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Abstract

This paper develops systematically stochastic calculus via regularization in the case of
jump processes. In particular one continues the analysis of real-valued càdlàg weak Dirichlet
processes with respect to a given filtration. Such a process is the sum of a local martingale
and an adapted process A such that [N,A] = 0, for any continuous local martingale N . In
particular, given a function u : [0, T ]× R → R, which is of class C0,1 (or sometimes less), we
provide a chain rule type expansion for u(t,Xt) which stands in applications for a chain Itô
type rule.
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1 Introduction

The present paper extends stochastic calculus via regularizations to the case of jump processes,
and carries on the investigations of the so called weak Dirichlet processes in the discontinuous
case. This calculus will be applied in the companion paper [1], where we provide the identification
of the solution of a forward backward stochastic differential equation driven by a random measure,
when the underlying process is of weak Dirichlet type.

Stochastic calculus via regularization was essentially known in the case of continuous inte-
grators X, see e.g. [20, 21], with a survey in [25]. In this case a fairly complete theory was
developed, see for instance Itô formulae for processes with finite quadratic (and more general)
variations, stochastic differential equations, Itô-Wentzell type formulae [11], and generalizations
to the case of Banach space type integrators, see e.g. [5]. The notion of covariation [X,Y ] (resp.
quadratic variation [X,X]) for two processes X,Y (resp. a process X) has been introduced in the
framework of regularizations (see [23]) and of discretization as well (see [12]). Even if there is no
direct theorem relating the two approaches, they coincide in all the examples considered in the
literature. If X is a finite quadratic variation continuous process, an Itô formula has been proved
for the expansion of F (Xt), when F ∈ C2, see [23]; this constitutes the counterpart of the related
result for discretizations, see [12]. Moreover, for F of class C1 and X a reversible semimartingale,
an Itô expansion has been established in [24].
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When F is less regular than C1, the Itô formula can be replaced by a Fukushima-Dirichlet
decomposition for X weak Dirichlet process (with respect to a given filtration (Ft)). The notion of
Dirichlet process is a familiar generalization of the concept of semimartingale, and was introduced
by [12] and [2] in the discretization framework. The analogue of the Doob-Meyer decomposition
for a Dirichlet process is that it is the sum of a local martingale M and an adapted process A with
zero quadratic variation. Here A is the generalization of a bounded variation process. However,
requiring A to have zero quadratic variation imposes that A is continuous, see Lemma 3.9; since a
bounded variation process with jumps has a non zero finite quadratic variation, the generalization
of the semimartingale in the jump case is not necessarily represented by the notion of Dirichlet
process. A natural generalization should then at least include the possibility that A is a bounded
variation process with jumps. The concept of (Ft)-weak Dirichlet process was later introduced in
[9] and [14] for a continuous process X, and applications to stochastic control were considered in
[13]. Such a process is defined as the sum of a local martingale M and an adapted process A such
that [A,N ] = 0 for every continuous local martingale N . This notion turns out to be a correct
generalization of the semimartingale notion in the discontinuous framework, and is extended to
the case of jumps processes in the significant work [4], by using the discretizations techniques. In
the continuous case, a chain rule was established for F (t,Xt) when F belongs to class C0,1 and
X is a weak Dirichlet process, see [14]. Such a process is indeed again a weak Dirichlet process
(with possibly no finite quadratic variation). Towards calculus in the jump case only few steps
were done in [23], [22], and several other authors, see Chapter 15 of [6] and references therein.
For instance no Itô type formulae have been established in the framework of regularization and in
the discretization framework only very few chain rule results are available for F (X), when F (X)
is not a semimartingale. In that direction two peculiar results are available: the expansion of
F (Xt) when X is a reversible semimartingale and F is of class C1 with some Hölder conditions on
the derivatives (see [10]) and a chain rule for F (Xt) when X is a weak Dirichlet (càdlàg) process
and F is of class C1, see [4]. The work in [10] has been continued by several authors, see e.g.
[8] and references therein, expanding the remainder making use of local time type processes. A
systematic study of that calculus was missing and this paper fills out this gap.

Let us now go through the description of the main results of the paper. As we have already
mentioned, our first basic objective consists in developing a calculus via regularization in the
case of finite quadratic variation càdlàg processes. To this end, we revisit the definitions given
by [23] concerning forward integrals (resp. covariations). Those objects are introduced as u.c.p..
(uniform convergence in probability) limit of the expressions of the type (3.1) (resp. (3.2)). That
convergence ensures that the limiting objects are càdlàg, since the approximating expressions
have the same property. For instance a càdlàg process X will be called finite quadratic variation
process whenever the limit (which will be denoted by [X,X]) of

[X,X]ucpε (t) :=

∫

]0, t]

(X((s + ε) ∧ t)−X(s))2

ε
ds, (1.1)

exists u.c.p.. In [23], the authors introduced a slightly different approximation of [X,X] when X
is continuous, namely

Cε(X,X)(t) :=

∫

]0, t]

(X((s + ε)−X(s))2

ε
ds. (1.2)

When the u.c.p.. limit of Cε(X,X) exists, it is automatically a continuous process, since the
approximating processes are continuous. For this reason, when X is a jump process, the choice
of approximation (1.2) would not be suitable, since its quadratic variation is expected to be a
jump process. In that case, the u.c.p.. convergence of (1.1) can be shown to be equivalent with
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a notion of convergence which is associated with the a.s. convergence (up to subsequences) in
measure of Cε(X,X)(t) dt, see Appendix A. Both formulations will be used in the development
of the calculus.

