency, low packet loss to the standard handover of 
Mobile IPv6. 

 

Index Terms— Mobile IPv6, Performance and Handover oper- 
ations 

 
I.  INTRODUCTION 

HE need to keep an ”everywhere and at any time” con- 

nection with Internet has been more and more demanded 

in recent years with the success of IEEE 802.11 and of IEEE 

802.16  wireless  networks  standards.  A  growing  number  of 

802.16/802.11 based wireless networks has been deployed in 

campuses, hotels, airports and companies as access networks 

to  the  Internet.  The  mobility  support  has  thus  become  one 

very  hot  research  subject.  However,  the  continuous  Internet 

connectivity  and  the  correct  routing  of  packets  were  not 

guaranteed  when  users  change  their  access  points  to  Internet 

with classical protocols. To resolve these problems, the Mobile 

IPv4 (MIPv4) and Mobile IPv6 (MIPv6)protocols [1], [2] were 

respectively published by the Internet Engineering Task Force 

(IETF). 

Based  on  MIPv6,  the  main  standards  by  the  IETF  are  the 

Hierarchical Mobile IPv6 (HMIPv6) and the Fast Handover for 

MIPv6  (FHMIPv6).  HMIPv6  introduces  a  Mobility  Anchor 

Point  (MAP)  who  acts  somehow  like  a  local  Home  Agent 

(HA)  for  the  visiting  Mobile  Node  (MN).  The  concept  of 

MAP  can  limit  the  amount  of  signaling  required  outside 

the  MAP’s  domain  [5],  [7].  FHMIPv6  [8]  can  reduce  the 

packet  loss  by  providing  fast  IP  connectivity  as  soon  as  a 

new  link  at  the  Link  Layer  is  established.  The  network  uses 

a  Link  Layer  trigger  to  launch  either  Pre-Registration  or 

Post-Registration handover operations. Besides of these main 

proposals,  there  has  been  some  approaches  for  providing  the 
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lossless  handover  and  minimizing  the  handover  delay    [9]– 

[12],  [14].  In  [9],  a  Pre-Handover  Signaling  (PHS)  protocol is  

proposed  in  order  to  support  the  triggering  of  a  predictive 

handover  and  to  allow  the  network  to  achieve  accurate  han- 

dover  decisions  by  considering  different  constraints  such  as 

Quality-of-Service (QoS), user profile and mobile node service 

requirements.  In  [10],  a  Hierarchical  Network-layer  Mobility 

Management  (HNMM)  framework  is  described  in  which  an 

integrated  IP-layer  handover  solution  provides  an  optimized 

network  connectivity.  Also,  a  Competition  based  Soft  Han- 

dover  Management  (CSHM)  protocol   [11]  and  a  Multi-path 

Transmission  Algorithm  (MTA)  [12]  have  been  presented  to 

decrease packet loss during a handover. Furthermore, the IEEE 

802.11f  standard  including  the  Inter-Access  Point  Protocol 

(IAPP) enables the Access Points (APs) to communicate with 

each  other,  so  that  the  Mobile  IPv6  handover  is  improved  at 

the Link Layer [14]. 

The  goal  of  this  paper  is  to  optimize  the  Mobile  IPv6 

handover procedure by using a new function named Extended 

Handover  Control  Function  (E-HCF).  Based on  our  paper 

[3],  the  principle  of  the  Handover  Control  Function  (HCF) 

is  that,  according  to  the  mobile  node’s  scanning  result  and 

the HCF router database, the HCF router can both pre-decide 

a  mobile  node’s  new  access  point  and  a  new  IP  address.  So 

the  mobile  node  can  send  Binding  Update  message  when  it 

is still connected with its previous access point. Contrarily to 

a standard MIPv6 handover for which the Detection Address 

Duplication (DAD) deteriorates dramatically the handover la- 

tency  (see  below),  the  HCF  approach  avoids  any  IP  address 

collision without the use of DAD. In this context, we propose 

the  E-HCF  which  not  only  inherits  of  the  advantages  of  the 

HCF,  but  also  allows  communications  between  some  extra- 

HCF  routers.  Moreover,  the  E-HCF  can  buffer  the  packets 

during the handover process in order to reduce the packet loss. 

