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This paper investigates the three-dimensional instabilities and the optimal perturba-
tions on a pair of horizontal counter-rotating Lamb-Oseen vortices in a vertically
stably stratified flow. Two-dimensional (2D) simulations are first performed, showing
that while the dipole moves vertically against the stratification the vortex parameters:
the radius a∗, the separation distance b∗, and the circulation Γ∗ are solely function
of the time rescaled by the Brunt-Väisälä frequency N , independently of the Froude
number, when the Reynolds number is large enough. Here, the Froude number is
Fr = W0/Nb0 with W0 the initial advection velocity of the dipole and b0 the initial
separation distance between the two vortices. For weak and moderate stratifications
(large Fr), the stratification acts on a long time scale compared to the advection time
of the dipole implying that the 2D flow can be considered as quasi-steady. In that
case, when three dimensional instabilities are added, a linear stability analysis of
this 2D flow at different instants retrieves the instability peaks corresponding to the
Crow instability for the long wavelengths and to the elliptic instability for the short
wavelengths showing that the dynamics is almost unaffected by buoyancy effects.
The Crow and elliptic instabilities scale with the instantaneous dipole parameters
showing in particular that stratification promotes instability by reducing the distance
b∗ between vortices [K. K. Nomura et al., “Short-wavelength instability and decay
of a vortex pair in stratified fluid,” J. Fluid Mech. 553, 283-322 (2006)]. For strong
stratifications (Froude numbers of order unity or smaller), the quasi-steady approxi-
mation is not valid, and the question of stability should be formulated in a different
way, by, for example, searching for the transient growth of the energy of perturbation
that may be computed for steady or unsteady base flow. Then, for each time horizon
τ, we should determine the critical perturbation leading to the largest energy growth
by the time τ. Presently, we compute the optimal perturbations at two time horizons
τ = 4 and τ = 10 dimensionalized by 2πb2

0/Γ0 with a direct-adjoint technique which
takes into account the evolution of the base flow. In the homogeneous case, this
technique allows to investigate the effect of the weak unsteadiness of the flow due
to viscous diffusion which induces a growth of the vortex core radius a∗. Both Crow
and elliptic instabilities are retrieved in the optimal response and in the energy gain
curves. Even if very slow, the viscous diffusion is found to increase the gain of
the antisymmetric elliptic perturbation compared to the symmetric one. When the
fluid is stratified, peaks at small wavenumber and at wavenumber of the order of the
vortex core size are found for all Froude numbers with optimal responses strongly
resembling, respectively, the Crow and the elliptic modes with optimal gains corre-
sponding to mean growth rates larger than in the homogeneous case for both modes.
However, as the strength of stratification increases (Froude numbers smaller than 2),
optimal perturbations start departing from their homogeneous counterpart with large
perturbation in the wake of the dipole associated with density effects. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4934350]

1070-6631/2015/27(10)/106603/32/$30.00 27, 106603-1 ©2015 AIP Publishing LLC
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I. INTRODUCTION

The wake which forms behind an aircraft is a pair of horizontal counter-rotating vortices propa-
gating downwards. Depending on the atmospheric conditions, such dipole can persist over a long
time or be rapidly destroyed. The dynamics of such dipoles has been widely studied in the past and
recent years. In homogeneous fluids, a vortex pair is unstable with respect to three-dimensional pertur-
bations. Crow1 has discovered a long-wavelength instability, symmetric with respect to the plane
separating the two vortices. The existence of a short wavelength elliptic instability has been discussed
by Moore and Saffman,2 Tsai and Widnall3 and numerous subsequent articles for both symmetric
and antisymmetric modes. Physically, the Crow instability comes from the coupling through mutual
induction of the slow m = 1 Kelvin mode, traveling on the two vortices, whereas the elliptic instability
may be viewed as the resonant interaction of the fast Kelvin mode m = −1 and m = 1 traveling on the
same vortex coupled by the steady strain imposed by the other vortex. However, in many atmospheric
situations, this dipole propagating downwards evolves under the influence of the stable stratification
of the atmosphere. Investigations of the two-dimensional (2D) evolution of a counter-rotating vortex
pair in a stably stratified flow have shown a reduction of the separation distance between the vortices
with acceleration of the dipole under the effect of the baroclinic torque of the displaced fluid (Scorer
and Davenport,4 Hill,5 Spalart,6 Garten et al.7). The three-dimensional dynamics of a vortex pair in
stratified flow has been observed experimentally by Sarpkaya8 and Delisi and Robins9 and numeri-
cally by Robins and Delisi10 and Garten et al.11 who all showed a reduction of separation distance
and deceleration. Nomura et al.,12 in their three-dimensional direct numerical simulations, observe a
decrease of the separation distance with a nearly constant descent speed for weakly stratified flows
and a deceleration for moderate and strong stratifications. The influence of the stable stratification on
the three-dimensional instabilities has received much less attention. Robins and Delisi10 investigate
the effect of stratification on the Crow instability and observe that the vortices eventually link and form
rings, more rapidly as stratification increases. For stronger stratification, they observe the formation
of three-dimensional structures that they called puffs. Garten et al.11 observe that for relatively strong
stratification, the Crow instability grows faster since density effects push the vortices closer. Direct
numerical simulations of Nomura et al.12 on the short-wavelength instability of a counter-rotating
vortex pair in presence of stable stratification have suggested that, for weak and moderate stratifica-
tions, the instability mechanism is not modified by the stratification and corresponds to the elliptic
instability as in homogeneous media. The instability appears earlier than in the unstratified case,
owing to the decrease of the separation distance between the vortices as they propagate downwards,
decrease that induces larger ellipticity of the vortices and thus enhances the instability. For strongly
stratified flows, the instability cannot be considered elliptic anymore since the primary vortices are
strongly deformed by the stratification.

In the present paper, the stability of a stratified wake is addressed using both linear sta-
bility analysis in a quasi-steady approximation and exact optimal perturbation computation. The
two-dimensional evolution of a Lamb-Oseen vortex pair in stably stratified fluid is documented in
Sec. II. In the case of weak stratification, the evolution of the two-dimensional flow due to stratifi-
cation is slow and can be neglected at leading order (quasi-steady approximation), which justifies
the use of linear stability analysis on the frozen flow field at different instants (Sec. III). In the case
of strong stratification, stability analysis of a frozen state is no longer legitimate and the develop-
ment of perturbations is addressed by computing transient growth of energy via an optimization
procedure. The optimal perturbations are computed at different time horizons, with a direct-adjoint
technique similar to the one used in the steady case (Donnadieu et al.13) but taking into account the
evolution of the flow. Those results are presented in Sec. IV.

II. TWO-DIMENSIONAL SIMULATIONS OF COUNTER-ROTATING VORTICES
IN STRATIFIED FLUID

A. Equations and numerical method

We first investigate the two-dimensional evolution of a pair of counter-rotating vortices in
a stable vertical stratification. The initial state is the superposition of two circular Lamb-Oseen
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vortices of initial circulation Γ0, initial radius a0, and initial separation distance b0 with opposite
signs vorticity corresponding to the dimensional initial vorticity,

ω∗by(x∗, z∗, t∗ = 0) = Γ0

πa2
0

exp *
,
−
(x∗ − x∗1)2 + (z∗ − z∗1)2

a2
0

+
-
− Γ0

πa2
0

exp *
,
−
(x∗ − x∗2)2 + (z∗ − z∗2)2

a2
0

+
-
, (1)

where ω∗
by

is the axial vorticity, (x∗, z∗) corresponds, respectively, to the Cartesian transverse and
vertical dimensional quantities, and (x∗1, z∗1) and (x∗2, z∗2) are the initial coordinates of the two vor-
tex centroids. The Γ0, a0, and b0 denote dimensional circulation, radius, and distance separation

(b0 =

(x∗2 − x∗1)2 + (z∗2 − z∗1)2) of vortices. The total dimensional density ρ∗t and pressure fields p∗t

are written as

ρ∗t(x∗, z∗, t∗) = ρ0 +
∂ ρ̄∗

∂z∗
z∗ + ρ∗(x∗, z∗, t∗), (2)

p∗t (x∗, z∗, t∗) = p0 + p̄∗(z∗) + p∗(x∗, z∗, t∗), (3)

where ρ0 and p0 are constant reference values, ∂ρ̄∗

∂z∗ z∗ is a stable linear density profile with ∂ρ̄∗

∂z∗ constant
and negative, p̄∗(z∗) is the corresponding hydrostatically balanced pressure field, and ρ∗ and p∗ are the
density and pressure perturbations which are assumed to be zero at the initial instant. The evolution
of the velocity, vorticity, pressure, and density perturbation [u∗,ω∗,p∗, ρ∗](x∗, z∗, t∗) is governed by
the following two-dimensional Navier-Stokes equations under the Boussinesq approximation:




∂u∗

∂t∗
= u∗ × ω∗ − ∇( p∗

ρ0
+

u∗2

2
) + ν∆u∗ − ρ∗

ρ0
gez,

∇.u∗ = 0,
∂ ρ∗

∂t∗
= −u∗.∇ρ∗ − ∂ ρ̄∗

∂z∗
u∗z + κ∆ρ∗,

(4)

where ν is the kinematic viscosity of the flow, g is the gravity, and κ is the diffusivity of the
stratifying agent (salt or temperature). The characteristic length scale is the initial vortex separa-
tion distance between the two vortices b0, the velocity scale is the initial advection velocity of
the dipole W0 = Γ0/2πb0; hence, the characteristic time scale is the dipole advection time scale
TA = 2πb2

0/Γ0 and b0ρ0N2/g is the density scale with N =

−(g/ρ0)d ρ̄∗/dz∗ the Brunt-Väisälä

frequency. With this choice of scales, the Navier Stokes equations for the non-dimensionalized
quantities [u,ω,p, ρ](x, z, t) become




∂u
∂t
= u × ω − ∇.(p + u2

2
) + 1

Re
∆u − Fr−2ρez,

∇.u = 0,
∂ ρ

∂t
= −u.∇ρ + uz + Re−1Sc−1

∆ρ,

(5)

where Sc = ν/κ is the Schmidt number, here taken equal to unity, Fr = W0/Nb0 is the Froude
number and Re = W0b0/ν is the Reynolds number. We also define a second Reynolds number based
on the initial circulation of the vortices as follows:

ReΓ0 =
Γ0

ν
=

2πW0b0

ν
= 2πRe. (6)

Two-dimensional Navier-Stokes equations (5) are numerically integrated using a pseudo-
spectral method in Cartesian coordinates with periodic boundary conditions as described in Del-
bende et al.14 With the application of the two-dimensional Fourier transform on the velocity,
vorticity, pressure, and density perturbation fields,

[u,ω,p, ρ](x, z, t) =
 

[û,ω̂, p̂, ρ̂](kx, kz, t)ei(kxx+kzz)dkxdkz, (7)
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where kx and kz are the transverse and vertical components of the wavevector k2D, Navier-Stokes
equations (5) become in the spectral space,




∂û
∂t
= P(k2D)[u × ω − ρ̂Fr−2ez] − Re−1|k2D|2û,

∂ ρ̂

∂t
= −ik.uρ + ûz − Re−1Sc−1|k2D|2 ρ̂,

(8)

where P(k2D) is the projection operator on the space of divergence-free fields which, in Fourier
space, may be expressed as a tensor with components Pi j = δi j − kik j/k2

2D. In this pseudo-spectral
method, the nonlinear terms u × ω and uρ are evaluated in the physical space. Time integration
of inviscid terms is done using a second-order Adams-Bashforth scheme whereas dissipative terms
Re−1∆u and Re−1Sc−1∆ρ are integrated exactly in the Fourier space.