For a càdlàg finite quadratic variation process X, we establish, via regularization techniques,
an Itô formula for C1,2 functions of X. This is the object of Proposition 4.1, whose proof is based
on an accurate separation between the neighborhood of ”big” and ”small” jumps, where specific
tools are used, see for instance the preliminary results Lemma 3.11 and Lemma 3.12. Another
significant instrument is a Lemma of Dini type in the case of càdlàg functions, see Lemma 3.15.
Finally, from Proposition 4.1 easily follows an Itô formula under weaker regularity conditions on
F , see Proposition 4.2. We remark that a similar formula was stated in [10], using a discretization
definition of the covariation, when F is time-homogeneous.

The second target of the paper consists in investigating weak Dirichlet jump processes. Con-
trarily to the continuous case, the decompositionX = M+A is generally not unique. We introduce
the notion of a special weak Dirichlet process with respect to some filtration (Ft). Such a process
is a Weak Dirichlet process admitting a decomposition X = M + A, where M is an (Ft)-local
martingale and where the “orthogonal” process A is predictable. The decomposition of a special
weak Dirichlet process is unique, see Remark 5.7. Such a process constitutes a generalization of
the notion of semimartingale in the framework of weak Dirichlet processes. We remark that a
continuous weak Dirichlet process is a special weak Dirichlet.

Two significant results are Theorem 5.14 and Theorem 5.26. They both concern expansions
of F (t,Xt) where F is of class C0,1 and X is a weak Dirichlet process of finite quadratic variation.
Theorem 5.14 states that F (t,Xt) will be again a weak Dirichlet process, however not necessarily
of finite quadratic variation. Theorem 5.26 concerns the cases when X and (F (t,Xt))t are special
weak Dirichlet processes. A first significant step in this sense was done in [4], where X belongs
to a bit different class of special weak Dirichlet jump processes (of finite energy) and F does
not depend on time and has bounded derivative. They show that F (X) is again a special weak
Dirichlet process. In [4] the underlying process has finite energy, which requires a control of the
expectation of the approximating sequences of the quadratic variation. On the other hand, our
techniques do not require that type of control. Moreover, the integrability condition (5.33) that
we ask on F (t,Xt) in order to get the chain rule in Theorem 5.26 is automatically verified under
the hypothesis on the first order derivative considered in [4], see Remark 5.25. In some cases
a chain rule may hold even when F is only continuous if we know a priori some information of
(F (t,Xt)). This is provided by Proposition 5.31 and does not require any assumption on the
càdlàg process X.

In the present paper we also introduce a subclass of weak Dirichlet processes, called particular,
see Definition 5.16. Those processes inherit some of the semimartingales features: as in the
semimartingale case, the particular weak Dirichlet processes admit an integral representation
(see Proposition 5.19) and a (unique) canonical decomposition holds when x1{|x|>1} ∗ µ ∈ Aloc.
Under that conditions, those particular processes are indeed special weak Dirichlet processes, see
Proposition 5.18 and 5.19.

The paper is organized as follows. In Section 2.1 we introduce the notations and we recall
some basic results on the stochastic integration with respect to integer-valued random measures
associated to càdlàg processes. In Section 3 we give some preliminary results to the development of
the calculus via regularization with jumps. Section 4 is devoted to the proof of a C1,2 Itô formula
for càdlàg processes. Section 5 concerns the study of weak Dirichlet processes, and presents the
expansions of F (t,Xt) for X weak Dirichlet, when F is of class C0,1. Finally, we report in the
Appendix A some additional comments and technical results on calculus via regularizations.
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2 Preliminaries and basic notations

In what follows, we are given a probability space (Ω,F ,P), a positive horizon T and a filtration
F = (Ft)t≥0. Given a topological space E, in the sequel B(E) will denote the Borel σ-field
associated with E. P (resp. P̃ = P ⊗ B(R)) will designate the predictable σ-field on Ω × [0, T ]
(resp. on Ω̃ = Ω× [0, T ] × R). Analogously, we set O (resp. Õ = O ⊗ B(R)) the optional σ-field
on Ω× [0, T ] (resp. on Ω̃). The symbols Ducp and Lucp will denote the space of all adapted càdlàg
and càglàd processes endowed with the u.c.p.. (uniform convergence in probability) topology. By
convention, any càdlàg process defined on [0, T ] is extended on R+ by continuity.

