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Abstract We consider the management of a single hydroelectric dam, subject to
uncertain inflows and electricity prices and to a so-called “tourism constraint”: the
water storage level must be high enough during the tourist season with high enough
probability. We cast the problem in the stochastic optimal control framework: we
search at each time t the optimal control as a function of the available information
at t. We lay out two approaches. First, we formulate a chance-constrained stochas-
tic optimal control problem: we maximize the expected gain while guaranteeing a
minimum storage level with a minimal prescribed probability level. Dualizing the
chance constraint by a multiplier, we propose an iterative algorithm alternating
additive dynamic programming and update of the multiplier value “à la Uzawa”.
Our numerical results reveal that the random gain is very dispersed around its
expected value; in particular, low gain values have a relatively high probability to
materialize. This is why, to put emphasis on these low values, we outline a sec-
ond approach. We propose a so-called stochastic viability approach that focuses
on jointly guaranteeing a minimum gain and a minimum storage level during the
tourist season. We solve the corresponding problem by multiplicative dynamic
programming. To conclude, we discuss and compare the two approaches.
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As a source of electricity, hydropower is an interesting asset: it emits no green-
house gases and provides fast-usable energy, cheap and substitutable for the ther-
mal one. On the flip side, hydropower management has to deal with uncertain wa-
ter inflows and uncertain electricity prices, and multiple uses (agriculture, tourism,
flood prevention). This paper depicts the case of single dam submitted to conflict-
ing economic and touristic demands, as faced by the Electricité de France company
(French main electricity provider).

We will explore two ways to conciliate, under uncertainty, the economic ob-
jective of maximizing the payoff and a tourist objective. In this case, the local
authorities prescribe a so-called “contrainte de cote touristique” (tourism water
level constraint) as a chance constraint: there must be enough water during the
tourist season with high enough probability.

Chance-constrained programming was introduced more than fifty years ago
by Charnes and Cooper (1959) and then widely developed by many authors (see
e.g. Prékopa (1995), Prékopa (2003), Henrion and Römisch (2004) and Dentcheva
(2009)). Its application to dam management problems can be found in Prékopa
and Szántai (1979), Prékopa (1995), Andrieu et al. (2010), Van Ackooij et al.
(2014) and the references therein. Most of the above literature deals with chance
constraints where the decision variables are static or open-loop, that is, solutions
are deterministic vectors. By contrast, in this paper we focus on chance constraints
in the framework of discrete-time stochastic optimal control: at each stage t, de-
cision variables are “closed-loop” variables, that is, functions depending on the
information available at t. Up to our best knowledge, few papers have addressed
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closed-loop stochastic dynamic optimization problems subject to probability con-
straints. Let us mention Andrieu et al. (2010), in which dealing with the (joint)
probability constraint is based on a discretization of the control variables mod-
eled as functions of the trajectory of past noises (rather than functions of the
state variables): while effective, this approach does not easily allow to take a large
number of time steps into account. In Ono et al. (2012), an approach based on
Dynamic Programming is proposed: however, the joint chance constraint is not
treated as such, but is replaced in a conservative way by another constraint, so
that the solution obtained is only admissible for the original problem.

In this paper, we analyze how to handle the conflicting objectives of maximiz-
ing the payoff from dam energy production and of satisfying a tourist objective,
formulated as a chance constraint. In Section 1, we present the dam hydroelectric
dynamics over a discrete-time span {0, . . . , T}, and the economic objective. In Sec-
tion 2, we aim to maximize the expectation of the economic gain while satisfying
the tourist constraint: we formulate a so-called chance-constrained stochastic opti-
mal control problem. To prepare a resolution by stochastic dynamic programming
(SDP), we add a binary random variable to the storage level of the dam at time t

to form an extended dynamic state. This new random variable allows to represent
the chance constraint as an expectation constraint involving the extended state at
final time T . As formulated, the problem is amenable to SDP, but at the price of an
infinite dimensional state (see Carpentier et al. (2012)). To overcome this obsta-
cle, we present an original approach: after dualizing the expectation constraint, we
apply additive dynamic programming for every fixed value of the multiplier, and
we iteratively update the multiplier, until numerical convergence is obtained. We
provide numerical results for this method, based on a real-life example provided
by Electricité de France. We observe that the random gain is noticeably dispersed
around its expected value; in particular, low gain values have a relatively high
probability to materialize. We focus on these low gains in Section 3. We propose
a so-called stochastic viability approach (see Doyen and De Lara (2010); De Lara
and Doyen (2008)) that symmetrizes the economic and the tourist stakes. More
precisely, we aim to maximize the probability to jointly guarantee storage levels
and gains. We propose another extended dynamic state making it possible to solve
the problem by multiplicative dynamic programming. We provide numerical re-
sults on the same instance plus a graphical description of the trade-offs between
economic and tourist objectives. To conclude, we discuss and compare the two
approaches in Section 4.

1 Dam modeling

We present the dynamics of the dam, and the production model. As far as the
decisions we are looking for depend on the available information, most of the
variables involved in the model are random variables, denoted by bold letters.
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1.1 Dynamics of the dam

Let {0, 1, . . . , T} be the (integer) time span, where T ∈ N
∗, and let (Ω, F , P) be

the underlying probability space. For any time t in {0, . . . , T}, we consider the
following real valued random variables:

– Xt, the water storage level in the dam at the beginning of period [t, t+ 1[,
– Ut, the dam turbined outflow during [t, t+ 1[,
– At and Ct, the dam inflow and the electricity price during [t, t+ 1[.