The time step is set to ∆t = 10−3. The size of the periodic box is Lx = 12 in the transverse
direction and Lz = 24 in the vertical direction with 512 × 1024 collocation points equally spaced
in the x and z directions. The transverse and vertical lengths are sufficient to minimize the effects
of periodic boundary conditions (Lx = 60a0/b0) to prevent the dipole from encountering its wake
on its downward descent during the time interval considered here. The spatial discretisation allows
approximately 8 collocation points along a vortex core diameter.

B. The two-dimensional evolution of the flow

The Reynolds number is ReΓ0 = 2400 and the Froude numbers considered are Fr = ∞ (homo-
geneous flow), 10, 5, 2, and 1. The initial aspect ratio of the dipole is a0/b0 = 0.2. As the counter-
rotating vortices propagate downwards, they evolve under the influence of the stratification.

Figs. 1 and 2 represent the evolution of the axial vorticity ωy of the vortex pair and the density
perturbation ρ at two instants rescaled by the Brunt-Väisälä frequency Nt∗ = 1 and Nt∗ = 2 for
Froude numbers 10, 5, 2, and 1 (equivalent to rescale the non-dimensionalized time t by the Froude
number Fr: Nt∗ = Fr−1t).

As the vortices propagate downwards, density perturbations (right column of Figs. 1 and 2)
appear at the instantaneous location of the dipole and the isodensity lines, initially horizontal (not
shown here), are strongly deformed: the low density fluid located at the initial altitude of the dipole
is entrained inside the vortex cores. As the dipole descends, this light fluid is brought to heavier
density regions and a strong density variation forms at the boundary of the dipole: intense horizontal
density gradients appear around and in the lee of the vortex pair.

The larger the Froude number, the longer the density wake behind the dipole at a given
Nt∗ = Fr−1t. In Figs. 1 and 2, we observe two distinct structures of the density perturbation inside
the core. Either iso-density contours follow iso-vorticity contours (large Fr) or iso-density contours
are horizontal (small Fr). This may be interpreted as the results of two effects, the transport of
the density by the vortices, and the uniformization of the density on closed trajectories in the
cores of the vortices. Since the snapshots of the flow have been taken at Nt∗ = j ( j = 1,2), the
non-dimensional distance travelled by the dipole is of order jFr leading to a perturbation density
due to the transport proportional to jFr yielding a gradient with the outside of the core also propor-
tional to jFr. At the same time, the gradient of the total density inside the vortices should be close
to uniform; hence, the gradient of ρ should compensate the base stratification. This gradient is of
order −1 with the present non-dimensionalisation. Therefore, the two behaviors observed are the
competition between the gradient between the core of the vortices and the outside of order jFr and
the gradient inside the vortices of order −1.

As shown by Garten et al.7 for high Froude numbers, i.e., for flows dominated by advection, we
observe on the left column of Figs. 1 and 2 that, as the dipole propagates downwards, opposite-sign
vorticity is created around and behind the primary vortices through the baroclinic torque which
pushes the vortices towards one another, hence reducing the separation distance b∗ between the
vortices. This secondary vorticity is detrained during the descent of the dipole as observed in
Figs. 2(a), 2(c), and 2(e).
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FIG. 1. 2D flow at Nt∗=Fr−1t = 1—isovalues of the (a), (c), (e), and (g) axial vorticity ωy and (b), (d), (f), and (h) density
ρ of the vortex pair in the (x, z) plane at Fr−1t =Nt∗= 1 for (a) and (b) Fr= 10, (c) and (d) Fr= 5, (e) and (f) Fr= 2, and (g)
and (h) Fr= 1. The heavy black lines correspond to the isocontours ωy/ω

max
y =±exp(−1). The size of the domain shown is

6b0 × 6b0 whereas the computation domain is much larger 12b0 × 24b0, where b0 is the initial separation distance between
the vortices.

In the presence of stratification, the non-dimensional circulation Γ = Γ∗/Γ0, the non-dimen-
sional separation distance between the vortices b = b∗/b0, and the non-dimensional radius a = a∗/b0

evolve as a function of time as plotted in Fig. 3. The vortex radius a∗ is determined using the
vorticity polar moment like in Donnadieu et al.:13 a2 = ⟨[(x − x2)2 + (z − z2)2]ωBy⟩/⟨ωBy⟩ with ⟨.⟩
denoting the integration over the semi-infinite domain x > 0. The distance between the two vortices
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FIG. 2. 2D flow at Nt∗=Fr−1t= 2—same legend as Fig. 1 except that Fr−1t =Nt∗= 2.

is b = |x2 − x1|, (x1, z1), and (x2, z2) being the locations of the vorticity extrema and z2 = z1. The
circulation of the vortices is determined on one primary vortex computing the flux of vorticity
through the surface limited by the contour defining its core.

We observe in Fig. 3(a) a growth of a as function of time solely due to viscous diffusion for
Fr = ∞, and in good agreement with the theoretical prediction of Batchelor15 represented with a
dashed line in Fig. 3(a),
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FIG. 3. Temporal evolution of the dipole parameters—evolution of (a) the radius a of the vortex core as function of time
t and (b) the separation distance b between the vortices as function of time rescaled by the Froude number Fr−1t =Nt∗ for
Fr=∞ (�), 10 (◦), 5 (�), and 2 (△). The dashed-dotted lines are the instant Fr−1t =Nt∗= 2. The dashed line in (a) corresponds
to the diffusion law (Batchelor15) (9), valid for Fr=∞. The continuous line in (b) represents the prediction of Saffman16 (10)
for the effect of weak stratification in an inviscid fluid after rescaling by N (t∗− t∗adj), plotted between Nt∗adj and Nt∗= 4, with
t∗adj the time from which the distance b(t) starts to decrease.

a(t) =


a2
0/b2

0 + 4t/Re. (9)

For the stratified cases, the radius of the vortices a grows by viscous diffusion until t∗ ≃ 2/N
(or t = 2Fr) indicated by vertical dashed-dotted lines and then decreases through interaction with
opposite sign vorticity generated by the baroclinic torque.

In Fig. 3(b), the non-dimensional separation distance b between the vortices is plotted versus
Nt∗ = Fr−1t. In the unstratified case Fr = ∞ (data computed but not presented in Fig. 3(b) since
N = 0), the distance b remains constant during the descent of the dipole. In the stratified cases, the
distance b decreases after a time Nt∗adj (with t∗adj the dimensional adjustment time beyond which
the distance vortex separation starts to decrease) and Fig. 3 shows that its evolution is nearly inde-
pendent of Fr when plotted as function of Nt∗ = Fr−1t. The evolution compares reasonably well
with theoretical prediction of Saffman,16 retrieved by Spalart6 for a two-dimensional quasi-steady
inviscid flow with weak stratification

b(t) = 1
cosh ((2.85/2π)1/2Nt∗) . (10)

After rescaling by N(t∗ − t∗adj), we have plotted b(t) function of Nt∗ by a continuous line between
Nt∗adj and Nt∗ = 4 in Fig. 3(b). The vortices come into contact when the separation distance b be-
tween the vortices becomes equal to twice the radius of one vortex b = 2a, which happens at Nt∗ =
Fr−1t ≃ 2 for Fr = 2, Nt∗ = Fr−1t ≃ 1.6 for Fr = 5, and Nt∗ = Fr−1t ≃ 1.4 for Fr = 10 when the
viscous increase of a with time is taken into account. These instants mark the departure of the evolu-
tion of a from viscous law (9) and are close to the instant Nt∗ = 2 marked by vertical dashed-dotted
lines in Fig. 3(a). After this instant, the two vortices stay in contact and a starts to decrease.

In unstratified fluids, Γ is constant as time evolves whereas the circulation significantly de-
creases as function of time for stratified fluids as observed in Fig. 4(c) which represents the
Reynolds number based on the circulation ReΓ = Γ/ν as a function of Nt∗ = Fr−1t. This decrease,
which happens earlier with increasing stratification, is due to the combined effect of destruction of
the primary vorticity due to baroclinic torque and to the diffusion of each vortex in the other after
they come in contact, here after Nt∗ = Fr−1t ≃ 2.

Fig. 4(a) shows that a/b increases with time since, as discussed previously, the radius a of
the vortices first increases by viscous diffusion and the separation distance between the vortices
decreases due to the stratification. The strain Γ/2πb2 is nearly constant and equal to 1 until
Nt∗ = Fr−1t = 1 for the three Froude numbers considered. For the weakly stratified flow Fr = 10,
the strains remain close to 1 as time evolves suggesting that the strain is not significantly altered
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FIG. 4. Temporal evolution of the dipole parameters—evolution of (a) the aspect ratio a/b of the dipole, (b) the non-
dimensional external strain rate Γ/2πb2, and (c) the Reynolds number ReΓ as function of time rescaled by the Brunt-Väisälä
frequency Fr−1t =Nt∗ for 10 (◦), 5 (�), and 2 (△). Same legend as Fig. 3.

by the stratification. For the moderately stratified flows Fr = 5 and 2, the strain strongly increases
between Nt∗ = Fr−1t = 1 and Nt∗ = Fr−1t = 2.5 for Fr = 5 and Nt∗ = Fr−1t = 3 for Fr = 2, faster
with increasing stratification.