We will also indicate by A (resp Aloc) the collection of all adapted processes with integrable
variation (resp. with locally integrable variation), and by A+ (resp A+

loc) the collection of all
adapted integrable increasing (resp. adapted locally integrable) processes. The significance of
locally is the usual one which refers to localization by stopping times, see e.g. (0.39) of [16].

We will indicate by C1,2 (resp. C0,1) the space of all functions

u : [0, T ]× R → R, (t, x) 7→ u(t, x)

that are continuous together their derivatives ∂tu, ∂xu, ∂xxu (resp. ∂xu). C1,2 is equipped with
the topology of uniform convergence on each compact of u, ∂xu, ∂xxu, ∂tu, C

0,1 is equipped with
the same topology on each compact of u and ∂xu.

2.1 Càdlàg processes and the associated random measures

The concept of random measure allows a very tractable description of the jumps of a càdlàg
process. We recall here the main definitions and some properties that we will extensively use in
the following; for a complete discussion on this topic and the unexplained notations we refer to
Chapter II, Section 1, in [17], Chapter XI, Section 1, in [15], and also the Appendix in [1].

For any X = (Xt) adapted real valued càdlàg process on [0, T ], we call jump measure of X
the integer-valued random measure on R+ × R defined as

µX(ω; dt dx) :=
∑

s∈]0, T ]

1{∆Xs(ω)6=0} δ(s,∆Xs(ω))(dt dx). (2.1)

Remark 2.1. The jump measure µX acts in the following way: for any positive function W ∈ Õ
we have

∑

s∈]0, T ]

1{∆Xs 6=0}Ws(·,∆Xs) =

∫

]0,T ]×R

Ws(·, x)µ
X (·, ds dx).

In the sequel we will make often use of the following assumption on the processes X:

∑

s∈]0, T ]

|∆Xs|
2 < ∞, a.s. (2.2)

Adapting the definition of locally bounded process stated before Theorem 15, Chapter IV, in
[19], to the processes indexed by [0, T ], we can state the following.

Definition 2.2. A process (Xt)t∈[0, T ] is locally bounded if there exists a sequence of stopping
times (τn)n≥1 in [0, T ] ∪ {+∞} increasing to ∞ a.s., such that (Xτn∧t 1{τn>0})t∈[0, T ] is bounded.

Remark 2.3. (i) Any càglàd process is locally bounded, see the lines above Theorem 15, Chapter
IV, in [19].
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(ii) LetX be a càdlàg process satisfying condition (2.2). Set (Yt)t∈[0, T ] = (Xt−,
∑

s<t |∆Xs|
2)t∈[0, T ].

The process Y is càglàd, therefore locally bounded by item (i). In particular, we can fix
a sequence of stopping times (τn)n≥1 in [0, T ] ∪ {+∞} increasing to ∞ a.s., such that
(Yτn∧t 1{τn>0})t∈[0, T ] is bounded.

Proposition 2.4. Let p = 1, 2. Let X be a real-valued càdlàg process on [0, T ] satisfying

∑

s∈]0, T ]

|∆Xs|
p < ∞, a.s.

Then
∫

]0, t]×R

|x|p 1{|x|≤1} µ
X(ds dx) ∈ A+

loc. (2.3)

Proof. Set Yt =
∑

s<t |∆Xs|
p. The process Y is càglàd, therefore locally bounded; in particular,

we can fix a sequence of stopping times (τn)n≥1 in [0, T ] ∪ {+∞} increasing to ∞ a.s., such that
(Yτn∧t 1{τn>0})t∈[0, T ] is bounded. Fix τ = τn, and let M such that supt∈[0, T ] |Yt∧τ 1{τ>0}| ≤ M .
We have

E

[

∫

]0, t∧τ ]×R

|x|p 1{|x|≤1} µX(ds, dx)

]

= E

[

∑

0<s<t∧τ

|∆Xs|
p
1{|∆Xs|≤1} 1{τ>0} + |∆Xt∧τ |

p
1{|∆Xt∧τ |≤1} 1{τ>0}

]

≤ M + 1,

and thus (2.3) holds.

Corollary 2.5. Let X be a càdlàg process satisfying condition (2.2).Then

x1{|x|≤1} ∈ G2
loc(µ

X), (2.4)

the stochastic integral
∫

]0, t]×R

x1{|x|≤1} (µ
X − νX)(ds dx) (2.5)

is well-defined and defines a purely discontinuous square integrable local martingale.

Proof. Property (2.4) is a direct application of Proposition 2.4 with p = 2, and Lemma B.21-2. in
[1]; then the fact that (2.5) is well-defined follows by (2.4) and Theorem 11.21, point 3), in [15].