The  remainder  of  the  paper  is  thus  organized  as  follows: 

Section II presents our Extended Handover Control Function 

(E-HCF) architecture and the associated operations. Section III 

deals with the performance of the E-HCF  handover in terms 

of  handover  latency  and  packet  loss.  Regarding the  standard 

handover of MIPv6, Our numerical and simulat ion 

results  show that the E-HCF handover reduces significantly 

both the latency and the packet loss. Finally, some conclusion 

and future works are mentioned in Section IV. 
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II.  EXTENDED HANDOVER CONTROL FUNCTION 

FOR MOBILE IPV6 

A.  E-HCF overview 

Generally  speaking,  a  handover  consists  of  a  Link  Layer 

handover and of a Network Layer handover. The Link Layer 

handover  includes  a  Discovery  phase  (scanning  the  channels 

to  discover  an  available  Access  Point),  an  Authentication 

phase, and a Re-association phase, whereas the Network Layer 

handover  is  concerned  by  a  Router  Discovery  phase,  a  De- 

tection  Address  Duplication  (DAD)  phase,  a  Binding  Update 

phase and a Binding Acknowledgement phase respectively. As 

displayed  on  Figure  1,  the  standard  MIPv6  handover  latency 

has been estimated to a maximum value of 1290 ms [7]. This 

long latency is not acceptable for real time applications such as 

video and audio. If we analyze each phase during the Network 

Layer handover (Router Discovery, DAD, Binding Update and 

Binding Acknowledgement), we can note that the DAD latency 

costs  almost  1000  ms  and  has  a  heavy  weight  on  the  global 

handover  latency.  As  a  result,  in  order  to  reduce  the  total 

handover  latency,  we  now  develop  a  procedure  to  avoid  any 

DAD operation during handover procedure. 

 

 
 

Fig. 1.    Standard MIPv6 Latency 

 
We  introduce  a  local  intelligent  entity  called  Extended 

Handover Control Function (E-HCF) which should be capable 

of controlling its attached Access Routers (ARs), Access Points 

(APs) and Mobile Nodes (MNs). As shown on Figure 2, linked 

directly with its ARs, each E-HCF router reserves beforehand 

a  list  of  all  available  IP  local  addresses.  The  E-HCF  router 

also  generates  and  updates  periodically  a  second  list  which 

records  the  used  ARs/APs/IP  addresses.  By  comparing  these 

two  lists,  the  E-HCF  router  can  find  a  potential  duplicate  IP 

address  (collision)  in  its  domain.  Then,  this  E-HCF  router 

can  withdraw  this  potential  duplicate  IP  address  or  can  ask 

a  concerned  sub-node  to  change  its  IP  address.  In  this  way, 

the E-HCF router enables to insure an unique IP address to a 

MN  without DAD. 

Furthermore,  an  E-HCF  router  could  exchange  both  some 

local  information  with  its  ARs/APs/MNs  and  some  external 

information  with  other  E-HCF  routers.  To  realize  our  E- 

HCF  proposal,  we  propose  six  new  messages:  MN  Request 

(MNReq), MN Reply (MNRep), HCF Request (HCFReq), HCF 

Reply (HCFRep), Connection Established Information (CEInf) 

and Handover Finished Confirmation (HFCon) messages (for 

the detailed information about the formats of these messages 

see [15]). 

For  the  mobile  IPv6  protocol  and  IEEE  802.11/802.16 

networks  context,  a  MN   surveys  periodically  the  received 

signal  strength.  When  the  signal  strength  drops  below  a  pre- 

defined  threshold,  the  MN  must  discover  and  connect  itself 

to a new available AP for granting its communication with its 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.    Architecture of Extended Handover Control Function (Router is an 

Access Router; E-HCF is an E-HCF router) 
 

 
 
correspondence. It reports to its E-HCF router (via its attached 

AR/AP) some AP’s Basic Service Set IDentifier (BSSID) and 

signal strengths that it were probed. Based upon the reported 

information,  the  AR/AP’s  loading  and  the  MN’s  Quality  of 

Service (QoS) requirements, the E-HCF router decides which 

AP,  the  MN  shall  associate  with  and  notifies  the  MN  about 

the  new  AR/AP  information,  such  as  a  new  AP’s  BSSID,  an 

AR interface address, a sub-network prefix and an IP address. 

Consequently, the MN  can configure its new Care-of-Address 

(CoA) and can take care of the Binding Update process even if 

it is still attached with its previous AR/AP. An E-HCF  router 

can  guarantee  that  the  new  IP  address  is  unique  thanks  to 

the knowledge of its lists. If a MN  moves to another domain, 

the  E-HCF  original  router  guarantees  the  new  IP  address  by 

exchanging some data with the new E-HCF router. Moreover, 

in order to minimize the packet loss during a handover, an E- 

HCF router stores packets into a buffer until the MN  is really 

attached to the new IP address. The entire handover procedure 

is displayed on Figure 3. 
 

 

 
 
Fig. 3.    E-HCF Procedure (E-HCF original router is an attached router with 
an E-HCF function; the E-HCF distant/remove router is a router with who an 
E-HCF original router can communicate) 
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B.  E-HCF Procedure 

We  first  recall  that  HCFReq/HCFRep  messages  are  used 

between E-HCF routers for extra-domain handovers. Each E- 

HCF  router must record and update its database periodically. 