The horizontal vortex dipole is characterized by a dipole aspect ratio a/b and a Reynolds num-
ber ReΓ (Figs. 3 and 4) which are not representative of aircraft trailing vortices (dipole aspect ratio
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much smaller a/b of order 0.01 and greater Reynolds number, Delisi et al.17). We address now the
linear stability analysis of such counter-rotating vortices in a stratified fluid, in order to investigate
the effect of the stratification on instability mechanisms compared with the unstratified case.13

III. LINEAR STABILITY ANALYSIS IN STRATIFIED FLUID

In the case of weak stratification, i.e., for large Froude numbers Fr, the stratification acts on
a long time scale 1/N on the base velocity field compared to the advection time 2πb∗2/Γ

∗
of the

dipole, the base velocity field can therefore be considered as quasi-steady and a classical linear
stability analysis describes the leading order dynamics of the perturbation driven by inertial mecha-
nisms (hyperbolic, elliptic, or centrifugal instabilities) as discussed for the stratified mixing layer by
Caulfield and Peltier.18 Even in the absence of stratification (Fr = ∞), the viscous diffusion is also a
source of unsteadiness of the flow with time scale a∗2/ν which may also be taken into account via
the quasi-steady approximation when the Reynolds number is large enough.

A. 2D base flow

To perform the linear stability analysis, base flows are extracted from the two-dimensional
computation presented in Sec. II at the two instants Fr−1t = Nt∗ = 1 and Fr−1t = Nt∗ = 2, with axial
vorticity and density perturbation already shown in Figs. 1 and 2. The flow can be considered
quasi-steady only in the frame moving down with the dipole. But defining the advection velocity of
this unsteady dipole is not unique since different portions of the flow (in particular the vortex cores
and the wake) propagate at different speeds. Here, we chose to define the advection velocity as the
velocity of the points of maximum vorticity at the center of the vortices. Sensitivity of the growth
rate to the actual value of the advection velocity has been computed: a change of 5% of this velocity
changes the growth rate by less than 4%.

B. Linearized equations

Infinitesimal three-dimensional perturbations are superposed on this bidimensional base flow
now assumed steady (the frozen base flow approximation). At leading order, the perturbations
satisfy the linearized Navier-Stokes (LNS) equations in the Boussinesq approximation,




∂u′

∂t
= UB × ω′ + u′ ×ΩB − ∇.(p′ + u′.UB) − ρ′Fr−2ez + Re−1

∆u′,

∇.u′ = 0,
∂ ρ′

∂t
= −UB.∇ρ′ − u′.∇ρB + u′z + Re−1Sc−1

∆ρ′,

(11)

where [u′,ω′, ρ′,p′](x, y, z, t) are the velocity, the vorticity, the density, and the pressure of the
three-dimensional perturbation and UB = (uB,0, wB) and ΩB = (0,ωB,0) are the velocity and the
vorticity of the base flow and ρB the density perturbation associated with the base flow in the frame
moving with the dipole. As the base state is uniform along the y axis, the perturbations can be
decomposed into normal modes,

[u′,ω′, ρ′,p′](x, y, z, t) = [ũ,ω̃, ρ̃, p̃](x, z, t)eiky y + c.c., (12)

where ky is the axial wavenumber and c.c. denotes the complex conjugate.

C. Numerical method

Linearized Navier-Stokes equations (11) are integrated using the pseudo-spectral method in
Cartesian coordinates with periodic boundary conditions similar to the one described for the base
flow. The velocity, vorticity, density, and pressure of the normal mode corresponding to the axial
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wavenumber ky are expressed in Fourier space,

[ũ,ω̃, ρ̃, p̃](x, z, t) =


[û,ω̂, ρ̂, p̂](kx, kz, t)ei(kxx+kzz)dkxdkz. (13)

In spectral space, linear Navier-Stokes equations (11) become




∂û
∂t
= P(k)[ UB × ω̃ + ũ ×ΩB − ρ̂Fr−2ez] − Re−1k2û,

∂ ρ̂

∂t
= −ik.UB ρ̃ −ũ.∇ρB + ûz − Re−1Sc−1k2 ρ̂,

(14)

where k = (kx, ky, kz) is the total wavevector and as in the 2D case, P(k) is the projection oper-
ator on the space of divergence-free fields: Pi j = δi j − kik j/k2. Time integration of inertial terms
is done via a second-order Adams-Bashforth scheme whereas the dissipative terms Re−1k2û and
Re−1Sc−1k2 ρ̂ are integrated exactly. The eigenmodes are computed independently for each axial
wavenumber ky using an Arnoldi Krylov technique on the snapshots of the perturbation flow
computed during a time marching of (14) (see Donnadieu et al.13 for details).

D. Three-dimensional unstable modes

Since the base state is symmetric versus x → −x,

[uB,0, wB, ρB](x, z) = [−uB,0, wB, ρB](−x, z),
[0,ωB,0](x, z) = [0,−ωB,0](−x, z), (15)

the eigenmodes can be decomposed in a symmetric family (same symmetry as the base state),

[ũx, ũy, ũz, ρ̃](x, z) = [−ũx, ũy, ũz, ρ̃](−x, z),
[ω̃x, ω̃y, ω̃z](x, z) = [ω̃x,−ω̃y,−ω̃z](−x, z), (16)

and an antisymmetric family (opposite symmetry to the base state),

[ũx, ũy, ũz, ρ̃](x, z) = [ũx,−ũy,−ũz,− ρ̃](−x, z),
[ω̃x, ω̃y, ω̃z](x, z) = [−ω̃x, ω̃y, ω̃z](−x, z). (17)

Symmetric Fig. 5 and antisymmetric Fig. 6 eigenmodes were calculated separately, the symmetries
being imposed at each time step during the time marching.

Figs. 5(a), 5(c), 6(a), and 6(c) show the real part of the growth rate σ∗r scaled by 2πb2
0/Γ0, the

initial strain imposed by one vortex on the other, as function of the dimensional axial wavenumber
k∗y = ky/b0 scaled by the initial vortex core radius a0. Figs. 5(b), 5(d), 6(b), and 6(d) present the
same data rescaled by 2πb∗2/Γ∗, the instantaneous strain imposed by one vortex on the other and
k∗y scaled by the instantaneous vortex core radius a∗. Two instants Fr−1t = Nt∗ = 1 (Figs. 5(a), 5(b),
6(a), and 6(b)) and Fr−1t = Nt∗ = 2 (Figs. 5(c), 5(d), 6(c), and 6(d)) corresponding to base states
plotted in Figs. 1 and 2 are presented displaying several instability bands.

1. Long wave symmetric instability and the Crow instability

We first consider the symmetric unstable modes at small wavenumbers at time Fr−1t = Nt∗ = 2
displayed in Fig. 5(c). Between k∗ya0 = 0 and k∗ya0 = 0.6, it shows one band of instability for
each Froude number with maximum around k∗ya0 = 0.3 with values of the growth rates scaled by
the initial strain σ∗r2πb2

0/Γ0 decreasing when the Froude number increases σ∗r2πb2
0/Γ0 = 0.26 for

Fr = 10, σ∗r2πb2
0/Γ0 = 0.54 for Fr = 5, and σ∗r2πb2

0/Γ0 = 0.94 for Fr = 2. Fig. 5(d) represents the
same data but rescaled by the instantaneous parameters of the dipole, the loci of the maximum k∗ya∗

are shifted to smaller values with increasing stratification and correspond to a maximum around
k∗yb∗ = 1, once rescaled by the instantaneous value of the separation distance between the vortices.
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FIG. 5. Growth rates of symmetric modes—growth rates σ∗r of symmetric modes as function of the axial wavenumber k∗y
scaled (a) and (c) by the initial values of the radius a0, the separation distance b0, and the circulation Γ0 of the vortices and
(b) and (d) by the instantaneous values of the radius a∗, the separation distance b∗, and the circulation Γ∗ at two instants (a)
and (b) Fr−1t =Nt∗= 1 and (c) and (d) Fr−1t =Nt∗= 2 for ReΓ0= 2400 and three Froude numbers Fr= 10 (◦), Fr= 5 (�), and
Fr= 2 (△). Close symbols correspond to stationary modes whereas open symbols correspond to oscillatory modes.

The values of the maximum growth rates associated with this long wave instability collapse reason-
ably well for the three Froude numbers, once rescaled by the instantaneous value of the strain
(Fig. 5(d)). These scalings of the long wave instability on the separation distance for the wavelength
and the instantaneous strain for the growthrate are in agreement with the prediction for the Crow
instability.1

Fig. 7 represents the axial vorticity (Fig. 7(a)) and the density (Fig. 7(b)) of the leading eigen-
mode at the maximum of the instability peak for Fr = 5 at Fr−1t = Nt∗ = 2. The vorticity field of this
mode is similar to the Crow instability mode which exists in homogeneous fluids since, superim-
posed on the base flow, it would induce a symmetric displacement of the vortices with an angle of
45◦ with no deformation of their internal structures. The density perturbation is located around the
vortices at the location where the base flow density gradient is maximum and it also corresponds to
the symmetric displacement of the base flow by this Crow-like instability.

2. Short wave instability

Let us first discuss instability properties of the frozen base state at the later time (Fr−1t =
Nt∗ = 2). For the antisymmetric modes, Fig. 6(c) displays one dominant band of instability for each
Froude number between k∗ya0 = 0.7 and k∗ya0 = 1.93 with maximum growth rates σ∗r2πb2

0/Γ0 =
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FIG. 6. Growth rates of antisymmetric modes—same legend as Fig. 5 except that the modes are antisymmetric.

FIG. 7. Long wavelength symmetric instability — Isovalues of the (a) axial vorticity ωy and (b) density ρ of the
eigenmode normed by the square root of energy in the (x, z) plane at the maximum of the unstable peak k∗ya

∗= 0.6 for
ReΓ0= 2400 and Fr= 5 at Fr−1t =Nt∗= 2 for the symmetric mode. The heavy black lines correspond to the isocontours
ωBy/ω

max
By =±exp(−1). The size of the domain shown is 3b0 × 3b0 whereas the computation domain is 12b0 × 12b0. The

potential energy represents 67% of the total energy.
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0.65 at k∗ya0 = 1 for Fr = 10, σ∗r2πb2
0/Γ0 = 1.25 at k∗ya0 = 1.25 for Fr = 5, and σ∗r2πb2

0/Γ0 = 1.95
at k∗ya0 = 1.36. We observe that the values of the growth rates scaled by the initial value of the strain
σ∗r2πb2

0/Γ0 at the maximum of the instability bands strongly increase with increasing stratification
whereas the k∗ya0 location of the maximum is slightly shifted to larger values. For the symmetric
modes, the trends are similar (Fig. 5(c)) with peaks 3% smaller than for the antisymmetric modes.
These shortwave instability peaks still dominate over the Crow-like instability peaks.