We set Wt = (At, Ct), call W = (Wt)t∈{0, ..., T−1} the noise process and as-
sume that W0, . . . , WT−1 are independent random variables. The independence
assumption is of paramount importance in order to use Stochastic Dynamic Pro-
gramming and obtain optimal closed-loop decision variables as feedbacks on the
water storage Xt. This assumption can be alleviated when it is possible to identify
a dynamics in the noise process, by incorporating this new dynamics in the state
variables, that is, by extending the state (see e.g. Maceira and Damázio (2004)
and Infanger and Morton (1996) on this topic). Note that the Wt need to be sta-
tistically independent, but that their distribution can depend upon time t. This
makes possible to handle part of a temporal dependency, such as seasonal effects
(more inflow in winter, less in summer). Finally, we do not require that inflow At

and price Ct are statistically independent, thus opening the possibility to take into
account the customary correlation1 between these random variables.

Let x denotes the maximum water volume of the dam and x0 its initial value.
The dynamics of the storage level process X = (Xt)t∈{0, ..., T} reads:

Xt+1 = fXt (Xt, Ut, At) = min {Xt +At −Ut, x} , ∀t ∈ {0, . . . , T − 1} , (1)

with X0 = x0. Equation (1) describes a typical dam reservoir storage dynamics
which takes into account the possible overflow of the dam: if the forthcoming water
volume Xt+At−Ut is greater than x, then the dam water surplus Xt+At−Ut−x

spills out.

1.2 Constraints on the control

The control Ut cannot be greater than both the available water volume Xt +At

and a maximum turbined capacity u, that is,

0 ≤ Ut ≤ min{Xt +At , u} , ∀t ∈ {0, . . . , T − 1} . (2)

As we deal with decision-making in a dynamic and stochastic context, we
require the control strategy U = (Ut)t∈{0, ..., T−1} to be non-anticipative, that is,2

Ut is measurable w.r.t. σ (W0, . . . , Wt) , ∀t ∈ {0, . . . , T − 1} , (3)

where σ (W0, . . . , Wt) stands for the sigma-algebra generated by (W0, . . . , Wt).
The measurability constraint (3) expresses the property that the control Ut is a
function of the available information at time t, namely the past noises (W0, . . . , Wt).

1 Even if it was not the case in the data provided by Electricité de France.
2 The abbreviation w.r.t. stands for “with respect to”.
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More precisely here, it corresponds to the so-called Hazard-Decision framework:
indeed, the control Ut depends upon the past and the current realizations of the
noise at time t.3

1.3 Dam production and valuation

The hydroelectric production gain G is given by

G =
T−1
∑

t=0

Ct ηt(Xt, Ut, At)− ǫUt
2 + vf (XT ) , (4)

where

– the electricity production ηt(Xt, Ut, At) at time t is sold at price Ct,
– the quadratic term ǫUt

2 is a (small) technical term introduced for differentia-
bility purpose (more details will be given in Remark 1, page 10),

– the non zero final value of water vf (XT ) prevents the dam reservoir from being
empty at the end of the horizon.

2 Chance-constrained stochastic optimal management of a dam

The gain G defined in Equation (4) represents the economic stakes of the dam
hydropower management. However, a dam is a facility which may be used for
several usages. Here, water sports are possible during the tourist season, provided
that a minimal reference water level xref is ensured.

2.1 Mathematical problem statement

Let us denote the tourist season period by a subset

T ⊂ {1, . . . , T − 1} . (5)

We formulate a chance constraint

P [Xτ ≥ xref , ∀τ ∈ T ] ≥ pref , (6)

which consists in ensuring a minimal reference storage level xref during the tourist
season T at a probability level pref ∈ (0,1).

Now, we can formulate the dam management problem exposed in the intro-
duction as one where we maximize the expected value E [G] of the gain G in (4)
under three types of constraints:

– bounds on the control: almost sure constraints (2),
– non-anticipativity of the strategy: measurability constraints (3),
– tourist requirements: chance constraint (6).

3 Whereas it would correspond to the Decision-Hazard framework if Ut were measurable
w.r.t. σ (W0, . . . , Wt−1) (see Carpentier et al. (2015)).
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Summing up, we address the dam hydroelectric production management by
the formulation4

max
X,U

E

[

T−1
∑

t=0

Ct ηt(Xt, Ut, At)− ǫUt
2 + vf (XT )

]

(7a)

s.t. Ut is measurable w.r.t. σ(W0, . . . , Wt) , (7b)

0 ≤ Ut ≤ min{Xt +At , u} , ∀t ∈ {0, . . . , T − 1} , (7c)

Xt+1 = fXt (Xt, Ut, At) , ∀t ∈ {0, . . . , T − 1} ,X0 = x0 , (7d)

P [Xτ ≥ xref , ∀τ ∈ T ] ≥ pref . (7e)

2.2 Discussion on chance constraints with closed-loop decisions

The optimization problem (7) is a so-called chance constrained stochastic optimal
control problem. Chance constrained optimization problems were introduced by
Charnes and Cooper (1959) with an individual chance constraint and by Miller
and Wagner (1965) with a joint chance constraint.

