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On the Hybrid Craḿer-Rao bound and its

application to dynamical phase estimation
St́ephanie Bay, Benoit Geller, Alexandre Renaux,Member, IEEE, Jean-Pierre Barbot and Jean-Marc

Brossier

Abstract

This letter deals with the Craḿer-Rao bound for the estimation of a hybrid vector with both random and

deterministic parameters. We point out the specificity of the case when the deterministic and the random vectors

of parameters are statistically dependent. The relevance of this expression is illustrated by studying a practical phase

estimation problem in a non data-aided communication context.

I. I NTRODUCTION

A natural problematic when designing an estimator is the evaluation of its performance. Lower bounds on the

Mean Square Error (MSE) mainly answer this question and the well known Cramér-Rao Bound (CRB) is widely

used by the signal processing community. Depending on assumptions on the parameters, the CRB has different

expressions. When the vector of parameters is assumed to be deterministic, we obtain the standard CRB [1] and

when the vector of parameters is assumed to be random with ana priori probability density function (pdf), we

obtain the so-called Bayesian CRB [2].

At the end of the eighties, an extension combining both the standard and the Bayesian CRBs has been proposed

[3]. Indeed, in some practical scenarios, it is natural to represent the parameter vector by a deterministic part and

by a random part. This bound has thus been called the Hybrid CRB (HCRB) and a nice tutorial can be found in [4].

Until now, results available in the literature essentially focussed on the case where the deterministic part and the

random part of the parameter vector are assumed to be statistically independent (see,e.g., Eqn. (5) in [3], Eqn. (13)
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in [4] and Eqn. (13) in [5]). To the best of our knowledge, a closed-form expression of the HCRB with a statistical

dependence between the deterministic and the random parameters has never been reported in the literature. The

goal of this paper is then twofold. First, in Section II, we remind the structure of the HCRB and we point out

the specificity of the case when the deterministic part and the random part of the parameter vector are statistically

dependent. Second, in Section III, motivated by this analysis we give a closed-form expression of the proposed

bound in the practical case of a dynamical phase subject to a linear drift in a non data-aided communication context.

II. T HE HYBRID CRAMÉR-RAO BOUND

A. Background

Let µ =
(
µT

r µT
d

)T ∈ Rn be the parameter vector that we have to estimate. This vector is split into two sub-

vectorsµd andµr whereµd is assumed to be a(n−m)×1 deterministic vector andµr is assumed to be am×1

random vector with ana priori pdf p (µr). The true value ofµd will be denotedµ?
d. We considerµ̂(y) as an

estimator ofµ wherey is the observation vector. The HCRB satisfies the following inequality on the MSE

Ey,µr|µ?
d

[
(µ̂(y)− µ) (µ̂(y)− µ)T

∣∣∣
µ?

d

]
≥ H−1 (µ?

d) , (1)

whereH (µ?
d) ∈ Rn×n is the so-called Hybrid Information Matrix (HIM) defined as [3]

H (µ?
d) = Ey,µr|µ?

d

[
− ∆µ

µ log p(y, µr|µd)
∣∣
µ?

d

]
, (2)

where
[
∆ν

η

]
k,l

= ∂2

∂[η]k∂[ν]l
.

When the deterministic and the random parts of the parameter vector are assumed to be independent, and after

some algebraic manipulations, the HIM can be rewritten as (see [4], Eqn. (18))

H (µ?
d) = Eµr [F(µ?

d, µr)] +


 Eµr

[−∆µr
µr

log p (µr)
]

0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)


 , (3)

where

F(µ?
d, µr) = Ey|µ?

d,µr

[
− ∆µ

µ log p(y|µd, µr)
∣∣
µ?

d

]
. (4)

With this aforementioned structure, it is straightforward to reobtain the standard and the Bayesian CRBs. Indeed,

if µ = µd, we have

H−1 (µ?
d) =

(
Ey|µ?

d

[
− ∆µd

µd
log p(y|µd)

∣∣∣
µ?

d

])−1

, (5)

which is the standard CRB, and, ifµ = µr, we have

H−1 =
(
Ey,µr

[
−∆µr

µr
log p(y|µr)

]
+ Eµr

[−∆µr
µr

log p (µr)
])−1

, (6)

which is the Bayesian CRB.
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B. Extension whenµr and µd are statistically dependent

We now assume a possible statistical dependence betweenµr andµd. In other words,µr is now assumed to be

a m× 1 random vector with ana priori pdf p (µr|µ?
d) 6= p (µr).