The growth rates of unstable modes as function of the axial wavenumber both rescaled by
the instantaneous parameters of the dipole are shown in Figs. 5(d) and 6(d). Once rescaled by
the instantaneous values, the curves for three different Froude numbers nearly collapse with, for
the antisymmetric mode, a maximum around k∗ya∗ = 2 with values of σr2πb2/Γ about 1 (and
k∗ya∗ = 2.5 and σ∗r2πb∗2/Γ∗ ≃ 0.5 for the symmetric mode), which agrees with the prediction of the
first resonance branch of the elliptic instability (Tsai and Widnall,3 Le Dizès and Laporte19). The
fact that the instability growth rate once rescaled by instantaneous values is slightly weaker when
the Froude number is larger is probably due to the viscous dissipation since the larger the Froude
number, the longer the time to reach Fr−1 = Nt∗ = 2 and the stronger the decrease in instantaneous
Reynolds number as shown in Fig. 4(c). Similarly, this slight increase of k∗ya∗ where the growth
rate is maximum (Fig. 5(d)) may come from the large variation of a∗ with the Froude number
(Fig. 3(a)), it might be more realistic to take the average value of a∗ and not its final value at Nt∗ = 2.
Fig. 9 displays the axial vorticity and density perturbations of the antisymmetric eigenmode at the
maximum of the instability peak kya = 2.26 for Fr = 5 at Fr−1t = Nt∗ = 2. The axial vorticity of
the eigenmode consists of a dipole in the vortex core and two lobes of opposite sign vorticity at its
periphery. This eigenmode corresponds to the deformation of the vortex core in opposite phase to
the vortex periphery characteristic of elliptic instability eigenmodes. In Fig. 9(b), there is no density
perturbation inside the vortex cores where the density of the base flow is uniform (Fig. 2(d)). The
density eigenmode is located at the periphery of the vortex base flow suggesting that it is induced by
the transport of the area of strong base flow density gradient at the periphery of the vortices by the
perturbation velocity.

At the shorter time Fr−1t = Nt∗ = 1, the results are similar to the case Fr−1t = Nt∗ = 2 except
that, even when initial parameters of the dipole are used for the scaling, the peak of the curves
representing the growth rates of the instability as function of the axial wavenumber has similar
intensity for the three Froude numbers (Figs. 5(a) and 6(a)).

The axial vorticity of the eigenmode at Fr−1t = Nt∗ = 1 for Fr = 5 at the maximum of the
peak kya = 2 is displayed in Fig. 8(a) and is characteristic of the elliptic instability with opposite
perturbations between the core and the periphery of the vortex. Eigenmodes of Fig. 8 are similar
to the Nt∗ = 2 case (Fig. 9(a)) except that the size of the perturbation is smaller since the radius
of the vortices has grown by viscous diffusion between Fr−1t = Nt∗ = 1 and Fr−1t = Nt∗ = 2 and

FIG. 8. Short wavelength antisymmetric instability—same as Fig. 7 except that the eigenmode is antisymmetric, k∗ya
∗= 2,

Fr−1t =Nt∗= 1 and the size of the computation domain is 6b0×6b0. The potential energy represents 10% of the total energy.
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FIG. 9. Short wavelength antisymmetric instability—same legend as Fig. 7 except that the eigenmode is antisymmetric,
k∗ya

∗= 2.26 and the size of the computation domain is 6b0 ×6b0. The potential energy represents 48% of the total energy.

the perturbation located on each vortex core is more separated since, at that time, the distance b
between the vortices is larger (Fig. 1(c) compared to Fig. 2(c)).

For each instant and each Froude number, the leading instability is therefore similar to the
elliptic instability of the instantaneous vorticity fields with little direct effect of the stratification.
This confirms the interpretation of Nomura et al.12 in their direct numerical simulations that, for
weak and moderate stratification, the instability mechanism is the elliptic instability. The growth
rates scale with the instantaneous value of the strain Γ/2πb2 and the wavelengths scale with the
instantaneous value the vortex radius a, as predicted by the elliptic theory applied on the instanta-
neous base flow. The growth rates scaled by the initial strain are larger with stronger stratification,
which corroborates the results of Nomura et al.12 that the main effect of the stratification is to
enhance the elliptic instability since the strain is increased by the reduction of the separation dis-
tance between the vortices of the base flow. The most unstable eigenmode is the antisymmetric
eigenmode and the difference between the growth rates of symmetric and antisymmetric eigenmode
increases with Fr−1t = Nt∗ in agreement with the properties that the antisymmetric elliptic mode
leads over the symmetric mode when a/b decreases.20

3. Oscillatory instabilities

At the instant Fr−1t = Nt∗ = 2, the points between k∗ya0 = 0.2 and k∗ya0 = 0.5 in Fig. 6(c)
correspond to an oscillatory instability with a complex growth rate. This instability exists for the
three Froude numbers considered. The three curves corresponding to the growth rates as function
of the axial wavenumbers rescaled by the instantaneous value of the dipole parameters collapse
(Fig. 6(d)), meaning that the growth rate scales with the instantaneous value of the strain. This
oscillatory instability also exists for the symmetric modes but it is superseded at small wavenumbers
by the Crow instability Fig. 5(c).

Fig. 10(a) represents the axial vorticity of the oscillatory symmetric eigenmode at k∗ya∗ = 1.4
for Fr = 5, Fr−1t = Nt∗ = 2. It consists of a central maximum inside the core of each vortex and two
lobes of opposite sign vorticity at the periphery. This mode is reminiscent of an elliptic instability
involving Kelvin waves of azimuthal wavenumbers m = 0 and |m| = 2 traveling on each vortex
described theoretically by Sipp and Jacquin20 and observed numerically by Donnadieu et al.13

IV. OPTIMAL PERTURBATIONS IN STRATIFIED FLUID

In the case of strong stratification, i.e., for small Froude numbers, the unsteadiness of the flow
questions the validity of the quasi-steady approximation used in Sec. III. In order to study the
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FIG. 10. Oscillatory symmetric instability—same legend as Fig. 7 except that k∗ya
∗= 1.4. The potential energy represents

40% of the total energy. Only the real part of the eigenmode is presented. The imaginary part being similar but with
perturbation in each vortex turned by 90◦, indicating a spiral wave propagating along the vortex axis.

dynamics of this unsteady flow, we explore here a different approach valid with no restriction, in
particular when base flow and perturbations evolve on a similar time scale. We compute for each
time horizon τ, the initial perturbation that will exhibit the largest gain G(τ) in total energy by time
τ,

G(τ) = E(τ)
E(0) . (18)

The total energy is the sum of the kinetic energy Ec(τ) and the potential energy Ep(τ)

E(τ) = Ec(τ) + Ep(τ) =
 Lx

0

 Lz

0

�
ūT .u + Fr−2 ρ̄.ρ

�
dxdz, (19)

where the .̄ and T superscripts denote, respectively, the complex conjugate and the transposition
and Lx and Lz correspond to the integration domain size in the x and z direction defined in
Sec. II A. A direct-adjoint technique (Luchini,21 Corbett and Bottaro22) has been developed in order
to compute the optimal perturbations while taking into account the evolution of the base flow. This
method requires the computation of both the direct and the adjoint evolution operators obtained by
linearizing the Navier-Stokes equation around a time evolving base flow. The scalar product used to
construct the adjoint is

[f ′|f] =
 τ

0

 Lx

0

 Lz

0
f̄ ′T .fdxdzdt =

 τ

0

 Lx

0

 Lz

0
(ū′T .u + p̄′p + ρ̄′ρ)dxdzdt, (20)

where f ′ = (u′,p′, ρ′)T and f = (u,p, ρ)T are two complex state vectors. The adjoint of the linear-
ized Navier-Stokes equations is deduced from Equation (11) using the Lagrange identity23,24 and
rewritten as




−∂u+

∂t
= ΩB × u+ − ∇ × (UB × u+) − ∇p+ − ∇ρB.ρ+ + ρ+ez + Re−1

∆u+

∇.u+ = 0,

−∂ρ
+

∂t
= UB.∇ρ+ − Fr−2u+z + Re−1Sc−1

∆ρ+,

(21)

where [u+,p+, ρ+](x, y, z, t) are the adjoint velocity, pressure, and density perturbations and [UB,ΩB,
ρB] are the base flow, velocity, vorticity, and density at time t.
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A. Equations and numerical method

We consider the reduced state vector, g = (u, ρ)T . In the following, we introduce the inner
products ⟨.|.⟩ of two arbitrary state vectors g1 and g2:

⟨g1|g2⟩ =
 Lx

0

 Lz

0
gT1 .g2 dxdz. (22)

Energy (19) is then defined by

E(t) = ⟨g|Qg⟩, where Q =
*.....
,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Fr−2

+/////
-

. (23)

For a particular time horizon τ, we then look for the initial condition, g(0), that maximizes gain
(18),

Gmax(τ) = maxg(0)
( ⟨g(τ)|Qg(τ)⟩
⟨g(0)|Qg(0)⟩

)
. (24)

The evolution of any initial condition, g(0), is obtained by the integration of Navier-Stokes equa-
tions linearized around time evolving base flow (5) until the time τ leading to the reduced state
vector g(τ). The result of this integration allows the formal definition of the propagator Φ(τ),

g(τ) = Φ(τ) g(0). (25)

The maximal gain is thus defined by

Gmax(τ) = maxg(0)
( ⟨Φ(τ) g(0)|QΦ(τ) g(0)⟩

⟨g(0)|Qg(0)⟩
)
. (26)

Similarly, the backward integration of the adjoint linearized Navier Stokes equations when the base
flow is evolving in time (21) allows to define the adjoint propagator Φ+(τ), which is also the adjoint
of Φ(τ) with respect to inner product (22).22,24 Maximal gain (26) becomes

Gmax(τ) = maxg(0)
( ⟨Φ+(τ)QΦ(τ) g(0)|g(0)⟩

⟨g(0)|Qg(0)⟩
)
. (27)

Hermitian matrix Q (23) is non-singular and its inverse is noted Q−1, then

Gmax(τ) = maxg(0)
( ⟨QQ−1Φ+(τ)QΦ(τ) g(0)|g(0)⟩

⟨g(0)|Qg(0)⟩
)
, (28)

Gmax(τ) = maxg(0)
( ⟨Q−1Φ+(τ)QΦ(τ) g(0)|Qg(0)⟩

⟨g(0)|Qg(0)⟩
)
. (29)

The operator Q−1Φ+(τ)QΦ(τ) is hermitian with respect to the inner product, ⟨.|Q.⟩; thus, the
optimal initial condition is the eigenvector associated to its largest eigenvalue.