Proposition 2.6. Let X be a càdlàg process on [0, T ] satisfying condition (2.2), and let F be a
function of class C1,2. Then

|(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)|1{|x|≤1} ∗ µ
X ∈ Aloc.

Proof. Let (τn)n≥1 be the sequence of stopping times introduced in Remark 2.3-(ii) for the process
Yt = (Xt−,

∑

s<t |∆Xs|
2). Fix τ = τn, and let M such that supt∈[0, T ] |Yt∧τ 1{τ>0}| ≤ M . So, by

an obvious Taylor expansion, taking into account Remark 2.1, we have

E

[

∫

]0, t∧τ ]×R

|(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)|1{|x|≤1} µ
X(ds, dx)

]
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= E





∑

0<s≤t∧τ

[F (s,Xs)− F (s,Xs−)− ∂xF (s,Xs−)∆Xs]





= E





∑

0<s≤t∧τ

(∆Xs)
2
1{τ>0}

∫ 1

0
[∂2

xxF (s,Xs− + a∆Xs)− ∂2
xxF (s,Xs−)] da





≤ 2 sup
y∈[−M,M ]

t∈[0, T ]

|∂2
xxF |(t, y)E

[

∑

0<s<t∧τ

|∆Xs|
2
1{|∆Xs|≤1} 1{τ>0} + |∆Xτ |

2
1{|∆Xτ |≤1} 1{τ>0}

]

≤ 2 sup
y∈[−M,M ]

t∈[0, T ]

|∂2
xxF |(t, y) · (M + 1),

and this concludes the proof.

Proposition 2.7. Let X be a càdlàg process on [0, T ] satisfying condition (2.2), and let F be a
function of class C0,1. Then

|(F (s,Xs− + x)− F (s,Xs−)|
2
1{|x|≤1} ∗ µ

X ∈ Aloc, (2.6)

|x ∂xF (s,Xs−)|
2
1{|x|≤1} ∗ µ

X ∈ Aloc. (2.7)

Proof. Proceeding as in the proof of Proposition 2.6, we consider the sequence of stopping times
(τn)n≥1 defined in Remark 2.3-(ii) for the process Yt = (Xt−,

∑

s<t |∆Xs|
2). Fix τ = τn, and let

M such that supt∈[0, T ] |Yt∧τ 1{τ>0}| ≤ M . For any t ∈ [0, T ], we have

E

[

∫

[0, t∧τ ]×R

|(F (s,Xs− + x)− F (s,Xs−)|
2
1{|x|≤1} µ

X(ds, dx)

]

≤ sup
y∈[−M,M ]

t∈[0, T ]

|∂xF |2(t, y)E

[

∑

s<t∧τ

|∆Xs|
2
1{|∆Xs|≤1}1{τ>0} + |∆Xτ |

2
1{|∆Xτ |≤1} 1{τ>0}

]

≤ sup
y∈[−M,M ]

t∈[0, T ]

|∂xF |2(t, y) · (M + 1),

and

E

[

∫

[0, t∧τ ]×R

|x ∂xF (s,Xs−)|
2
1{|x|≤1} µ

X(ds, dx)

]

= E

[

∫

[0, t∧τ ]×R

|x|2 |∂xF |2(t, Xs−)1{|x|≤1} µ
X(ds, dx)

]

≤ sup
y∈[−M,M ]

t∈[0, T ]

|∂xF |2(t, y)E

[

∑

s<t∧τ

|∆Xs|
2
1{|∆Xs|≤1} 1{τ>0} + |∆Xτ |

2
1{|∆Xτ |≤1} 1{τ>0}

]

≤ sup
y∈[−M,M ]

t∈[0, T ]

|∂xF |2(t, y) · (M + 1).
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3 Calculus via regularization with jumps and related technicali-

ties

Let f and g be two functions defined on R, and set

I−ucp(ε, t, f, dg) =

∫

]0, t]
f(s)

g((s + ε) ∧ t)− g(s)

ε
ds, (3.1)

[f, g]ucpε (t) =

∫

]0, t]

(f((s+ ε) ∧ t)− f(s))(g((s + ε) ∧ t)− g(s))

ε
ds. (3.2)

Notice that the function I−ucp(ε, t, f, dg) is càdlàg and admits the decomposition

I−ucp(ε, t, f, dg) =

∫ (t−ε)+

0
f(s)

g(s + ε)− g(s)

ε
ds+

∫ t

(t−ε)+

f(s)
g(t)− g(s)

ε
ds. (3.3)

Definition 3.1. Let X be a càdlàg process and Y be a process belonging to L1([0, T ]) a.s. Suppose
the existence of a process (I(t))t∈[0, T ] such that (I−ucp(ε, t, Y, dX))t∈[0, T ] converges u.c.p.. to
(I(t))t∈[0, T ], namely

lim
ε→0

P

(

sup
0≤s≤t

|I−ucp(ε, t, Y, dX) − I(t)| > α

)

= 0 for every α > 0.