Based on the HIM definition given by Eqn. (2) and expending the log-likelihood aslog p
(
y, µr|µ?

d

)
= log p (y|µ?

d,µr)+

log p (µr|µ?
d), we obtain the following HIM

H (µ?
d) = Eµr|µ?

d
[F(µ?

d, µr)] + Eµr|µd
?

[
− ∆µ

µ log p (µr|µd)
∣∣
µ?

d

]
, (7)

whereF(µ?
d, µr) is given by Eqn. (4).

In order to explicitly show the modification in comparison with the HIM given by Eqn. (3),H (µ?
d) can be

rewritten as follows

H (µ?
d) = Eµr|µ?

d
[F(µ?

d, µr)] + Eµr|µ?
d





 −∆µr

µr
log p (µr|µ?

d) − ∆µr
µd

log p (µr|µd)
∣∣
µ?

d(
− ∆µr

µd
log p (µr|µd)

∣∣
µ?

d

)T

− ∆µd
µd

log p (µr|µd)
∣∣
µ?

d





 . (8)

Obviously, if we assumep (µr|µd) = p (µr) in this expression, we straightforwardly reobtain Eqn. (3).

Based on this structure, one now has to prove that there is still an inequality,i.e., a lower bound on the MSE,

Ey,µr|µ?
d

[
(µ̂(y)− µ) (µ̂(y)− µ)T

∣∣∣
µ?

d

]
≥ H−1 (µ?

d) , (9)

whenH (µ?
d) is given by Eqn. (8).

Proof: Following the idea of [4] to prove the inequality (1), one defines a vectorh such that

h =


 ∇µ log p (y, µr|µd)|µ?

d

µ̂ (y)− µ|µ?
d


 , (10)

where∇µ =
(

∂
∂[µ]1

· · · ∂
∂[µ]n

)T

.

Consequently, the non-negative definite matrixG (µ?
d) = Ey,µr|µ?

d

[
hhT

]
can be decomposed as the following

block matrix

G (µ?
d) =


 H (µ?

d) L (µ?
d)

LT (µ?
d) R (µ?

d)


 , (11)

whereR (µ?
d) is the covariance matrix of̂µ (y), i.e.,

R (µ?
d) = Ey,µr|µ?

d

[
(µ̂(y)− µ) (µ̂(y)− µ)T

∣∣∣
µ?

d

]
, (12)

and, whereL (µ?
d) is given by

L (µ?
d) = Ey,µr|µ?

d

[
∇µ log p (y, µr|µd)|µ?

d

(
µ̂ (y)− µ|µ?

d

)T
]

. (13)

SinceG (µ?
d) ≥ 0, its Schur complement satisfies

R (µ?
d) ≥ LT (µ?

d)H
−1 (µ?

d)L (µ?
d) . (14)

It is straightforward to show that, for an unbiased estimator w.r.t. the pdfp (y,µr|µ?
d), L (µ?

d) = In×n.

Consequently, the inequality (9) is proved andH−1 (µ?
d) is a lower bound on the MSE.
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III. HCRB FOR A DYNAMICAL PHASE ESTIMATION PROBLEM

In [6], we have proposed a closed-form expression of the Bayesian CRB for the estimation of the phase offset for

a BPSK transmission in a non data-aided context. In this section, we extend these previous results by providing a

closed-form expression of the HCRB for the estimation of the phase offset and also of the linear drift. In this more

realistic scenario, we show that we have to take into account the statistical dependence between the parameters

and, consequently, the HCRB given by Eqn. (3) is not adapted to this problem.