Such problems raise theoretical and numerical difficulties: indeed, it is mathe-
matically difficult to guarantee the connectedness, the convexity or the closedness
of the feasible set induced by the chance constraint, although these properties play
key roles in optimization.When solutions are looked after as open-loop, connected-
ness, convexity or closedness properties may be proven to hold under assumptions
on the constraint structure and on the distribution laws of the random variables
(see Prékopa (1995), Henrion (2002), Prékopa (2003), Dentcheva (2009), Van Ack-
ooij (2013) and the references therein). However, even a very general continuity
result such as (Van Ackooij 2013, Theorem 2.3.3) cannot be extended in a straight-
forward manner to the closed-loop situation. As a matter of fact, in the open-loop
situation, that is, in the case where the control u lives in a standard vector space U
(e.g. Rn), the control “does not move” with the randomness, whereas in the closed-
loop situation, that is, in the case where the controlU is a random variable, namely
a function defined on Ω and valued on U, the control and the noise live in two
spaces of random variables defined on the same probability space, and thus both
vary with the randomness. So, the usual proofs (designed for open-loop solutions)
no longer work for closed-loop solutions.

However, we do not need to dwell on such issues because

– on the one hand, we will use stochastic dynamic programming, a method agnos-
tic to whether variables are continuous, discrete or both, whether constraints
define a convex domain or not, whether cost functions are convex or not, etc.,

– on the other hand, we will use duality only to obtain bounds, without relying
on connectedness, convexity or closedness of the feasible set.

2.3 Reformulation with an additional binary process

It happens that Problem (7) is amenable to SDP, but at the price of an infinite
dimensional state, involving the distribution of Xt (see Carpentier et al. (2012)).

4 The abbreviation s.t. stands for “such that”.
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Our very first issue being to design practical algorithms that produce closed-loop
solutions, we now present an original approach to overcome this dimensionality
obstacle. As a first step, we develop an equivalent formulation of (7) that involves
an additional binary random process.

To prepare a resolution of the optimization problem (7) by stochastic dynamic
programming, we introduce the binary valued random process π = (πt)t∈{0, ..., T},
that follows the dynamics:

πt+1 = fπt (Xt, πt, Ut, At)

=

{

1{Xt+1≥xref} πt if t ∈ T

πt else
, ∀t ∈ {0, . . . , T − 1} . (8)

with π0 = 1, and where 1K denotes the indicator function of a set K. Then, the
chance constraint (6) can be written as

P [Xτ ≥ xref , ∀τ ∈ T ] = E
[

1{Xτ≥xref , ∀τ∈T }

]

= E

[

∏

τ∈T

1{Xτ≥xref}

]

= E [πT ] .

Contrarily to Ono et al. (2012), we do not approximate the chance constraint (6)
by a conservative one that is easier to handle, but we reformulate the chance
constraint (6) with a new state variable. Now, the optimization problem (7) reads

max
X,π,U

E

[

T−1
∑

t=0

Ct ηt(Xt, Ut, At)− ǫUt
2 + vf (XT )

]

(9a)

s.t. Ut is measurable w.r.t. σ(W0, . . . , Wt) , (9b)

0 ≤ Ut ≤ min{Xt +At , u} , ∀t ∈ {0, . . . , T − 1} , (9c)

Xt+1 = fXt (Xt, Ut, At) , ∀t ∈ {0, . . . , T − 1} ,X0 = x0 , (9d)

πt+1 = fπt (Xt, πt, Ut, At) , ∀t ∈ {0, . . . , T − 1} ,π0 = 1 , (9e)

E [πT ] ≥ pref . (9f)

2.4 Theoretical analysis

Here, we present estimates for the value of the optimization problem (9). For this
purpose, we introduce three objects:

– the criterion

J(X,π ,U) = E [G] = E

[

T−1
∑

t=0

Ct ηt(Xt, Ut, At)− ǫUt
2 + vf (XT )

]

, (10)

– the value J♯ of the optimization problem (9)

J♯ = E

[

G
♯
]

= max
X,π ,U

J(X,π ,U) s.t. (9b)-(9c)-(9d)-(9e)-(9f), (11)
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– and the dual function

D(λ) = max
X,π ,U

J(X,π ,U) + λE [πT − pref] (12)

s.t. (9b)− (9c)− (9d)− (9e).

The following proposition provides an estimate of the gap between the optimal
gain J♯ and a solution obtained by computing the dual function (12) for a certain
multiplier λ⋆.

Proposition 1 Let λ⋆ ≥ 0 and (X⋆,π⋆,U⋆) be such that

1. (X⋆,π⋆,U⋆) is solution of

max
X,π,U

E

[

T−1
∑

t=0

Ctηt(Xt, Ut, At)− ǫUt
2 + vf (XT ) + λ⋆

(

πT − pref
)

]

(13a)

s.t. (9b)− (9c)− (9d)− (9e) ,

2. π
⋆
T satisfies the chance constraint (9f), that is,

E
[

π
⋆
T

]

≥ pref . (13b)

Then, we have the estimate

0 ≤ J♯ − J(X⋆,π⋆,U⋆) ≤ λ⋆
(

E
[

π
⋆
T

]

− pref
)

. (14)

Proof First, we prove the left-hand side of (14). Since (X⋆,π⋆,U⋆) satisfies (9b)-
(9c)-(9d)-(9e) by the first assumption, and satisfies the chance constraint (9f) by
the second assumption, it is a feasible solution of Problem (9), so that

J(X⋆,π⋆,U⋆) ≤ J♯ .