This database helps to decide an unique new IP configuration 

in order to adapt for MN  movements without the DAD phase 

during a handover. 

As  illustrated  on  Figure  3,  the  E-HCF  procedure  is  com- 

posed of the following steps: 

•   Moving  in  the  network,  if  the  threshold  of  the  received 

signal  strength  is  overstepped,  the  MN  begins  to  probe 

the  neighbor  AR/AP’s  information,  including  the  signal 

strength,  some  IP  addresses,  AP’s  BSSIDs,  AR  interface 

addresses and the sub-network prefix. Then the MN sends 

a  MNReq  message  to  its  E-HCF  original  router  (via  its 

AR/AP) to report this information. 

•   Receiving the MNReq message, the AR stops to forward 

all the packets sent to the MN  and forwards them to its 

E-HCF  original  router  in  order  to  avoid  the  packet  loss 

during the handover procedure. 

•   Receiving   the   MNReq   message,   the   E-HCF   original 

router decides to which AR/AP the MN will be associated. 

The  choice  of  the  AR/AP  is  mostly  based  on  database 

obtained  with  periodic  exchange  messages  from  an  E- 

HCF router to another (HCFReq and HCFRep messages) 

or with periodic exchange messages from ARs/APs/MNs. 

For  example,  if  the  number  of  registered  MNs  in  one 

AR or AP has reached a limit, the E-HCF original router 

will not attach the MN  to this saturated AR or AP. After 

making the previous decision, the E-HCF original router 

sends to the MN  a MNRep message which consists of a 

new AP’s BSSID, an AR interface address, a sub-network 

prefix and a new IP address. 

•   With  the  MNRep  message,  the  MN  can  obtain  its  new 

CoA and configure it automatically. 

•   The  MN  sends  a  CEInf  message  to  its  E-HCF  original 

router to confirm its new attachment. 

•   After  receiving  the  CEInf  message,  the  E-HCF  original 

router  transfers  the  buffered  packets  to  the  MN’s  new 

CoA. Then, the E-HCF  original router sends an HFCon 

message to end the handover procedure. 

•   The  MN  can  then  exchange  Binding  Update  (BU)  and 

Binding Acknowledgement (BA) messages with its home 

agent and its correspondent node. 

As shown in the E-HCF procedure, a MN can obtain its new 

CoA before it really attaches to its next AR/AP. Moreover, any 

DAD  latency  (about  1000  ms)  is  avoided.  Thus,  the  E-HCF 

approach allows the reduction of both the traditional handover 

latency and the packet loss. The handover performance is thus 

optimized compared to a traditional approach. 

 
III.  E-HCF PERFORMANCE ESTIMATION 

The  E-HCF  performance  estimation  has  been  evaluated  in 

terms of the total handover latency and of the packet loss with 

an  analytical  model.  This  model  allows  us  to  compare  our 

E-HCF  handover  with  the  standard  handover  of  the  MIPv6 

protocol. 

A.  E-HCF Latency Analysis 

According  to  the  handover  procedure  on  Figure  3,  we 

cite  the  following  latency  notations  to  estimate  the  handover 

latency: 

•   LEH C F :  Total  handover  latency  with  the  E-HCF  ap- 

proach. 

•   Lscan : Latency due to the MN’s original scanning of its 

neighbour AR/AP’s information. 

•   LM N Req : Latency for a MN  to send a  MNReq message 

to its E-HCF  original router. 

•   Ldec :  Latency  necessary  to  an  E-HCF  router  to  decide 

which AR/AP the MN  should be attached (including the 

short delays to send an HCFReq message and to receive 

an HCFRep message). 

•   LM N Rep : Latency for an E-HCF router to send a MNRep 

message to the MN. 

•   LC N inf :  Latency  necessary  for  a  MN  to  auto-configure 

its new CoA. 

•   Lconf :  Latency  due  to  the  fact  that  an  E-HCF  router 

sends buffered packets and a HFCon message. 

•   LBU/BA : Binding Update/Binding Acknowledgement la- 

tency. 

The   overall   E-HCF   handover   latency   LEH C F     can   be 

summed as following: 
 

 
LEH C F  = 

Lscan  + LM N Req  + Ldec  + LM N Rep  + 

LC N inf  + Lconf  + LBU/BA (1) 

As  this  LEH C F   depends  upon  the  mobile  link  bandwidth 

and  the  computation  capacity  of  each  entity  in  the  wireless 

network,  we  summarize  the  parameter  values  used  in  our 

numerical analysis in Table I. 
 