The actual procedure to calculate the optimal initial condition and the optimal response at finite
times is as follows: to define the evolving base state, the nonlinear two-dimensional Navier-Stokes
(Equation (5)) is first integrated till time horizon t = τ, starting from an initial state corresponding to
the superposition of two circular Lamb-Oseen vortices of initial aspect ratio a0/b0 = 0.2 as defined
previously. The velocity, vorticity, and density gradient fields of the obtained time dependent base
flow (UB,ΩB,∇ρB) are stored every n time steps n∆t with ∆t the time step of the computation.
The frequency of the base flow storage n is adjusted as a trade-off between memory requirement
and precision: the smaller n the larger the precision but the larger the memory used for the storage
of the base flow time evolution. The variation of the base flow every time step during the direct
and adjoint integrations is regenerated by a linear interpolation between the stored instants. Direct
LNS equation (11) is integrated until time horizon t = τ starting with either divergence-free white
noise or an optimal initial condition computed previously for a different axial wavenumber, as initial

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  147.250.2.201 On: Thu, 26 Nov 2015 08:41:59



106603-17 Ortiz, Donnadieu, and Chomaz Phys. Fluids 27, 106603 (2015)

condition g(t = 0), leading to Φ(τ) g(0). Adjoint LNS equation (21) is then integrated backward
in time setting t ′ = τ − t and g+ = QΦ(τ) g(0) as an initial condition. Adjoint LNS equation (21)
is integrated until t ′ = τ (i.e., back to t = 0). Then, the procedure is reiterated taking as initial
condition for the direct integration: g(t = 0) = Q−1g+(t ′ = τ). The successive direct and adjoint inte-
grations are repeated until convergence is obtained22 i.e., variations of ln(G) smaller than 10−3. This
is usually achieved in about 3 to 4 iterations of the forward and backward integration procedure. The
optimal energy gains are computed independently for each symmetry. In the following, we define
the optimal mean transient growth rate as

σ = ln(Gmax)/2τ, (30)

named for short: transient growth rate.

B. Unstratified flows (Fr = ∞)

For homogeneous fluids (Fr = ∞), the unsteadiness of the base flow is due to viscous diffusion
that induces an increase of the vortex core radius a. The optimal perturbations have been computed
for two distinct time horizons τ = 4 and τ = 10, both times being larger than τ ≃ 2.5, the typical
duration of the transient for a steady dipole determined by Donnadieu et al.13 The aspect ratio of the
base flow has evolved through viscous diffusion from its initial value a0/b0 = 0.2 to a/b = 0.29 at
τ = 4 and a/b = 0.37 at τ = 10.

Fig. 11 displays the dimensional transient growth rate σ∗ scaled either by Γ0/2πb2
0 the initial

strain imposed by one vortex on the other (Figs. 11(a) and 11(b)) or by the instantaneous value of
the strain (Figs. 11(c) and 11(d)) as function of the axial wavenumber k∗y scaled, respectively, by
the initial vortex core radius a0 (Figs. 11(a) and 11(b)) and by the instantaneous value of the vortex
core radius a∗ (Figs. 11(c) and 11(d)). The antisymmetric transient growth rates are displayed in
Figs. 11(a) and 11(c) and the symmetric ones in Figs. 11(b) and 11(d).

1. Long wave dynamics

At low wavenumbers, i.e., for wavenumbers k∗ya0 roughly smaller than 0.6, it is striking that the
transient growth rates are large for both symmetries whereas in the classical stability analysis, anti-
symmetric modes are stable for k∗ya0 < 0.6 and only symmetric modes exhibit the long-wavelength
Crow instability.1 Still, the shapes of the transient growth rate curves are different with only the
symmetric mode presenting a peak at low wavenumber, reminiscent of the Crow instability.

a. Symmetric perturbations. Fig. 12 displays the optimal initial perturbations and optimal re-
sponses at the maximum wavenumber of the low wavenumber peak k∗ya0 = 0.2 at τ = 4 (Figs. 12(a)
and 12(c)) and τ = 10 (Figs. 12(b) and 12(d)) for the symmetric case. The axial vorticity being the
dominant vorticity component for both optimal initial and final perturbations, the transverse and
vertical vorticity components are not reproduced here. The axial vorticity of the optimal response
(Figs. 12(c) and 12(d)) consists of a dipole located on the base flow vortices. Superimposed on
the base flow, it would induce a symmetric displacement of the vortices along lines inclined at
an angle of about 45◦ with nearly no deformations of the internal structure of the vortices. This
optimal response is therefore similar to the eigenmode of the Crow instability. The size of the
region where the vorticity of the optimal response is large has increased between Fig. 12(c) for
τ = 4 and Fig. 12(d) for τ = 10; by doing so, the optimal perturbation keeps corresponding to a 45◦

displacement of the cores that grow by diffusion. On the contrary, the optimal initial perturbation
is nearly independent of the optimization time horizon τ and localized on the contracting manifold
of the lower stagnation point for both time horizons, i.e., in between the two vortices (Figs. 12(a)
and 12(b)). These optimal perturbations can be compared to the investigations of Brion et al.25

on the optimal amplification of the Crow instability which develops on a dipole of aspect ratio
a/b = 0.2. However, in their case, the base flow is frozen, the initial perturbation they consider
is the adjoint eigenmode which is the optimal perturbation only for time going to infinity. Still,
the adjoint Crow mode they have computed is remarkably similar to the present initial optimal
perturbations (Figs. 12(a) and 12(b)) with sheets of opposite sign axial vorticity located between
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FIG. 11. Optimal mean transient growth rates for Fr=∞—transient growth rate σ∗ of the (a) and (c) antisymmetric and (b)
and (d) symmetric unstable modes as function of the axial wavenumber k∗y scaled by (a) and (b) the initial values of the radius
a0, the separation distance b0, and the circulation Γ0 of the vortices and the (c) and (d) instantaneous values of the radius
a∗, the separation distance b∗, and the circulation Γ∗ at time horizons τ = 4 (− −�− −) and τ = 10 (—�—). Thin dashed
lines correspond to the theoretical prediction of Crow for a pair of vortex filaments for an inviscid and homogeneous fluid and
thick dashed lines are the inviscid theory of Le Dizès and Laporte19 for a pair of Lamb-Oseen vortices in a homogeneous fluid
with the viscous correction proposed by Donnadieu et al.13 computed for ReΓ= 2400 for a/b = 0.2. For (a) and (b), these
theoretical predictions are computed with initial parameters of the dipole and for (c) and (d) with instantaneous parameters
of the dipole at τ = 4 and τ = 10.

the vortices. Also their final perturbation is the Crow instability mode similar to the present optimal
final perturbation but more concentrated since the base flow diffusion is not taken into account25

in their study. Such opposite sign vorticity sheets in the axial vorticity correspond to a streamwise
jet between the two base flow vortices. At low wavenumber, this streamwise jet induces spanwise
vorticity perturbations displacing the vortices in a way consistent with the Crow instability.

The predicted growth rate of the Crow instability for a pair of vortex filaments for an inviscid
and unstratified flow is plotted with dashed lines in Figs. 11(b) and 11(d). It predicts a maximum
growth rate at k∗ya0 = 0.19, corresponding to k∗yb0 = 1.05. This theoretical prediction is in good
agreement both in location in k∗ya0 and in height with the transient growth rate computed at both
time horizons, with a better agreement at τ = 10 where the transient growth rate has decreased by
38% compared to τ = 4.

b. Antisymmetric perturbations. Donnadieu et al.13 show that antisymmetric perturbations may
exhibit strong transient growth at early time horizons even though they are stable at large time.
They find transient growth rate for k∗ya0 = 0.2 of 0.6 which is remarkably similar to the mean
growth rate obtained at the same time horizon in the present study in Fig. 11 (about half the growth
rate of the symmetric perturbation). In their study, the base flow is frozen, and the dipole aspect
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FIG. 12. Symmetric optimal perturbations for Fr=∞ at the maximum of the long-wavelength peaks k∗ya0= 0.2—isovalues

of the axial vorticity of the (a) and (b) optimal initial perturbation ω0
y and the (c) and (d) optimal response ω f

y at time horizons
(a) and (c) τ = 4 and (b) and (d) τ = 10 in the (x, z) plane normed by the square root of the total energy of the optimal initial
perturbation. The heavy black lines correspond to the isocontours ωBy/ω

max
By =±exp(−1). The domain shown is 6b0 × 6b0

(whereas the computational domain is 12b0 × 12b0) and has been shifted down vertically to accommodate the downwards
displacement of the dipole.

ratio is a/b = 0.2. At larger horizon time, the aspect ratio has evolved to 0.37 through viscous
diffusion, and the prediction of Donnadieu et al.13 overestimates by a factor 3 at τ = 10 the exact
transient growth rate. For both time horizons, the transient growth rate presents no peak and is even
maximum at k∗ = 0 in contrast to the symmetric case. Antisymmetric optimal initial perturbation
and final response are not shown for the seek of concision but, as for the symmetric case, the
optimal response corresponds to an antisymmetric displacement of the vortices with no deformation
of the vortex cores giving a perturbation dominated by spanwise vorticity with a dipolar shape in
each vortex. The optimal initial perturbation (not shown) is located on the contracting manifolds of
both the upper and the lower stagnation point, and it also differs from the symmetric case since it
is dominated by the vertical vorticity (streamwise vorticity) and not by the spanwise vorticity. This
antisymmetric perturbation induces a meandering of the vortex dipole along its span associated with
a tilt.

2. Short wave dynamics

At large wavenumbers, i.e., for k∗ya0 > 0.6 for both symmetries and both time horizons, we
observe in Fig. 11 a well separated band with an isolated maximum, and we will show in the
following that this corresponds to the elliptic instability. For both symmetries, the wavenumber at
the maximum k∗ya0 = 1.6 at τ = 4 is shifted to the smaller value k∗ya0 = 1.4 at larger time horizon
τ = 10. The width of the peak narrows when time horizon increases from τ = 4 to τ = 10. This nar-
rowing with time suggests that the strong selectivity of the elliptic instability appears progressively
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when the time horizon gets large. The maximum of the transient growth rates of the antisymmetric
perturbation is larger than that of the symmetric mode with a difference of 20% at τ = 4 and of
15% at τ = 10 at the maximum of the bands. We confirm the experimental work of Leweke and
Williamson27 who observed at tΓ/2πb2 = 7.5 that the leading eigenmode is antisymmetric.

Fig. 13 displays the optimal initial perturbations and optimal responses near the maximum of
the peaks k∗ya0 = 1.2 at τ = 4 (Figs. 13(a) and 13(c)) and τ = 10 (Figs. 13(b) and 13(d)) for the
antisymmetric case. As for the long wave dynamics, only the dominant axial vorticity component is
represented. The symmetric perturbations, less unstable than, but similar to, the antisymmetric ones,
are not displayed for the sake of brevity.