Second, we prove the right-hand side of (14). We have

J(X⋆,π⋆,U⋆) + λ⋆
(

E
[

π
⋆
T

]

− pref
)

= max
X,π ,U

J(X,π ,U) + λ⋆ (E [πT ]− pref) s.t. (9b)-(9c)-(9d)-(9e),

by the first assumption,

≥ max
X,π ,U

J(X,π ,U) + λ⋆ (E [πT ]− pref) s.t. (9b)-(9c)-(9d)-(9e)-(9f),

by adding the chance constraint (9f), hence reducing the constraints set,

≥ max
X,π ,U

J(X,π ,U) s.t. (9b)-(9c)-(9d)-(9e)-(9f),

since λ⋆ (E [πT ]− pref) ≥ 0 by λ⋆ ≥ 0 and by (9f),

=J♯ .

This ends the proof.

Equation (14) is reminiscent of the marginalist interpretation of multipliers. It
allows to control the error on the optimal gain. In addition, when equality holds in
the chance constraint (9f), (X⋆,π⋆,U⋆) is an optimal solution of the optimization
problem (9): hence, we recover an application of Everett’s theorem (see Everett
(1963)).
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2.5 Iterative algorithm and numerical convergence

Proposition 1 will prove useful in an algorithmic context. To find a multiplier
value λ⋆ such that a solution U⋆ to the optimization problem (13a) satisfies the
chance constraint (9f), we appeal to a gradient-like algorithm involving the dual
variable λ. This algorithm “à la Uzawa” (see Ekeland and Temam (1999) for the
origin of the terminology) is illustrated in Figure 1. It alternates two steps for each
iteration k:

– the maximization (13a) that leads, for the given multiplier value λ(k), to the
computation of the strategy U(k+1),

– the update of the multiplier value λ(k) to λ(k+1) by a gradient step method,5

until
(

λ(k), U(k)
)

possibly converges to (λ⋆, U⋆), or at least till enough precision

is achieved thanks to the estimate (14).

Fig. 1 Algorithm “à la Uzawa”

To prove the convergence of the algorithm in Figure 1 — for instance, by
applying general results on the convergence of the Uzawa method (see e.g. Ekeland
and Temam (1999)) — raises delicate issues. Indeed, as mentioned in §2.1, there
is hardly any functional property (connectedness, convexity, etc.) that can be
proved to hold for the chance constraint (6). However, we shall content ourselves
with approximate convergence, with an estimate given by Proposition 1.

In §2.5.1, we detail the maximization (13a) by additive dynamic programming
and, in §2.5.2, we detail the multiplier update by a gradient step method. Finally,
we discuss approximate convergence in §2.5.3.

2.5.1 Primal maximization by additive dynamic programming.

The criterion of the optimization problem (13a) is additive with respect to time
and the random variables (Wt)t∈{0, ..., T−1} are independent. Therefore, we can

obtain the solution of (13a), where λ⋆ = λ(k) is a deterministic scalar, by additive
dynamic programming with state (Xt, πt). This amounts to solving the following

5 The gradient step method for the dual minimization problem may be replaced by a more
efficient method such as dichotomy, conjugate gradient or quasi-Newton.
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backward induction equation, for all (x, π) ∈ [0, x]× {0, 1}:

V
(k+1)
T (x, π) = λ(k) (π − pref) + vf (x) ,

V
(k+1)
t (x, π) = E

[

max
u∈U(x,At)

Ct ηt(x, u,At)− ǫ u2 + V
(k+1)
t+1 (Xt+1,πt+1)

]

,
(15)

where the set U (x, a) is defined by U (x, a) = {u ∈ R | 0 ≤ u ≤ min{x+ a , u}} and
where we use the notations Xt+1 = fXt (x, u, At) and πt+1 = fπt (x, π, u, At).
Observe that, although the dynamic state is two-dimensional, solving the equa-
tions (15) is only twice as complicated as solving one-dimensional dynamic pro-
gramming equations thanks to the fact that π is a binary valued process.

2.5.2 Multiplier update by a gradient step method.

Let p(k+1) stand for the probability to respect the tourist constraint (9f) when the
optimal control obtained at §2.5.1 is used:

p(k+1) = E

[

π
(k+1)
T

]

. (16)

In the algorithm “à la Uzawa” described in Figure 1, we need to compute p(k+1)

to update the multiplier λ(k) to λ(k+1) by the gradient step

λ(k+1) = max
{

λ(k) + ρ
(

pref − p(k+1)
)

, 0
}

, ρ > 0 being a given step size . (17)

Knowing the strategy U(k+1) obtained by solving the inner maximization prob-
lem (15), we can compute p(k+1) by solving the following (non controlled) dynamic
programming equation:

P
(k+1)
T (x, π) = π ,

P
(k+1)
t (x, π) = E

[

P
(k+1)
t+1

(

fXt

(

x, U
(k+1)
t , At

)

, fπt

(

x, π, U
(k+1)
t , At

))]

,

because the value P
(k+1)
0 (x0, π0) is equal to E

[

π
(k+1)
T

]

by construction. Note that

the computation of p(k+1) is exact and does not require approximations, as would
be those associated with a Monte Carlo method. Thus doing, we avoid the stability
difficulties we could have encountered with approximations (Dupačová (1990),
Henrion and Römisch (2004), Luedtke and Ahmed (2008), Henrion (2013)).