A. Observation and state models

We consider a linearly modulated signal, obtained by applying to a square-root Nyquist transmit filter an unknown

symbol sequencea = (a1 · · · aK)T taken from a unit energy BPSK constellation. The signal is transmitted over

an additive white Gaussian noise channel. The output signal is sampled at the symbol rate which yields to the

observations

yk = akejθk + nk with k = 1 . . .K, (15)

where{nk} is a sequence of i.i.d., circular, zero mean complex Gaussian noise variables with varianceσ2
n. We

consider that the system operates in a non Data-Aided synchronization mode,i.e., the transmitted symbols are i.i.d.

with Pr(ak = ±1) = 1
2 .

In practice, several sources of distortions affect the phase. An efficient model representing these effects is the

so-called Brownian phase with a linear drift widely studied in the literature (see,e.g., [7] [8] [9]). This model

takes into account a constant frequency shift between the oscillators of the transmitter and of the receiver, the

uncertainities due to clocks, and, the jitters of oscillators. The Brownian phase model with a linear drift is given

as follows

θk = θk−1 + ξ + wk with k = 2 . . . K, (16)

where, for any indexk, {θk} is the sequence of phases to be estimated,ξ represents the deterministic unknown

linear drift with true valueξ?, and where{wk} is an i.i.d. sequence of centered Gaussian random variables with

known varianceσ2
w.

The parameter vector of interest is then made up of both random and deterministic parametersµ =
(
µT

r µd

)T

whereµr= θ =(θ1 · · · θK)T andµd = ξ. Moreover, from Eqn. (16), it is clear thatp (θ| ξ?) 6= p (θ).

B. Derivation of the HCRB

For notational convenience, we drop the dependence of the different matrices onµ?
d = ξ? in the remainder of

this paper. From Eqn. (8), the HIMH can be rewritten into a block matrixH =


 H11 h12

h21 H22


, where,





H11 = Ey,θ|ξ?

[
− ∆θ

θ log p (y|θ, ξ)
∣∣
ξ?

]
+ Eθ|ξ?

[−∆θ
θ log p (θ|ξ?)

]
,

h12 = hT
21 = Ey,θ|ξ?

[
− ∆ξ

θ log p (y|θ, ξ)
∣∣∣
ξ?

]
+ Eθ|ξ?

[
− ∆ξ

θ log p (θ|ξ)
∣∣∣
ξ?

]
,

H22 = Ey,θ|ξ?

[
− ∆ξ

ξ log p (y|θ, ξ)
∣∣∣
ξ?

]
+ Eθ|ξ?

[
− ∆ξ

ξ log p (θ|ξ)
∣∣∣
ξ?

]
.

(17)
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These blocks only depend on the log-likelihoodslog p (y|θ, ξ?) and log p (θ| ξ?). Let us sety =(y1 · · · yK)T

and assume that the initial phaseθ1 does not depend onξ, i.e., p (θ1|ξ?) = p (θ1). Using Eqn. (15) and (16),i.e.,

the Gaussian nature of the noise and the equiprobability of the symbols, one has




log p (y|θ, ξ?) =
∑K

k=1

(
− log

(
πσ2

n

)− 1+‖yk‖2
σ2

n
+ log

(
cosh

(
2

σ2
n
<{

yke−jθk
})))

,

log p (θ|ξ?) = log p (θ1) + (K − 1) log
(

1√
2πσw

)
−∑K

k=2
(θk−θk−1−ξ?)2

2σ2
w

.
(18)

• Expression ofH11: assuming that we have no prior knowledge,i.e., Eθ1

[
∆θ1

θ1
log p(θ1)

]
= 0, it is shown in

[6] (due to the order one Markov structure exhibited by Eqn. (16)) thatH11 takes the following tridiagonal

structure

H11 = b




A + 1 1 0 · · · 0

1 A 1
. ..

...