At the two instants, the optimal response is located inside the cores of the vortices with an
axial vorticity perturbation which consists of a dipole nested inside the core and surrounded by
two lobes of opposite vorticity at the periphery of each base flow vortex (Figs. 13(c) and 13(d)).
Superimposed on the base flow, this optimal response would induce a displacement of the inner
and outer parts of each vortex core in opposite directions. The optimal response inside each vortex
core is similar to the eigenmode of the first elliptic instability resonance discussed in Fig. 8(a). At
τ = 10, the optimal response (Fig. 13(d)) is spatially more extended than at τ = 4 but comparison
with the bold line visualizing the actual instantaneous size of the cores at each time horizon shows
that the optimal response is quasi-statically adjusted to the vortex core size at the final time, core
that has grown by viscous diffusion. For τ = 10, the outer parts of the axial vorticity of the optimal
response (Fig. 13(d)) located between the two vortices have merged since, at that time, the base flow
vortices are in contact. The optimal initial antisymmetric perturbations (Figs. 13(a) and 13(b)) are

FIG. 13. Antisymmetric optimal perturbations for Fr=∞ at the maximum of the short-wavelength peaks—same legend as
Fig. 12 except that k∗ya

∗= 2.83 and the perturbations are antisymmetric.
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nearly identical: for both time horizons τ = 4 and τ = 10, the axial vorticity is intense on the con-
tracting manifolds of both upper and lower stagnation points (and similar to the low wavenumber
antisymmetric optimal initial perturbations that were not shown in Sec. IV B 1).

For the symmetric case, the optimal initial perturbations (not reproduced here) are similar to
the long wave ones (Fig. 12): the axial vorticity is intense only on the contracting manifold of the
lower stagnation point. It is noticeable that the initial perturbation shape is nearly independent of
the time horizon and depends only on the symmetry which activates different stagnation points.
The symmetric optimal responses at τ = 4 and τ = 10 (not shown) are similar to the antisymmetric
ones except that the sign of the axial vorticity of the perturbations which develop on one vortex is
opposite to the one that develop on the other vortex at the symmetric location.

The inviscid theoretical prediction for the elliptic instability given by Le Dizès and Laporte19

for a pair of Lamb-Oseen vortices of aspect ratio a/b = 0.2 in a homogeneous fluid corrected by the
viscous damping derived by Donnadieu et al.13 computed for ReΓ = 2400 is plotted in Figs. 11(a)
and 11(b) with light grey dashed lines. The maximum of the unstable band predicted by the theory is
at the wavenumber k∗ya∗ = 2.26. This value is larger than the value of the most amplified wavenum-
ber scaled by the initial vortex radius k∗ya0 computed at τ = 4, which is shifted to an even shorter
value at the larger horizon time τ = 10. Figs. 11(c) and 11(d) display the same transient growthrate
σ∗ as function of the axial wavenumber, now rescaled by instantaneous values of the dipole param-
eters a∗, b∗, and Γ∗. When scaled by instantaneous radius a∗, the maximum wavenumber realigns
with that predicted by the elliptic instability theory13 for τ = 4 (Fig. 11(c)). The maximum of the
peak at τ = 10 is at a slightly larger value k∗ya∗ = 2.7. When the final instantaneous parameters of
the dipole are used, not only do the peaks of the shortwave length mode realign but heights also
correspond to the theoretical prediction.

This agreement shows two important facts, first that for both symmetries, the peak in transient
growth rate around k∗ya∗ = 2.4 corresponds to the elliptic mode and that it is quasi-statically lead by
instantaneous values of the dipole parameters. In reality, the transient growth rate takes into account
the entire history; hence, one may imagine that averaged values of ā, b̄, and Γ̄ might yield a better
collapse of the data. We find that the agreement is slightly improved but not significantly and not
worth the complexity (not shown).

The theoretical prediction of Le Dizès and Laporte19 is valid in the limit a/b → 0 and in
particular does not include the perturbation coupling from one vortex to the other and as a result,
symmetric and antisymmetric modes have the same growth rate at this level of approximation.

To better compare the optimal perturbation and the elliptic instability, a numerical linear sta-
bility analysis of a dipole of initial aspect ratio a0/b0 = 0.2 frozen at τ = 10 has been performed
for ReΓ = 2400. Fig. 14 compares the transient growth for the antisymmetric perturbation at τ = 10
with the quasi-steady linear growth rate computed in Sec. III. Both computations agree remarkably
well, and the main difference is a slight shift toward longer wavelength of the maximum tran-
sient growth. The axial vorticity of the eigenmode ωy associated with the maximum instantaneous
growth rate at τ = 10 is represented in Fig. 14(b) and is remarkably similar to the optimal response
at k∗ya0 = 1.2 (Fig. 13(d)). This confirms that the linear instability dominates the optimal response
and is then due to the elliptic instability of the time varying base flow.

This is consistent with Sipp et al.,26 who derive theoretically the instantaneous growth rate of
a perturbation flow field when the base flow evolves with time. Due to the diffusion of the base
flow, the dipole aspect ratio a/b increases with time. Using a shape assumption, the growth rate of
the perturbation at time t is then the growth rate of the leading elliptic mode evaluated for a frozen
base flow corresponding to the dipole aspect ratio at time t corrected by the change in shape of the
corresponding eigenmode with respect to a/b. For ReΓ = 2750, Leweke and Williamson27 observed
an antisymmetric elliptic mode at k∗yb∗ = 8.16 between t∗Γ∗/2πb∗2 = 4.9 and t∗Γ∗/2πb∗2 = 7.5;
the observed amplification rate is σ∗2πb∗2/Γ∗ = 0.94. Sipp and Jacquin20 compute the growth
rate of the perturbation characterized by k∗yb∗ = 8.16 which is found to be σ∗2πb∗2/Γ∗ = 0.99 for
ReΓ = 2750. This is consistent with our rigorous optimisation calculation since (Fig. 11(c)) the anti-
symmetric optimal perturbation at τ = 4 corresponds to a mean growth rate of σ∗2πb∗2/Γ∗ = 1.06,
the optimal wavenumber being k∗ya∗ = 2.33 corresponding to k∗yb = 8.16 since a/b = 0.29 and at
τ = 10 corresponds to a mean growth rate of σ∗2πb∗2/Γ∗ = 1.0, the optimal wavenumber being
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FIG. 14. Comparison between linear stability of the frozen state at τ = 10 and optimal transient growth at τ = 10 for
homogeneous flows—(a) optimal mean transient growth rates at τ = 10 (—•—) and growth rates computed by a linear
stability analysis with a 2D base flow frozen at τ = 10 (– –◦– –) σ∗ of antisymmetric perturbations as function of the axial
wavenumber k∗y, both scaled by instantaneous parameters of the dipole for ReΓ0= 2400 and Fr=∞. (b) Isovalues of the axial
vorticity ωy of the eigenmode in the (x, z) plane at the maximum of the unstable peak of the linear stability analysis at
τ = 10 k∗ya

∗= 2.83 (Fig. 14(a)).

k∗ya∗ = 2.83 corresponding to k∗yb = 8.16 since a/b = 0.37. Both the value of the growth rate and
the evolution of the optimal mean perturbation in the present exact computation legitimate the shape
assumption made in Sipp and Jacquin.20

C. Stratified flows

When the fluid is stably stratified, the unsteadiness of the base flow is due, on top of the viscous
diffusion, to buoyancy effect. Fig. 15 displays the optimal mean transient growth rates σ∗ scaled by
2πb2

0/Γ0, the initial strain imposed by one vortex on the other, for the antisymmetric (Figs. 15(a)
and 15(c)) and symmetric (Figs. 15(b) and 15(d)) cases at two instants τ = 4 (Figs. 15(a) and 15(b))
and τ = 10 (Figs. 15(c) and 15(d)), for ReΓ0 = 2400 and for five Froude numbers Fr = ∞, 10, 5,
2, and 1. Different stratifications are here compared at the same time nondimensionalized by the
dynamical time and not the buoyancy time scale, 1

N
in order to keep a similar diffusion effect.

To compare with the quasi-steady linear stability analysis in Sec. III that were made at fixed time
nondimensionalized by buoyancy time scale, Table I gives the value of Nt∗ = Fr−1t for τ = 4 and
τ = 10 and different Froude numbers. For Fr = ∞, the unsteadiness is solely due to viscosity, and
results have already been shown and discussed in Fig. 11. For Fr = 1, the optimal perturbations
have been computed only at τ = 4 since, at the time τ = 10, the base flow primary vortices have
been completely detrained.

For τ = 4 and τ = 10, it is striking that the transient gain is very similar for all the Froude
numbers above Fr = 2 suggesting that stratification does not affect the instability mechanism down
to Fr = 2. Even for Fr = 2, stratification increases slightly the growth rate of all the wavenumbers
keeping the main trends similar. The effect of density perturbations on the dynamics may be eval-
uated by comparing the respective contribution of the potential and kinetic energy to the optimal
initial perturbation and the optimal response at different instants. Such data are collected in Table III
for k∗ya0 = 0.2 and in Table IV for k∗ya0 = 1.6 of Appendix B.

In all the cases, even at late time τ = 10 for Fr = 2 except for Froude number equal to 1 at
τ = 4 (see Tables III and IV), the potential energy of the initial perturbation is less than 0.5%. The
effect of the initial density perturbation is therefore marginal and can be safely ignored for all times
studied and all Froude numbers except Fr = 1. For Froude number equals to 1, the potential energy
in the initial perturbation is still limited between 5% and 11% of the total energy, the highest value
being reached by the symmetric mode at small wavenumber. Therefore, even for Fr = 1, the optimal
initial perturbation keeps being led by inertial effects and not by gravity effects and for simplicity,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  147.250.2.201 On: Thu, 26 Nov 2015 08:41:59



106603-23 Ortiz, Donnadieu, and Chomaz Phys. Fluids 27, 106603 (2015)

FIG. 15. Optimal mean transient growth rates—σ∗ at two instants (a) and (b) τ = 4 and (c) and (d) τ = 10 for the (a) and
(c) antisymmetric and (b) and (d) symmetric cases as function of the axial wavenumber k∗y scaled by the initial values of
the radius a0, the separation distance b0, and the circulation Γ0 of the vortices for ReΓ0= 2400 and for Fr=∞ (♦, �), Fr
= 10 (◦, •), Fr= 5 (�, ■), Fr= 2 (△, N), and Fr= 1 (▽, ▼).

initial density perturbations field is not presented and discussed here even for Fr = 1. Similarly,
the potential energy of the optimal response is negligible for Fr > 2 at time horizon τ = 4 and
Fr > 5 at time horizon τ = 10 (Tables III and IV). But it cannot be neglected for both symmetries
and both wavenumbers (k∗ya0 = 0.2 and k∗ya0 = 1.6) with Fr = 1 at τ = 4 and Fr = 5 and Fr = 2 at
τ = 10 for which it represents between 30% and 50% of the total energy of the optimal response.
It cannot be neglected either for the symmetric high wavenumber case at Fr = 2 and τ = 4. This
result based on potential energy contribution is coherent with the fact that mean growth rate curves
(Fig. 15) at time horizon τ = 4 depart from the neutral case Fr = ∞ only for Fr smaller than 2
and at time horizon τ = 10 only for Fr smaller than 5. For the two instants (τ = 4, τ = 10) for
which optimal perturbations have been computed, the above discussion shows that potential energy
becomes significant in the optimal response only when Nt∗ is larger than 2, a feature coherent with
the quasi-steady linear stability analysis (Sec. III) for which instantaneous eigenmode involves both
density and inertial effects only when Nt∗ is larger than 2.
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TABLE I. Values of Nt∗=Fr−1t for each Froude number at τ = 4 and
τ = 10.