Remark 1 The multipliers are updated by a gradient method essentially for the
sake of easiness. In fact, a more sophisticated update scheme (subgradient, cutting
plane, bundle methods) could be used because the dual function (12) might be
only subdifferentiable. Note however that we added the technical term −ǫUt

2 in
the hydroelectric production gain G (see §1.3) in order to reinforce the strong
concavity of the gain function, and hence the differentiability of the dual function.
As the dual problem consists in minimizing a function defined on the real line,
another possibility would be to use a dichotomy method (see Ono et al. (2012) for
such an application).
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2.5.3 Numerical convergence.

When implementing the algorithm, at least two questions arise. First, as theoreti-
cal properties such as convexity cannot be assessed, there may be a incompressible
duality gap between the optimal gain J♯ and the values obtained for the dual func-
tion. Second, as the random variables involved in the problem modeling (inflows
and prices) are discrete, the variable E

[

πT

]

takes a finite number of possible val-
ues; therefore, any probability level pref that is not among this finite number of
possible values can never be obtained.

In the light of these findings, we seek an admissible solution being as-good-as-

possible. The multiplier update makes this possible since the gradient step both
increases the multiplier value and the probability level at the same time, up to a
value such that the probability level p(k) obtained by (16) at some iteration k of
the algorithm is greater than the required level pref.

6 Then, a straightforward ap-
plication of Proposition 1 (in the form of Everett’s theorem with saturation of the
chance constraint) shows that the solution of the inner maximisation problem (15)
leading to p(k) is also a solution of Problem (9) when replacing constraint (9f)
by E

[

πT

]

≥ pref + ǫ(k) where ǫ(k) = p(k) − pref > 0. This way, an admissible solu-

tion of Problem (7) is exhibited if existing. Since the probability level p(k) is over
its prescribed value pref, the gradient step method is going to make it decrease to
a value that is just below pref. In this case, the solution of the inner maximisation
problem (15) leading to p(k+l) is also a solution of Problem (9) when replacing
constraint (9f) by E

[

πT

]

≥ pref − ǫ(k+l) where ǫ(k+l) = pref − p(k+l) > 0. And so
on, resulting in a cyclic behavior that can be observed in the Figures 4, 5 and 6.

The algorithm can be stopped when the cycling is identified, which is easy to
detect since the dual minimization in λ corresponds to a one-dimensional opti-
mization problem. Then, the best iteration within the cycle is selected, that is,
the iteration corresponding to a solution (X⋆,π⋆,U⋆) such that E

[

π
⋆
T

]

≥ pref and
with the lowest possible gap λ⋆ (E [π⋆

T ]− pref) given by estimate (14).

2.6 Numerical experiment

We now solve the optimization problem (7) (or (9)) for a specific numerical in-
stance. The instance is based on a real case given by Electricité de France, the
main French electricity provider. We graphically display the almost-optimal solu-
tion, given by the algorithm developed in §2.5, and exhibit the variability of the
corresponding almost-optimal gain.

2.6.1 Numerical instance.

We consider a dam management problem with the following features:

– maximum capacity of the dam reservoir: x = 80 hm3,
– time horizon: T = 11 (11 time steps),
– tourist reference storage level: xref = 50 hm3,
– tourist season: T = {7, 8}, i.e. July and August months,

6 Otherwise, the multiplier goes to infinity with the iteration index, which means that Con-
straint (9f) is infeasible.
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– tourist reference probability level: pref = 0.9,
– maximum water volume which can be turbined: u = 40 hm3,
– electricity production function (in (4)): ηt(Xt, Ut, At) = 66×Ut,
– final value of water (in (4)): vf (XT ) = 500×max{XT − x0, 0}

2,
– technical term in the cost (in (4)): Ut

2, that is, ǫ = 1.

The units are given in hm3 for the inflows and in e per hm3 for the electricity
prices. For each time t, the noise random variables Ct and At are supposed to be
independent7 and to take equiprobable values in discrete sets Ct and At respec-
tively, each containing few tens of values. The sets Ct and At explicitly depend on
time t to account for seasonality effects. Representative scenarios of the noise are
displayed in Figure 2 for the inflows and in Figure 3 for the electricity prices.

Fig. 2 Ten inflows scenarios sample (in hm3, along the 11 time steps)

2.6.2 Implementation of the algorithm described in §2.5.

According to §2.6.1, the dynamic state (Xt,πt) is such that πt is a binary variable
and that Xt takes its values in X = [0, 80]. Moreover, the control variable Ut takes
its values in U = [0, 40]. To solve the dynamic programming equations (15), the
continuous spaces X and U are discretized by regular grids with 2 hm3 steps. Thus,
X is reduced to a set of 40 points and U is reduced to a set of 20 points. Regarding
the implementation of the gradient step method, we set ρ = 3, 000 in (17).