Then we will set
∫

]0, t] Ys d
−Xs := I(t). That process will be called the forward integral of Y

with respect to X.

Remark 3.2. In [23] a very similar notion of forward integral is considered:

I−RV (ε, t, f, dg) =

∫

R

ft](s)
gt](s+ ε)− gt](s)

ε
ds,

with

ft] =







f(0+) if x ≤ 0,
f(x) if 0 < x ≤ t,
f(t+) if x > t.

The u.c.p.. limit of I−RV (ε, t, f, dg), when it exists, coincide with that of I−ucp(ε, t, f, dg). As a
matter of fact, the process I−RV (ε, t, f, dg) is càdlàg and can be rewritten as

I−RV (ε, t, f, dg) = I−ucp(ε, t, f, dg) − f(0+)
1

ε

∫ ε

0
[g(s)− g(0+)] ds. (3.4)

In particular

sup
t∈[0, T ]

[I−ucp(ε, t, f, dg) − I−RV (ε, t, f, dg)] = f(0+)
1

ε

∫ ε

0
[g(s)− g(0+)] ds,

and therefore
lim sup

ε→0
sup

t∈[0, T ]
[I−RV (ε, t, f, dg) − I−ucp(ε, t, f, dg)] = 0.

Proposition 3.3. Let A be a càdlàg predictable process and Y be a process belonging to L1([0, T ])
a.s. Then the forward integral

∫

]0, ·]
Ys d

−As,

when it exists, is a predictable process.
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Proof. Since A is a càdlàg process, A(t) = A(t+), and it follows from decomposition (3.3) that
the process I−ucp(ε, t, f, dg) is predictable. By definition, the u.c.p.. stochastic integral, when it
exists, is the u.c.p.. limit of I−ucp(ε, t, f, dg) and it defines in particular a càdlàg process. Since
the u.c.p.. convergence preserves the predictability, the claim follows.

Definition 3.4. Let X,Y be two càdlàg processes. Suppose the existence of a process (Γ(t))t≥0

such that [X,Y ]ucpε (t) converges u.c.p.. to (Γ(t))t≥0, namely

lim
ε→0

P

(

sup
0≤s≤t

|[X,Y ]ucpε (t)− Γ(t)| > α

)

= 0 for every α > 0,

Then we will set [X,Y ]t := Γ(t). That process will be called the covariation between X and
Y . In that case we say that the covariation between X and Y exists, and we symbolize it
again by [X,Y ], if the sequence [X,Y ]ucpε (t) converges u.c.p.. to some process (Γ(t))t≥0, namely

lim
ε→0

P

(

sup
0≤s≤t

|[X,Y ]ucpε (t)− Γ(t)| > α

)

= 0 for every α > 0,

and in this case [X,Y ]t := Γ(t).

Definition 3.5. We say that a pair of càdlàg processes (X,Y ) admits all its mutual brackets
if [X,X], [X,Y ], [Y, Y ] exist.

Definition 3.6. We say that a càdlàg process X is finite quadratic variation if [X,X] exists.

Remark 3.7. Let X, Y be two càdlàg processes.

1. By definition [X,Y ] is necessarily a càdlàg process.

2. [X,X] is an increasing process.

3. [X,X]c denotes the continuous part of [X,X].

Forward integrals and covariations generalize Itô integrals and the classical square brackets of
semimartingales.

Proposition 3.8. Let X,Y be two càdlàg semimartingales, M1,M2 two càdlàg local martingales,
H,K two càdlàg adapted process. Then

(i) [X,Y ] exists and it is the usual bracket.

(ii)
∫

]0, ·]H d−X is the usual stochastic integral
∫

]0, ·]Hs−dXs.

(iii)
[∫ ·

0 Hs− dM1
s ,
∫ ·
0 Ks− dM2

s

]

is the usual bracket and it equals
∫ ·
0 Hs−Ks− d[M1,M2]s.

Proof. Items (i) and (ii) are consequence of Proposition 1.1 in [23] and Remark 3.2. Item (iii)
follows from (i) and the corresponding properties for classical brackets of local martingales, see
Theorem 29, chapter 2 of [19].

Lemma 3.9. Suppose that X is a càdlàg, finite quadratic variation process. Then

(i) ∀s ∈ [0, T ], ∆[X,X]s = (∆Xs)
2;

(ii) [X,X]s = [X,X]cs +
∑

t≤s(∆Xt)
2 ∀s ∈ [0, T ], a.s.

In particular
∑

s≤T |∆Xs|
2 < ∞ a.s.
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Remark 3.10. Condition (2.2) holds for instance in the case of processes X of finite quadratic
variation.