TABLE I 

PA R A M E T E R  SE T T I N G 

 
Parameter Value Comment 
Channel scan time 50 ms MIPv6 standard 
BU/BA latency 140 ms MIPv6 standard 
Wireless link bandwidth 5.5 Mb/s IEEE 802.11b 
Wireless link bandwidth 2 Mb/s UMTS 
Wireless link bandwidth 150 kb/s GPRS 
Wireless link bandwidth 9 kb/s GSM 
AR computation capacity 20 Mb/s general router 
MN computation capacity 10 Mb/s PC computation capacity 
MNReq message size 72 byte E-HCF approach 
MNRep message size 45 byte E-HCF approach 
HCFReq message size 45 byte E-HCF approach 
HCFReq message size 45 byte E-HCF approach 
CEInf message size 45 byte E-HCF approach 
HFCon message size 24 byte E-HCF approach 

 

 
 
B.  Numerical Results of the Total E-HCF Latency 

With  the  parameters  of  Table  I,  we  give  a  latency  com- 

parison  between  the  standard  handover  latency  and  the  E- 

HCF  latency  according  to  equation  (1).  These  latencies  are 

functions of the wireless link bandwidths (WiFi, UMTS, GPRS 

and GSM) and of the computation capacity. For example, the 



4 

 
 
LM N Req   latency  can  be  numerically  estimated  as  following: 
with  a  10  Mb/s  computation  capacity,  a  MN  needs  57.6  µs 

to generate a 72-byte MNReq message, whereas, 28.8 µs are 

required  for  an  Access  Router.  Putting  this  72-byte  message 

on  a  9kb/s  GSM  network,  requires  about  64  ms,  so  that  the 

global of LM N Req  is about 64 ms. 

On  Figure  4,  the  standard  MIPv6  handover  latency  (1290 

ms)  is  the  first  figure  displayed  on  the  left.  The  rest  of  the 

figures  are  the  E-HCF  handover  latencies  based  on  WiFi, 

UMTS,  GPRS  and  GSM  link  bandwidths.  We  note  that  the 

various E-HCF latencies are not really different when link bit 

rates vary from 150 kb/s to 5.5 Mb/s. If the link bit rate drops 

to 9 kb/s (GSM), the E-HCF handover latency raises up to 450 

ms. As a result, the wireless link bandwidth has an important 

influence over the overall handover procedure. Let us focus on 

the E-HCF latency with the IEEE 802.11b wireless networks. 

The average of the E-HCF handover latency is about 200 ms. 

This value of 200 ms is validated by our simulation results on 

OPNET illustrated on Figure 5. 
 

 

 
 

Fig. 4.    E-HCF handover latencies as a function of wireless link bandwidths 
 

 
 
 

 
 

Fig. 5.    E-HCF handover latency by simulation 

 
 

Although  the  latency  reduction  from  1290  ms  to  200  ms  

is significant, the value of 200 ms is still too long to support 

a  real  time  application  in  wireless  networks.  This  is  due  to 

the number of channel scans. As a results, we propose a fast 

E-HCF  method  in  which  a  MN  can  immediately  request  its 

E-HCF router without probing for the connection information, 

if the threshold of the received signal strength is overstepped. 

The  E-HCF  router  then  decides  the  next  attached  point.  Our 

simulation  results  show  that  the  average  of  the  fast  E-HCF 

latency can drop to 100 ms. 

C.  E-HCF Loss 

In terms of packet loss with the E-HCF  approach, packets 

can be stored into a buffer during the handover (see subsection 

II-B). Figure 6 illustrates the comparison of packet loss rates 

between  the  E-HCF  approach  and  the  MIPv6  standard.  The 

upper  curve  represents  the  number  of  lost  packets  with  the 

MIPv6  standard  (38  packets  received  out  of  100  emitted 

packets),  whereas  the  bottom  curve  with  E-HCF  approach  

(68 packets  received  out  of  100  emitted  packets).  This  

gives  a typical 30% gain with the E-HCF approach. 

 

 
 
Fig.  6. Comparison of  loss  rates  between  the  E-HCF  approach  and  the 

MIPv6 standard by simulation 
 

 
 

IV.  CONCLUSION 

In  order  to  improve  the  handover  performance  for  the 

Mobile IPv6, this paper studies an original E-HCF approach 

which allows to collect and store some link and network data. 

Regarding  the  classical  Mobile  IPv6  handover  performance, 

our  numerical  results  validated  by  simulations  show  that  the 

E-HCF  approach enables to decrease both the total handover 

latency and the packet loss significantly. 

We  focused  on  the  handover  performance  at  the  Network 

Layer.  We  now  are  interested  to  also  improve  the  handover 

performance  at  the  Link  Layer  with  a  ”graph”  solution.  Our 

future goal aims at improving the handover performance both 

at  the  Network  Layer  for  the  Mobile  IPv6  and  at  the  Link 

Layer for IEEE 802.11 networks with a cross-layer proposal. 
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