τ \Fr 10 5 2 1

4 0.4 0.8 2 4
10 1 2 5 10

1. Long wavelength dynamics

At low wavenumbers, as for the unstratified flow, the transient gains are large for both symmetries.
a. Symmetric perturbations. For the symmetric case, the optimal transient growth rate presents

a peak around k∗ya0 = 0.2 for the Froude numbers larger than or equal to 2 at τ = 4 and larger than
or equal to 5 at τ = 10. This peak is of similar strength for all Froude numbers, and we shall see
that, as already discussed for Fr = ∞, it corresponds to the Crow instability. Figs. 16 and 17 display
the axial vorticity of the optimal perturbations (which is presently the largest component of vorticity
perturbations) at τ = 4 (Fig. 16) and τ = 10 (Fig. 17) for the symmetric case at k∗ya0 = 0.2 close to
the maximum optimal gain for the three Froude numbers Fr = 5, 2, and 1.

At the earlier time τ = 4 for Fr = 2, the axial vorticity of optimal initial and final perturbations
is not affected by stratification and is similar to the unstratified flow (Fr = ∞). The axial vorticity

FIG. 16. Transient Crow type instability: symmetric optimal perturbations for the long-wavelength peaks (k∗ya0= 0.2 at
τ = 4)—isovalues of the axial vorticity of the (a) and (b) optimal initial perturbations ω0

y and the (c) and (d) optimal responses

ω
f
y at the time horizon τ = 4 in the (x, z) plane normed by the total energy of the optimal initial perturbation. For (a) and (c)

Fr= 2 and (b) and (d) Fr= 1. The thick black lines materialize the “core” of the vortices and correspond to the isocontours
ωBy/ω

max
By =±exp(−1). The size of the domain shown is 3.5b0×3.5b0 whereas the computation domain is 12b0×12b0 and

the domain is shifted to follow the vortices in their descent.
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FIG. 17. Transient Crow type instability: symmetric optimal perturbations for the long-wavelength peaks (k∗ya0= 0.2) at
τ = 10—same legend as Fig. 16 but at τ = 10, for (a)-(c) Fr= 5 and (a)-(c) Fr= 2, and the size of the domain shown is
3.5b0×3.5b0 except for figure (h) where it is 6b0 × 6b0 (the dashed box represents a domain of size 3.5b0 × 3.5b0 for
comparison with other figures).

of the optimal response consists of a tilted dipolar perturbation on each vortex which, as already
discussed several times, induces a symmetric displacement of the vortices as a whole as in the Crow
mechanism. These dipolar perturbations are slightly closer for Fr = 2 (Fig. 16(c)) when compared
to Fr = ∞ (Fig. 12(c)) since the stronger the stratification, the faster the vortices come closer. But
the effect of the stratification is moderate since, for Fr = 2, the potential energy is less than 17% of
the total final energy as shown in Table III of Appendix B.

For Fr = 1, the initial and final symmetric perturbations at τ = 4 are very different from larger
Froude numbers since, for Fr = 1, the dipole is rapidly distorted while moving against the stratifi-
cation. Still initial optimal perturbations are mainly inertial (Table III of Appendix B) and the mean
growth rate is very similar to the unstratified case despite the much more complex optimal response
structure with large axial vorticity perturbations located in the wake of the dipole (Fig. 17), the axial
vorticity being still the largest component of the vorticity for both the initial and final perturbations.

b. Antisymmetric perturbations. The picture is radically different for the antisymmetric mode
for which the mean growth rate strongly increases with decreasing Froude number. At τ = 4 and for
Fr = 2, the mean growth rate of the antisymmetric mode equals the one of the symmetric modes and
for Fr = 1, it supersedes the symmetric mode growth rate by 50% with a final optimal response still
dominated by kinetic energy. At time horizon τ = 10, the antisymmetric optimal mean growth rate
becomes larger than the symmetric one for Fr = 2. In the response, both for Fr = 5 and Fr = 2, the
potential energy is now as important as the kinetic energy for both τ = 4 and τ = 10 (Table III). The
explanation for the enhanced instability is lacking but comes from the destabilizing effect of density
perturbations.
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For concision, the structure of the antisymmetric initial and final optimal perturbation is not
shown here, since final perturbations resemble the symmetric one but with the opposite symmetry and
the initial perturbations are close to the unstratified one with perturbations located on the contracting
manifold of both stagnation points and not mainly on the lower one as for the symmetric case.

2. Short wavelength dynamics

The antisymmetric and symmetric transient growth rates present an extremum around k∗ya0 =

1.6 for all Froude numbers and time horizons τ = 4 and τ = 10. At τ = 4, the transient growth
rate of antisymmetric perturbations at k∗ya0 = 1.6 doubles when going from Fr = ∞ to Fr = 1
(Fig. 15(a)) and the same is observed in Fig. 15(b) for the symmetric mode. At τ = 10, the tran-
sient growth rate decreases for the symmetric mode (Fig. 15(d)) and for the antisymmetric mode
between Fr = ∞ and Fr = 10 only and even increases at k∗ya0 = 1.6 for Fr = 5 (Fig. 15(c)) but
negligible for the symmetric mode (Fig. 15(d)). The increase of the transient growth rate when
the Froude number decreases is coherent with the instantaneous linear elliptic instability since the
smaller the Froude number the closer the vortices and the stronger the elliptic instability. Fig. 18
(respectively, Fig. 19) displays the axial vorticity of antisymmetric optimal perturbations for the
wavenumber with the larger growth rate k∗ya0 = 1.6 for τ = 4 both for Fr = 2 and Fr = 1 (respec-
tively, k∗ya0 = 1.4 for τ = 10 for Fr = 5 and Fr = 2). Symmetric perturbations, less unstable, are not
shown but their optimal final perturbation structure is similar to the antisymmetric one whereas their
initial perturbations resemble the one obtained for small wavenumber (Figs. 16(a), 17(a), and 17(b))
with perturbation only on the contracting manifold of the lower stagnation point.

FIG. 18. Transient elliptic type instability: antisymmetric optimal perturbations for the short-wavelength k∗ya0= 1.6 for
Fr= 2 and Fr= 1 at τ = 4—same as Fig. 16 except that the perturbations are antisymmetric and kya0= 1.6.
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FIG. 19. Transient instability: antisymmetric optimal perturbations for the short-wavelength k∗ya0= 1.4 at τ = 10—same as
Fig. 16 except that τ = 10, the perturbations are antisymmetric, k∗ya0= 1.4 and (a)-(c) Fr= 5 and (a)-(c) Fr= 2. Note that the
size of the domain shown is 5b0 × 5b0 for (d) (larger than the domain of size 3.5b0 × 3.5b0 represented by a dashed box
for comparison with other figures).

For τ = 4 as Froude number decreases, the optimal initial perturbation evolves and its
maximum axial vorticity migrates from the symmetry axis (Fig. 18(a)) to the contracting mani-
folds of the upper stagnation point of the base flow (Fig. 18(b)). The final optimal perturbation
in each vortex resembles the elliptic mode with the characteristic dipolar perturbation of the axial
vorticity concentrated inside the core of the vortex surrounded by opposite sign vorticity perturba-
tion corresponding to the out of phase deformation between the core and periphery of the vortices.
Surprisingly for Fr = 1 when vortices are nearly collapsed by time τ = 4 (see the thick lines rep-
resenting the core of the vortices of Figs. 18 and 19), the final perturbations stay inside the cores
surrounded by opposite sign vorticity in a structure reminiscent of the elliptic instability. On top
of these perturbations similar to the elliptic modes located on the base flow vortices, large axial
vorticity perturbations exist in the wake which develops behind the dipole (Figs. 18(c) and 18(d)).

At larger time τ = 10, the vortices have totally collapsed for Fr = 2, and the optimal response
is then concentrated in the wake of the dipole where it is made of transverse (not shown) and axial
(Fig. 19(d)) vorticity components with negligible vertical vorticity (not shown).

The optimal response shows the importance of the wake of the dipole that is not captured by
the instantaneous linear stability analysis. As for the long wavelength dynamics discussed above,
the density perturbations are associated with negligible potential energy compared to the kinetic
energy of the perturbation for all Froude numbers computed (Table IV Appendix B) at time horizon
τ = 4, but at time horizon τ = 10, equipartition is achieved both for Fr = 2 and 5. For Fr = 5, the
vorticity of the optimal response is still reminiscent of the elliptic mode (Fig. 19), suggesting that
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density perturbations might not modify the instability mechanism and are generated by velocity
perturbation.

V. CONCLUSION

The effects of the stratification on the two- and three-dimensional dynamics of a Lamb-Oseen
vortex pair are investigated. The Froude numbers considered vary from∞ to 1.

The temporal evolution of the 2D flow has been computed using direct numerical simulations.
As observed by Garten et al.,7 the vorticity created by the baroclinic torque which appears around
the dipole pushes the two vortices closer together, resulting in an increase of the deformation of
each vortex core. At later stages, a wake develops behind the dipole. Due to the presence of the
stratification, the dipole parameters (radius a, separation distance b, and circulation Γ) evolve with
time. Temporal evolutions of these parameters once scaled by the Brunt-Väisälä frequency are
nearly independent of the Froude number. The advection time of the dipole remains constant on
a time scale of the order of the inverse of the Brunt-Väisälä frequency for all the stratifications
whereas the ellipticity of the vortices, measured here by the ratio of their core size a of their
separation distance b, rapidly increases.