Proof. (i) Since X has finite quadratic variation, [X,X]ucpε converges u.c.p.. to [X,X]. This
implies the existence of a sequence (εn) such that [X,X]ucpεn converges uniformly a.s. to [X,X].
We fix a realization ω outside a suitable null set, which will be omitted in the sequel. Let γ > 0.
There is ε0 such that

εn < ε0 ⇒ |[X,X]s − [X,X]ucpεn (s)| ≤ γ, ∀s ∈ [0, T ]. (3.5)

We fix s ∈]0, T ]. Let εn < ε0. For every δ ∈ [0, s[, we have

|[X,X]s − [X,X]ucpεn
(s− δ)| ≤ γ. (3.6)

We need to show that the quantity

|[X,X]s − [X,X]s−δ − (∆Xs)
2| (3.7)

goes to zero, when δ → 0. For ε := εn < ε0, (3.7) this is smaller or equal than

2γ + |[X,X]ucpε (s)− [X,X]ucpε (s − δ)− (∆Xs)
2|

= 2γ +

∣

∣

∣

∣

1

ε

∫ s

s−ε−δ

(X(t+ε)∧s −Xt)
2 dt−

1

ε

∫ s−δ

s−ε−δ

(Xs−δ −Xt)
2 dt− (∆Xs)

2

∣

∣

∣

∣

≤ 2γ +
1

ε

∫ s−δ

s−ε−δ

(Xs−δ −Xt)
2 dt+ |I(ε, δ, s)|, ∀δ ∈ [0, s[,

where

I(ε, δ, s) =
1

ε

∫ s−ε

s−ε−δ

(Xt+ε −Xt)
2 dt+

1

ε

∫ s

s−ε

[(Xs −Xt)
2 − (∆Xs)

2] dt.

At this point, we have

|[X,X]s − [X,X]s−δ − (∆Xs)
2| ≤ 2γ +

1

ε

∫ s−δ

s−ε−δ

(Xs−δ −Xt)
2 dt+ |I(ε, δ, s)|, ∀s ∈ [0, T ].

We take the lim supδ→0 on both sides to get, since X is left continuous at s,

|∆[X,X]s−(∆Xs)
2| ≤ 2γ+

1

ε

∫ s

s−ε

(Xs−−Xt)
2 dt+

1

ε

∫ s

s−ε

|(Xs−Xt)
2−(∆Xs)

2| dt, for ε := εn < ε0.

We take the limit when n → ∞ and we get

|∆[X,X]s − (∆Xs)
2| ≤ 2γ,

and this concludes the proof of (i).
(ii) We still work fixing a priori a realization ω. Set Ys = [X,X]s, s ∈ [0, T ]. Since Y is an

increasing càdlàg process, it can be decomposed as

Ys = Y c
s +

∑

t≤s

∆Yt, ∀s ∈ [0, T ], a.s.

and the result follows from point (i). In particular, setting s = T , we get

a.s. ∞ > [X,X]T = [X,X]cT +
∑

s≤T

(∆Xs)
2 ≥

∑

s≤T

(∆Xs)
2.
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We now state and prove some fundamental preliminary results, that we will deeply use in the
sequel.

Lemma 3.11. Let Yt be a càdlàg function with values in Rn. Let φ : Rn × Rn → R be an
equicontinuous function on each compact, such that φ(y, y) = 0 for every y ∈ Rn. Let 0 ≤ t1 ≤
t2 ≤ ... ≤ tN ≤ T . We have

N
∑

i=1

1

ε

∫ ti

ti−ε

1]0, s](t)φ(Y(t+ε)∧s, Yt) dt
ε→0
−→

N
∑

i=1

1]0, s](ti)φ(Yti , Yti−), (3.8)

uniformly in s ∈ [0, T ].

Proof. Without restriction of generality, we consider the case n = 1. Let us fix γ > 0. Taking into
account that φ is equicontinuous on compacts, by definition of left and right limits, there exists
δ > 0 such that, for every i ∈ {1, ..., N},

ℓ < ti, u > ti, |ℓ− ti| ≤ δ, |u− ti| ≤ δ ⇒ |φ(Yu, Yℓ)− φ(Yti , Yti−)| < γ, (3.9)

ℓ2 < ℓ1 < ti, |ℓ1 − ti| ≤ δ, |ℓ2 − ti| ≤ δ ⇒ |φ(Yℓ1 , Yℓ2)| = |φ(Yℓ1 , Yℓ2)− φ(Yti−, Yti−)| < γ. (3.10)

Since the sum in (3.8) is finite, it is enough to show the uniform convergence in s of the integrals
on ]ti − ε, ti], for a fixed ti ∈ [0, T ], namely that

I(ε, s) :=
1

ε

∫ ti

ti−ε

1]0, s](t)φ(Y(t+ε)∧s, Yt) dt− 1]0, s](ti)φ(Yti , Yti−) (3.11)

converges to zero uniformly in s, when ε goes to zero. Let thus fix ti ∈ [0, T ], and choose ε < δ.
We distinguish the cases (i), (ii), (iii), (iv) concerning the position of s with respect to ti.