0
. . .

.. .
. .. 0

...
. . . 1 A 1

0 · · · 0 1 A + 1




, (19)

whereb = −1/σ2
w, and, whereA = −σ2

wJD − 2 with JD = Ey,θ|ξ?

[
−∆θk

θk
log p (yk|θk, ξ?)

]
.

• Expression ofh12: since, from Eqn. (18),log p (y|θ, ξ?) is independent ofξ?, ∆ξ
θ log p (y|θ, ξ)

∣∣∣
ξ?

= 0.

Consequently,

h12 = Eθ|ξ?

[
− ∆ξ

θ log p (θ|ξ)
∣∣∣
ξ?

]
. (20)

Using the state model, we have




∆θ1
ξ log p (θ|ξ)

∣∣∣
ξ?

= − 1
σ2

w
,

∆θK

ξ log p (θ|ξ)
∣∣∣
ξ?

= 1
σ2

w
,

∆θk

ξ log p (θ|ξ)
∣∣∣
ξ?

= 0 for k ∈ {2, . . . , K − 1} .

(21)

Applying the expectation operatorEθ|ξ? [.], we obtain

h12 =
(

1
σ2

w
01×K−2 − 1

σ2
w

)T

. (22)

• Expression ofH22: since, from Eqn. (18),log p (y|θ, ξ?) is independent ofξ?, ∆ξ
ξ log p (y|θ, ξ)

∣∣∣
ξ?

= 0.

Consequently,

H22 = Eθ|ξ?

[
− ∆ξ

ξ log p (θ|ξ)
∣∣∣
ξ?

]
=

K − 1
σ2

w

. (23)

• Expression of the HCRB: we now give the expression ofH−1 which bounds the MSE. Thanks to the block-

matrix inversion formula, we have

H−1 =


 H−1

11 + VK − 1
λH−1

11 h12

− 1
λhT

12H
−1
11

1
λ


 , (24)

whereλ = K−1
σ2

w
− hT

12H
−1
11 h12 andVK = 1

λH−1
11 h12hT

12H
−1
11 .

February 20, 2008 DRAFT
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We start to computeλ corresponding to the inverse of the minimal bound on the MSE ofξ. Due to the

particular structure of matricesH11 andh12 (Eqn. (19) and (22)), we obtain

λ =
K − 1

σ2
w

− 2
σ4

w

([
H−1

11

]
1,1
− [

H−1
11

]
1,K

)
. (25)

From Eqn. (19), thanks to the cofactor expression in the matrix inversion formula we have for any indexk,
[
H−1

11

]
1,k

= bk−1

|H11| (dK−k + b dK−k−1) wheredk is the determinant of the followingk × k matrix Dk

Dk = b




A 1 0 · · · 0

1 A 1
. . .

...

0
. . .

.. .
. . . 0

...
. . . 1 A 1

0 · · · 0 1 A




. (26)

The sequence{dk} satisfies the following recursive equationdk = Ab dk−1 − b2 dk−2 with d0 = 1 and

d1 = bA. dk can thus be written asdk = ρ1 (r1)
k + ρ2 (r2)

k wherer1, r2, ρ1 andρ2 are given by




r1 = b
2

(
A +

√
A2 − 4

)
, r2 = b

2

(
A−√A2 − 4

)
,

ρ1 =
√

A2−4+A
2
√

A2−4
, ρ2 =

√
A2−4−A
2
√

A2−4
.