2.6.3 Numerical results.

Numerical convergence. We have run the algorithm described in §2.5 on an Intel
i7-based personal computer. The convergence is obtained in less than 800 itera-
tions (100 seconds), and the associated behavior of the algorithm is represented
in Figures 4, 5 and 6. These figures depict the evolution of the tourist probability

7 Although this assumption is by no means required.
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Fig. 3 Ten prices scenarios sample (in e per hm3, along the 11 time steps)

level, the value of the dual function (12), and the multiplier values along the al-
gorithm iterations. They contain an emphasis on the last 100 iterations, in order
to observe the cyclic phenomenon that characterizes the numerical convergence,
as discussed in §2.5.3.

last iterations

iterations

Fig. 4 Evolution of the probability level p(k) at iteration k, for k from 1 to 800, with a zoom
on the 100 last iterations

Quality assessment of the solution. Using the stopping criterion defined in §2.5.3,
the algorithm converges numerically to an approximate solution (X⋆,π⋆,U⋆, λ⋆)
such that

E
[

π
⋆
T

]

− pref = 1.8× 10−4 , λ⋆ = 111,025 , D(λ⋆) = 250,136 e . (18)

From these values, we deduce

– the gap λ⋆
(

E
[

π
⋆
T

]

− pref
)

= 20 e,
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last iterations

iterations

Fig. 5 Evolution of the dual function at iteration k, for k from 1 to 800, with a zoom on the
100 last iterations

last iterations

iterations

Fig. 6 Evolution of the multiplier value λ(k) at iteration k, for k from 1 to 800, with a zoom
on the 100 last iterations

– the gain E [G⋆] = J (X⋆,π⋆,U⋆) = D(λ⋆)− λ⋆
(

E
[

π
⋆
T

]

− pref
)

= 250,116 e.

Thanks to Proposition 1 and estimate (14), we obtain

0 ≤ J♯ − J
(

X
⋆,π⋆,U⋆) = J♯ − 250,116 e ≤ λ⋆

(

E
[

π
⋆
T

]

− pref
)

= 20 e , (19)

that is, the gain attached to the feasible solution (X⋆,π⋆,U⋆) is equal to the
optimal gain J♯ up to a relative precision of less than 0.01%.

Thus, we coin the approximate solution (X⋆,π⋆,U⋆, λ⋆) as chance-constrained

quasi-optimal solution.

Chance-constrained quasi-optimal storage level trajectories. To depict the storage
level process X⋆ and the probability distribution of the gain G⋆, we draw a sample
of 1,000,000 realizations of the noise process (At, Ct)t∈{0, ..., T−1}. We then apply

the control strategy U⋆ on each of these noise trajectories and obtain the associ-
ated storage level trajectory and the value of the gain by means of Monte-Carlo
approximations. By contrast, notice that the algorithm outputs given in the above
paragraph were exact up to numerical precision.
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Fig. 7 Realizations of the storage level process X⋆ (100 realizations); the dotted lines stand
for the realizations that do not respect the tourist level xref during the tourist season T

Regarding this 1,000,000-sample, we observe that 891,875 trajectories satisfy
the tourism constraint, leading to a tourist probability level around 0.892 (the
Monte Carlo approximated value could be above or below 0.9, depending on the
sample). This can also be seen on Figure 7, which represents 100 (among 1,000,000)
trajectories of the dam storage level: the tourist storage level xref is respected
during the tourist season T for 90% of the trajectories.

Empirical probability distribution of the chance-constrained quasi-optimal gain. Fig-
ure 8 represents the empirical probability distribution of the gain associated with
the sample. We observe that the deviation of the random variable G⋆ from its
expected value is substantial: the standard deviation is about 40% of E [G⋆]. Such
property might disappoint a dam manager who would expect to observe a gain
rather close to the theoretical mean. In particular, losses can be substantial with
sensible probability. This is why we highlight the left tail of the gain distribution
in the next section.

3 Stochastic viability approach to the dam management

In this section, we put emphasis on the low gain realizations that we detected
in §2.6.3. We propose a so-called stochastic viability approach (Doyen and De Lara
(2010); De Lara and Doyen (2008)) that symmetrizes the economic and the tourist
stakes by maximizing the probability to jointly guarantee storage levels and gains.
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Fig. 8 Empirical probability distribution of the gain (1,000,000 realizations with a 3,500 e
discretization step), the mean gain value is in the white box

3.1 Description of the approach

In addition to the storage threshold xref, we introduce a threshold gref for guaran-
teed gain, and we now aim to maximize the following so-called viability probability :

P [G ≥ gref and Xτ ≥ xref , ∀τ ∈ T ] . (20)

This way, we address the management of the dam by symmetrizing the economic
and the tourist stakes whereas, in Section 2, the former laid in the criterion E [G]
to maximize and the latter as a chance constraint P [Xτ ≥ xref , ∀τ ∈ T ] ≥ pref.

We now consider the optimization problem

max
X,U

P [G ≥ gref and Xτ ≥ xref , ∀τ ∈ T ] (21a)

s.t. Ut is measurable w.r.t. σ(W0, . . . , Wt) , (21b)

0 ≤ Ut ≤ min{Xt +At , u} ∀t ∈ {0, . . . , T − 1} , (21c)

Xt+1 = fXt (Xt, Ut, At) , ∀t ∈ {0, . . . , T − 1} , X0 = x0 . (21d)

The optimal value (21a) is called the maximal viability probability. In §3.2, we show
how we can solve the optimization problem (21) by multiplicative stochastic dy-
namic programming.