(i) s < ti − ε. (3.11) vanishes.

(ii) s ∈ [ti − ε, ti[. By (3.10) we get

|I(ε, s)| ≤
1

ε

∫ ti

ti−ε

|φ(Ys, Yt)| dt ≤ γ.

(iii) s ∈ [ti, ti + ε[. By (3.9) we get

|I(ε, s)| ≤
1

ε

∫ ti

ti−ε

|φ(Y(t+ε)∧s, Yt)− φ(Yti , Yti−)| dt ≤ γ.

(iv) s ≥ ti + ε. By (3.9) we get

|I(ε, s)| ≤
1

ε

∫ ti

ti−ε

|φ(Yt+ε, Yt)− φ(Yti , Yti−)| dt ≤ γ.

Collecting all the cases above, we see that

lim sup
ε→0

sup
s∈[0, T ]

|I(ε, s)| ≤ γ,

and letting γ go to zero we get the uniform convergence.
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Lemma 3.12. Let X be a càdlàg (càglàd) real process. Let γ > 0, t0, t1 ∈ R and I = [t0, t1] be
a subinterval of [0, T ] such that

|∆Xt|
2 ≤ γ2, ∀t ∈ I. (3.12)

Then there is ε0 > 0 such that
sup
a, t∈I

|a−t|≤ε0

|Xa −Xt| ≤ 3γ.

Proof. We only treat the càdlàg case, the càglàd one is a consequence of an obvious time reversal
argument.

Also in this proof a realization ω will be fixed, but omitted. According to Lemma 1, Chapter
3, in [3], applied to [t0, t1] replacing [0, 1], there exist points

t0 = s0 < s1 < ... < sl−1 < sl = t1

such that for every j ∈ {1, ..., l}

sup
d, u∈[sj−1, sj [

|Xd −Xu| < γ. (3.13)

Since X is càdlàg, we can choose ε0 such that, ∀j ∈ {0, ..., l − 1},

|d− sj| ≤ ε0 ⇒ |Xd −Xsj−| ≤ γ, (3.14)

|u− sj| ≤ ε0 ⇒ |Xu −Xsj | ≤ γ. (3.15)

Let t ∈ [sj−1, sj[ for some j and a such that |t−a| ≤ ε for ε < ε0. Without restriction of generality
we can take t < a. There are two cases.

(i) a, t ∈ [sj−1, sj[. In this case, (3.13) gives

|Xa −Xt| < γ.

(ii) sj−1 ≤ t < sj ≤ a.

Then,

|Xa −Xt| ≤ |Xa −Xsj |+ |Xsj −Xsj−|+ |Xsj− −Xt| ≤ 3γ,

where the first absolute value is bounded by (3.15), the second by (3.12) and the third by
(3.14).

Remark 3.13. Let I = [t0, t1] ⊂ [0, T ], let ε > 0. Let t ∈]t0, t1 − ε] and s > t. We will apply
Lemma 3.12 to the couple (a, t), where a = (t+ ε) ∧ s. Indeed a ∈ I because a ≤ t+ ε ≤ t1.

Proposition 3.14. Let (Zt) be a càdlàg process, (Vt) be a bounded variation process. Then [Z, V ]s
exists and equals

∑

t≤s

∆Zt∆Vt, ∀s ∈ [0, T ].

In particular, V is a finite quadratic variation process.
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Proof. We need to prove the u.c.p. convergence to zero of

1

ε

∫

]0, s]
(Z(t+ε)∧s − Zt)(V(t+ε)∧s − Vt) dt−

∑

t≤s

∆Zt∆Vt. (3.16)

As usual the realization ω ∈ Ω will be fixed, but often omitted. Let (ti) be the enumeration of all
the jumps of Z(ω) in [0, T ]. We have

lim
i→∞

|∆Zti(ω)| = 0.

Indeed, if it were not the case, it would exists a > 0 and a subsequence (til) of (ti) such that
|∆Ztil

| ≥ a. This is not possible since a càdlàg function admits at most a finite number of jumps
exceeding any a > 0, see considerations below Lemma 1, Chapter 2 of [3].

At this point, let γ > 0 and N = N(γ) such that

n ≥ N, |∆Ztn | ≤ γ. (3.17)

We introduce

A(ε,N) =

N
⋃

i=1

]ti − ε, ti], B(ε,N) =

N
⋃

i=1

]ti−1, ti − ε], (3.18)

and we decompose (3.16) into

IA(ε,N, s) + IB1(ε,N, s) + IB2(ε,N, s) (3.19)

where

IA(ε,N, s) =
1

ε

∫

]0, s]∩A(ε,N)
(Z(t+ε)∧s − Zt)(V(t+ε)∧s − Vt) dt−

N
∑

i=1

1]0, s[(ti)∆Zti ∆Vti ,

IB1(ε,N, s) =
1

ε

∫

]0, s]∩B(ε,N)
(Z(t+ε)∧s − Zt)((V(t+ε)∧s − Vt) dt,

IB2(N, s) = −
∞
∑

i=N+1

1]0, s[(ti)∆Zti ∆Vti .