(27)

Consequently,
[
H−1

11

]
1,k

=
bk−1

|H11|
(
ρ1r

K−k−1
1 (r1 + b) + ρ2r

K−k−1
2 (r2 + b)

)
, (28)

and

λ =
K − 1

σ2
w

− 2
σ4

w|H11|
(
ρ1r

K−2
1 (r1 + b) + ρ2r

K−2
2 (r2 + b)− bK−1

)
. (29)

From the definition ofVK , we have

[VK ]k,k =
1

λσ4
w

([
H−1

11

]
1,k
− [

H−1
11

]
1,K+1−k

)2

. (30)

Using Eqn. (24), (28), and (30), we obtain, for any indexk, the analytical expression of the HCRB diagonal

elements

[
H−1

]
k,k

=
1

|H11|
[
ρ2
1 (b + r1)

2
rK−3
1 + ρ2

2(b + r2)2rK−3
2 − b2

A− 2
(rk−2

1 rK−k−1
2 + rK−k−1

1 rk−2
2 )

]

+
1

λ σ4
w |H11|2

[
bk−1

(
ρ1 (r1)

K−k−1 (b + r1) + ρ2 (r2)
K−k−1 (b + r2)

)

+ bK−k
(
ρ1 (r1)

k−2 (b + r1) + ρ2 (r2)
k−2 (b + r2)

)]2

. (31)

Remark:Note that, if Eqn. (3) was used instead of Eqn. (8), the HIM would not be invertible.

C. Simulation results

We now illustrate the behavior of the HCRB versus the Signal-to-Noise Ratio (SNR) defined by1
σ2

n
. We consider

a block ofK = 40 BPSK transmitted symbols. For two distinct phase-noise variances (σ2
w = 0.1 rad2 andσ2

w →
0 rad2), Figure 1 superimposes on one side the HCRB (see Eqn. (31)), the Data-Aided HCRB

(
JD = 2

σ2
n

)
, and

February 20, 2008 DRAFT
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the BCRB (see Eqn. (21) in [6]) onθK . For the same scenario, Figure 2 superimposes on one side the HCRB (see

Eqn. (25)) and the Data-Aided HCRB onξ.

• At high SNR, we first notice that HCRBξ converges to its horizontal asymptote given byσ
2
w

K−1 which is the

standard CRB whenθ is assumed to be known. The observation noise compared to the phase noise is then

not significant enough to disturb the estimation ofξ; consequently HCRBξ depends only on the phase noise

and on the number of observations. Concerning the bounds onθK , HCRBθk
and BCRBθk

both have the same

asymptote given byσ
2
n

2 which is the Modified CRB (MCRB) for one observation (see [10]). It means that,

at high SNR, the observationyK is self-sufficient to estimateθK and the error onξ does not disturb the

performance onθK . Moreover, the HCRB logically tends to the Data-Aided HCRB.

• For median SNR, HCRBθK
and HCRBξ leave their respective asymptote. HCRBθK

is still lower bounded by

the BCRB and upper bounded by the high-SNR asymptote. This stems from the fact that taking into account

a block of observations instead of one observation necessarily improves the performance. However, for large

σ2
w values (e.g., σ2

w = 0.1 rad2), HCRBθK
stays close to the MCRB because the correlation between the phase

offsetsθk is less significant than the information brought by the observationyK . Moreover, whenσ2
w tends

to 0, HCRBθK
is above the BCRB because performance is now limited by the accuracy on the parameterξ.

• At low SNR, nk is preponderant compared towk. Both HCRBξ and HCRBθK
do not depend onσ2

w: the

lack of knowledge onξ directly affects the estimation onθK . As expected, the knowledge of the symbols

(Data-Aided HCRB) leads to a better estimation ofθ andξ.

IV. CONCLUSION

In this paper, we have studied the hybrid Cramér-Rao bound when the random and the deterministic parts of the

parameter vector are statistically dependent. We have applied this bound in order to evaluate the performance of

a dynamical phase estimator where the linear drift is unknown in a non data-aided context. In particular, we have

illustrated the effect of this unknown linear drift on the phase estimation performance.

REFERENCES
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Fig. 2. Bounds onξ versus the SNR (K = 40 observations,σ2
w = 0.1 rad2 andσ2

w → 0 rad2, JD evaluated over108 Monte-Carlo trials).
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