3.2 Solving the stochastic viability problem by dynamic programming

To prepare a resolution of the optimization problem (21) by stochastic dynamic
programming, we represent the dynamics of gain accumulation by introducing a
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new real valued process S given by



































S0 = 0 ,

St+1 = fSt (Xt, St, Ut, Wt)

= Ct ηt(Xt, Ut, At)− ǫUt
2 + St, ∀t ∈ {0, . . . , T − 2} ,

ST = fST−1 (XT−1, ST−1, UT−1, WT−1)

= CT−1ηT−1(XT−1, UT−1, AT−1)− ǫUT−1
2 + vf (XT ) + ST−1 .

(22)

We have that ST = G, the total gain in (4).

Then, we write the viability probability (20) as an expectation over a product
of indicator functions:

P [G ≥ gref and Xτ ≥ xref , ∀τ ∈ T ] = E

[

∏

τ∈T

1{Xτ≥xref} 1{ST≥gref}

]

.

Finally, the optimization problem (21) reads:

max
X,S,U

E

[

∏

τ∈T

1{Xτ≥xref} 1{ST≥gref}

]

(23a)

s.t. Ut is measurable w.r.t. σ(W0, . . . , Wt) , (23b)

0 ≤ Ut ≤ min{Xt +At , u} , ∀t ∈ {0, . . . , T − 1} , (23c)

Xt+1 = fXt (Xt, Ut, At) , ∀t ∈ {0, . . . , T − 1} , X0 = x0 , (23d)

St+1 = fSt (Xt, St, Ut, Wt) , ∀t ∈ {0, . . . , T − 1} , S0 = s0 , (23e)

with s0 = 0. Note that the criterion (23a) is multiplicative. Using the following
Theorem 1, we can solve (23) by multiplicative dynamic programming with state
(Xt, St) (the proof is a variant of the one given in Doyen and De Lara (2010)).

Theorem 1 Consider the following backward induction equation:

VT (x, s) = 1{s≥gref} ,

Vt(x, s) = E

[

max
u∈U(x,At)

1{x≥xref}Vt+1 (Xt+1, St+1)

]

if t ∈ T ,

Vt(x, s) = E

[

max
u∈U(x,At)

Vt+1 (Xt+1, St+1)

]

if t /∈ T ∪ {T} ,

(24)

where the set U (x, a) is defined by U (x, a) = {u ∈ R | 0 ≤ u ≤ min{x+ a , u}} and

where we use the notations Xt+1 = fXt (x, u, At) and St+1 = fSt (x, s, u, Wt). Then,
for all (x0, s0) ∈ R

2
+, the maximal viability probability (21a) is given by

V0(x0, s0) = max
X,S,U

P
[

ST ≥ gref and Xτ ≥ xref , ∀τ ∈ T
]

,

s.t. (23b)− (23c)− (23d)− (23e) .
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Algorithm 1 Algorithm giving the maximal viability probability (21a) as a func-
tion of the thresholds (xref, gref)

for every gain value gref do

for every storage level xref do

solve: backward induction equation (24)
save: φ∗(xref, gref) = V0(x0, s0)

end for

end for

Thus, solving the dynamic programming equation (24) gives the solution of the
stochastic viability problem (23), hence the solution of (21) since ST = G by (22).

We now imbed the multiplicative dynamic programming equation (24) in a
loop where the thresholds (xref, gref) vary. This gives the Algorithm 1. Whereas
the dynamic programming state belonged to [0, x]× {0, 1} in §2.5.1, it belongs to
[0, x]× [0,+∞[ here. This is why the dynamic programming equation (24) may be
much slower to compute than (15), and the loop over the thresholds (xref, gref) in
Algorithm 1 makes it even harder.

Now, we apply the stochastic viability approach to the numerical instance
of §2.6.1. Then, we plot and interpret the function φ∗(xref, gref) computed in Al-
gorithm 1.

3.3 Numerical experiment

We consider the numerical instance described in §2.6.1.

3.3.1 Implementation of the algorithm described in §3.2.

To implement the resolution of the dynamic programming equation (24), we use
the discretization scheme given in §2.6.2 for the continuous sets [0, 80] and [0, 40]
in which the storage state variable Xt and the outflow control variable Ut take
their values. For the second state variable St, that lives in a continuous set S

by (22), we fix S = [0, 7.5 × 105] and we discretize S as a set of 2,000 points.
As mentioned in §3.2, the use of such a state variable substantially increases the
algorithm running time.8

On an Intel i7-based personal computer, the computation associated with a
single value of the pair (xref, gref) in the multiplicative dynamic programming
algorithm (24) requires a CPU time of 229 seconds. We do such computation for
each tourism guaranteed storage xref varying from 20 to 70 hm3 by 5 hm3 steps,
and for each guaranteed gain gref from 100,000 to 400,000 e by 25,000 e steps.

3.3.2 Numerical results.

Isovalues of the maximal viability probability. Figure 9 displays the isovalues of the
maximal viability probability in (21a) as function of the guaranteed gain gref in e
and guaranteed storage xref in hm3.