Both the stability analysis freezing the flow (i.e., using the quasi-steady approximation) and
transient growth analysis on the time evolving base flow show, in presence of vertical stratification,
that the growth of the perturbation is dominated by inertial mechanism associated with the develop-
ment of Crow at long wavelength and elliptic modes at short wavelength for both symmetries. Up to
time Nt∗ = Fr−1t = 4 and for Froude numbers down to unity, the effect of the stratification is mainly
to enhance the development of the elliptic instability by bringing the vortices closer together and
therefore increasing their ellipticity confirming the mechanism proposed by Nomura et al.12 Even
though inertial effects in the vortices dominate the dynamics, optimal response is not limited to the
core of the vortices and affects also the wake of the dipole. In the present study, only order one ratio
of the core to the distance of the vortices has been considered. Such vortices do not correspond to
aircraft vortices that are more concentrated, still since we show that down to Froude number unity
the dynamics is mainly led by the elliptic instability, therefore by inertial effects rather than gravity

FIG. 20. Comparison between quasi-steady linear growth rate and optimal mean transient growth rate at Nt∗=Fr−1t = 2 for
stratified flows—transient growth rate (closed symbols) and growth rates σ∗ (open symbols) from the quasi-steady linear
stability analysis on the final frozen state of the antisymmetric modes as function of the axial wavenumber k∗y scaled with
the initial values of the radius a0, the separation distance b0, and the circulation Γ0 of the vortices at Nt∗=Fr−1t = 2 for
ReΓ0= 2400 and for Fr= 5 (�, ■) and Fr= 2 (△, N).
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effects, we may conjecture that the mechanism described in this study should be retrieved. How-
ever, the investigation of such aircraft trailing vortices requires very high resolution and deserves a
thoughtful study out of the scope of the present paper before asserting such a conclusion.

For the short wave instability comparison between the linear stability (Sec. III) and optimal
perturbations (Sec. IV), analysis is plotted in Fig. 20 for the antisymmetric case at Nt∗ = 2 for
Fr = 5 and Fr = 2 corresponding, respectively, to τ = 10 and τ = 4. The quasi-steady linear growth
rates (s) are shown in Fig. 6(c) and the transient growth rates (T) in Figs. 15(a) and 15(c). For
the less stratified flow Fr = 5, the results compare relatively well for the short-wavelength peak,
while for the strongly stratified case Fr = 2, the two curves differ. Positions of the maximum are
close (k∗ya0 = 1.2 for optimal perturbations and k∗ya0 = 1.36 for quasi-steady analysis) but the cor-
responding transient growth rate for the optimal perturbations is lower by 30% than the growth rate
computed with quasi-steady analysis. The peak is broader for the optimal perturbations indicating
that the optimal perturbations are less selective than predicted by quasi-steady theory a property
already observed and discussed for the unstratified case.

APPENDIX A: VALIDATION OF THE DIRECT-ADJOINT TECHNIQUE WHICH TAKES
INTO ACCOUNT THE EVOLUTION OF THE BASE FLOW

In order to validate our method, the results of the new code that takes into account the evolu-
tion of the base flow have been compared to the former one where the base flow is frozen in the
unstratified case. For the former code, the aspect ratio of the dipole of the base flow was a/b = 0.2.
Therefore, the optimal perturbations were computed for a dipole of initial aspect ratio a0/b0 = 0.2
for a Reynolds number ReΓ0 = 2000 and for Fr = ∞ at τ = 1. Between t = 0 and t = 1, the radius
of the vortices has grown by 2% through viscous diffusion but the separation distance between
the vortices and the circulation of the vortices has remained constant. The optimal perturbations
at τ = t∗Γ∗/2πb∗2 = 1 on a dipole of aspect ratio a/b = 0.2 computed with the former code for
ReΓ = 2000 and for a homogeneous fluid, corresponding to case 1 of Table II, have first been
compared to the optimal perturbations computed with the new code which takes into account the
evolution of the base flow but the initial state, consisting in the elliptic counter-rotating vortices of
aspect ratio a0/b0 = 0.2 in the reference frame of the dipole, was read at t = 0 and frozen during the
forward and backward integrations, corresponding to case 2 of Table II. The enstrophy of optimal
initial perturbations (Figs. 21(a) and 21(c)) and optimal responses (Figs. 21(b) and 21(d)) is similar
and the transient growth rates (cases 1 and 2 of Table II) are equal. Case 1 of Table II has then be
compared to the optimal perturbations computed with the new code which takes into account the
evolution of the base flow with initial state consisting of two circular Lamb-Oseen vortices of initial
aspect ratio a0/b0 = 0.2, which is read every 10∆t and computed every ∆t via a linear interpolation
as mentioned in Sec. IV A; this corresponds to case 3 of Table II. The mean growth rate (case 3
of Table II) is 2% lower than case 1, which is in agreement with the growth of the radius of the
vortices through viscous diffusion: the position of the maximum is shifted to a shorter value and,
consequently, the growth rate is smaller at k∗ya0 = 2.26 since it is not the maximum of the peak
anymore.

The accuracy of the computations has been tested for several values of n, n∆t being the rate
at which the base flow is updated for the interpolation procedure: the same computation as case 3
is performed with the base flow read every 40∆t (case 4 of Table II), 100∆t (case 5 of Table II),

TABLE II. Validation–computational accuracy of the growth rate σ∗2πb2
0/Γ0 for the antisymmetric case at kya0= 2.26 for

ReΓ= 2000 and for Fr=∞ at τ = 1 (cases 1 to 5) and Fr= 2 at τ = 4 (cases 7, 8, 9). The bold cases correspond to the values
of n chosen for the computation of optimal perturbations of Sec. IV.

Fr=∞ Fr= 2

Case 1 2 3 4 5 6 7 8 9

n 0 0 10 40 100 200 40 100 200
σ∗2πb2

0/Γ0 1.80 1.80 1.76 1.76 1.75 1.74 1.29 1.28 1.24
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FIG. 21. Validation–enstrophy of (a), (c), and (e) the optimal perturbation and (b), (d), and (f) the optimal response of the
antisymmetric case at the maximum of the elliptic instability band kya0= 2.26 for ReΓ= 2000 and Fr=∞ at τ = 1. (a) and
(b) Former code (Donnadieu et al.13) which does not take into account the evolution of the base flow. (c) and (d) New code
which takes into account the evolution of the base flow but with a frozen base flow with an aspect ratio a/b = 0.2. (e) and (f)
New code which takes into account the evolution of the base flow, which is read every 40∆t . The size of the domain shown
is 3b×3b whereas the computation domain is 3b×3b for (a) and (b) and 6b×6b for (c)-(f).

and 200∆t (case 6 of Table II). The optimal perturbations corresponding to case 4 of Table II
are displayed in Figs. 21(e) and 21(f). The spatial distribution of the enstrophy of optimal initial
perturbation and optimal response computed on this transiently and diffusing dipole (Figs. 21(e) and
21(f)) is similar to frozen case 1 (Figs. 21(a) and 21(b)) except that the optimal response is at a
lower height since the base flow vortices have propagated downwards between t = 0 and t = 1. The
growth rate of case 4 is equal to case 3, whereas it is lower by 0.5% for case 5 and by 1% for case 6.

For the stratified flows, the base flow changes strongly between t = 0 and final time horizon: on
top of viscous diffusion, the buoyancy force deforms the vortices and baroclinic vorticity appears
around and behind the dipole. Therefore, the accuracy of the computations has also been tested for
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the moderately stratified fluid Fr = 2 at τ = 4 for k∗ya0 = 2.26 (cases 7, 8, and 9 of Table II). The
growth rate of case 7 (n = 40) is larger by 1% than case 8 (n = 100) and by 4% than case 9 (n = 200).

The value of n has been chosen equal to 40 for τ = 4 and to 100 for τ = 10 which provides the
best compromise between accuracy and use of memory.

APPENDIX B: TABLE COLLECTING VALUES OF KINETIC AND POTENTIAL ENERGY
OF OPTIMAL PERTURBATIONS

TABLE III. Energy normed by the initial total energy at large scale k∗ya0= 0.2, E0, Ef stand for the initial and final energy,
the indices c and p for kinetic and potential energy.

Antisymmetric

τ = 4 τ = 10

Fr 10 5 2 1 10 5 2

E0
c 1 1 0.997 0.964 1 1 0.994

E0
p 1.365 × 10−6 7.250 × 10−5 3.086 × 10−3 3.624 × 10−2 3.29 × 10−6 1.524 × 10−4 6.080 × 10−3

Ef 1.256 × 102 1.551 × 102 1.261 × 103 2.673 × 105 1.486 × 102 7.719 × 102 2.173 × 107

E f
c 1.228 × 102 1.445 × 102 1.106 × 103 2.169 × 105 1.073 × 102 5.270 × 102 1.117 × 107

Ef
p 2.727 10.60 1.551 × 102 5.040 × 104 0.413 × 102 2.449 × 102 1.056 × 107

Symmetric

τ = 4 τ = 10

Fr 10 5 2 1 10 5 2

E0
c 1 1 0.994 0.886 1 1 0.995

E0
p 4.429 × 10−7 2.765 × 10−5 5.475 × 103 0.114 5.146 × 10−7 2.970 × 10−5 5.311 × 10−3

Ef 3.947 × 103 4.112 × 103 5.680 × 103 1.016 × 104 1.663 × 106 4.389 × 106 6.222 × 105

Ef
c 3.913 × 103 3.974 × 103 4.715 × 103 7.450 × 103 1.414 × 106 2.189 × 106 2.778 × 105

Ef
p 33.95 1.383 × 102 9.648 × 102 2.713 × 103 2.490 × 105 2.200 × 106 3.444 × 105

TABLE IV. Energy normed by the initial total energy at k∗ya0= 1.6.

Antisymmetric

τ = 4 τ = 10

Fr 10 5 2 1 10 5 2

E0
c 1 1 0.999 0.938 1 1 0.999

E0
p 3.702 × 10−7 2.743 × 10−5 1.068 × 10−3 6.179 × 10−2 4.031 × 10−7 2.631 × 10−5 1.074 × 10−3

Ef 4.166 × 103 3.377 × 103 6.805 × 104 4.238 × 107 5.281 × 107 4.158 × 109 3.408 × 1011

Ef
c 4.152 × 103 3.350 × 103 6.019 × 104 3.663 × 107 4.358 × 107 2.036 × 109 2.006 × 1011

Ef
p 13.30 26.53 7.854 × 103 5.743 × 106 9.228 × 106 2.122 × 109 1.402 × 1011

Symmetric

τ = 4 τ = 10

Fr 10 5 2 1 10 5 2

E0
c 1 1 0.997 0.954 1 1 0.993

E0
p 6.759 × 10−7 4.463 × 10−5 3.115 × 10−3 4.597 × 10−2 7.331 × 10−7 5.536 × 10−5 6.550 × 10−3

Ef 1.178 × 103 1.257 × 103 1.185 × 104 2.010 × 106 2.792 × 106 4.972 × 107 3.350 × 107

Ef
c 1.124 × 103 9.835 × 102 8.469 × 103 1.663 × 106 2.322 × 106 1.739 × 107 1.596 × 107

Ef
p 53.62 2.740 × 102 3.377 × 103 3.478 × 105 4.700 × 105 3.233 × 107 1.754 × 107
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