8 We could consider that the set in which St takes its values might vary with respect to t.
This would certainly reduce the algorithm running time, but it would not reduce it by orders
of magnitude.
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Fig. 9 Isovalues of the maximal viability probability (21a), as function of the guaranteed
gain gref and guaranteed storage xref

In §2, we maximized the expected gain subject to the tourist 0.9-level chance
constraint (of having at least 50 hm3 in the tourist season), and obtained a quasi-
optimal expected gain of 250,116 e. To what do these numbers correspond on
Figure 9? We see that jointly guaranteeing such a gain value and the same tourist
constraint leads to no more than a 59% probability level. Looking from another
angle, if we keep the guaranteed storage xref to 50 hm3 and want a maximal
viability probability (21a) of at least 0.9 (as was prescribed in Section 2), we
cannot guarantee a gain higher than 175,000 e.

Thus, by symmetrizing the economic and the tourist stakes with the stochastic
viability approach, we offer a complementary view on the management of the
dam hydroelectric production by focusing on joint tails of economic and tourist
indicators. As a practical application to tackle multiple uses, we suggest that the
decision-making process could start by drawing the viability probability isovalues,
and then let stakeholders discuss the thresholds values to set.

Simulation of stochastic viability optimal trajectories. Now, we focus our attention
on the solutions X⋆⋆, S⋆⋆ and G⋆⋆ of the maximal viability problem (21a) for the
thresholds xref = 50 hm3 and gref = 250,116 e. These two values respectively
correspond to the tourist threshold prescribed in §2.6.1 and to the value of the
expected total gain E [G⋆] as computed in §2.6.3. As we mentioned previously, the
maximum probability to jointly respect these thresholds only equals 0.59.

Now — to draw realizations of the water storage X⋆⋆ (Figure 11) and of the
cumulated gain S⋆⋆ (Figure 10), and to depict the empirical probability distribu-
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tion of the total gain G⋆⋆ (Figure 12) — we apply the control strategy U⋆⋆ to the
dynamics (1) using the same sample of 1,000,000 realizations of the noise process
(At, Ct)t∈{0, ..., T−1} as the one used in §2.6.3.

Stochastic viability optimal storage and gain trajectories. The grey rectangle to the far
right side of Figure 10 is hit by the trajectories that do not achieve the guaranteed
gain threshold. In the same vein, the grey rectangle in the middle of Figure 11 is hit

Fig. 10 Cumulated gain up to time t, St, in Me, for t from 1 to 11 (100 realizations)

by the trajectories that do not achieve the guaranteed tourist storage threshold.
By comparison, we observe that more trajectories hit the rectangle in Figure 10

than the one in Figure 11. This means that, for the 100 representative realizations
drawn, the gain threshold is more critical than the tourist threshold to maximize
the viability probability. This observation is confirmed by the shape of the isovalues
of the maximal viability probability in Figure 9. Indeed, isovalues curves change
much more when the guaranteed gain gref changes than when the guaranteed
storage xref does. Moreover, it is interesting to notice that the Figure 11 displays
a lot of trajectories which ensure the tourist constraint but do not meet the gain
level threshold. This is due to the fact that only the joint respect of the probability
and gain levels thresholds matters.

Stochastic viability empirical probability distribution of the gain G⋆⋆. To end with the
numerical experiments, we depict in Figure 12 the empirical probability distribu-
tion of the gain S⋆⋆

T = G⋆⋆ and compare it to that of G⋆ obtained in §2.6.3. Not
surprisingly, they differ substantially. Indeed, whereas the distribution of G⋆ is bal-
anced around its mean, that of G⋆⋆ displays a peak of probability at the gref value
and almost no probability mass beyond. We must admit that Figure 12 baffles
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Fig. 11 Storage level process X⋆⋆ in hm3 (100 realizations)

Fig. 12 Empirical probability distribution of the gain (1,000,000 realizations with a 3,500 e
discretization scheme), the one we obtained in §2.6.3 is grey

us. . . Suffice to say that the viability probability criterion is not an economic quan-
tity, to the difference of the gain. Maximizing the viability probability does not
yield a “smooth” random gain.
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4 Conclusion

When moving from deterministic to stochastic control, modelers traditionally take
the expected value of the original criterion (economists call this approach “risk-
neutral”). They tackle constraints in various senses, such as robust, in probability
one, or with a given probability level. In a first part, we chose to handle the
dam management issue with the latter way. We considered a chance constrained
stochastic optimal control problem, and we obtained satisfactory results with an
algorithm that converged to an almost optimal solution. However, our numerical
simulations revealed that the optimal random gain displayed a substantial disper-
sion. This is why, in a second part, we proposed a stochastic viability approach that
symmetrizes the economic and the tourist stakes, and jointly guarantees minimal
thresholds. We computed the isovalues of the maximal probability to jointly guar-
antee these thresholds. With this second approach, we obtained a more complete
picture of how to deal with the management of multi-purpose facilities under risk,
as dam reservoirs often are. Thus, we illustrated, on a case-based dam manage-
ment problem, that risk in a dynamic setting can be formalized in various ways.
More precisely, we shed light on a multi-purpose dam management issue from two
angles, stochastic optimal control under chance constraint and stochastic viability,
that offered complementary insights.

Extensions are possible in two directions for chance-constrained stochastic op-
timal control (Section 2). For multiple constraints, one needs to use a multidi-
mensional multiplier; numerical illustrations can be found in Alais (2013). The
extension to multiple dams requires to be able to implement stochastic dynamic
programming techniques on large numerical instances.
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for initiating this research through the CIFRE PhD funding of Jean-Christophe Alais and for
supplying us with data.

References

Van Ackooij, W. 2013. Chance Constrained Programming with applications in Energy Man-
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