Applying Lemma 3.11 to Y = (Y 1, Y 2) = (Z, V ) and φ(y1, y2) = (y11 − y12)(y
2
1 − y22) we get

IA(ε,N, s) →
ε→0

0,

uniformly in s. On the other hand, for t ∈]ti−1, ti − ε[ and s > t, by Remark 3.13 we know that
(t + ε) ∧ s ∈ [ti−1, ti]. Therefore Lemma 3.12 with X = Z, applied successively to the intervals
I = [ti−1, ti] implies that

|IB1(ε,N, s)| =
1

ε

∫

]0, s]∩B(ε,N)
|Z(t+ε)∧s − Zt||V(t+ε)∧s − Vt| dt

≤ 3 γ
1

ε

∫

]0, s]∩B(ε,N)
|V(t+ε)∧s − Vt| dt

≤ 3 γ

∫

]0, s]
|V(t+ε)∧s − Vt|

dt

ε

= 3 γ

∫

]0, s]

dt

ε

∫

]t, (t+ε)∧s]
d‖V ‖r
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= 3 γ

∫

]0, s]
d‖V ‖r

∫

[(r−ε)+, r[

dt

ε

≤ 3 γ ||V ||T ,

where r 7→ ‖V ‖r denotes the total variation function of V . Finally, concerning IB2(N, s), by
(3.17) we have

|IB2(N, s)| ≤ γ

∞
∑

i=N+1

1]0, s[(ti) |∆Vti | ≤ γ ||V ||T .

Therefore, collecting the previous estimations we get

lim sup
ε→0

sup
s∈[0, T ]

|IA(ε,N, s) + IB1(ε,N, s) + IB2(N, s)| ≤ 4 γ ||V ||T ,

and we conclude by the arbitrariness of γ > 0.

Finally we give a generalization of Dini type lemma in the càdlàg case.

Lemma 3.15. Let (Gn, n ∈ N) be a sequence of continuous increasing functions, let G (resp. F )
from [0, T ] to R be a càdlàg (resp. continuous) function. We set Fn = Gn +G and suppose that
Fn → F pointwise. Then

lim sup
n→∞

sup
s∈[0, T ]

|Fn(s)− F (s)| ≤ 2 sup
s∈[0, T ]

|G(s)|.

Proof. Let 0 = t0 < t1 < ... < tm = T such that ti = i
m
, i = 0, ...,m. Let γ > 0. Let us

fix m ∈ N such that δ
(

F, 1
m

)

≤ γ, where ρ(F, ·) denotes the modulus of continuity of F . If
s ∈ [ti, ti+1], 0 ≤ i ≤ m− 1, we have

Fn(s)− F (s) ≤ Fn(ti+1)− F (s) +G(s)−G(ti+1). (3.20)

Now

Fn(ti+1)− F (s) ≤ Fn(ti+1)− F (ti+1) + F (ti+1)− F (s)

≤ δ

(

F,
1

m

)

+ Fn(ti+1)− F (ti+1). (3.21)

From (3.20) and (3.21) it follows

Fn(s)− F (s) ≤ Fn(ti+1)− F (ti+1) +G(s)−G(ti+1) + δ

(

F,
1

m

)

≤ 2||G||∞ + δ

(

F,
1

m

)

+ |Fn(ti+1)− F (ti+1)|, (3.22)

where ||G||∞ = sups∈[0, T ] |G(s)|. Similarly,

F (s)− Fn(s) ≥ −2||G||∞ − δ

(

F,
1

m

)

− |Fn(ti)− F (ti)|. (3.23)

So, collecting (3.22) and (3.23) we have ∀s ∈ [ti, ti+1]

|Fn(s)− F (s)| ≤ 2||G||∞ + δ

(

F,
1

m

)

+ |Fn(ti)− F (ti)|+ |Fn(ti+1)− F (ti+1)|.
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Consequently,

sup
s∈[0, T ]

|Fn(s)− F (s)| ≤ 2||G||∞ + δ

(

F,
1

m

)

+
m
∑

i=1

|Fn(ti)− F (ti)|. (3.24)

Recalling that Fn → F pointwise, taking the lim sup in (3.24) we get

lim sup
n→∞

sup
s∈[0, T ]

|Fn(s)− F (s)| ≤ 2||G||∞ + δ

(

F,
1

m

)

.

Since F is uniformly continuous and m is arbitrarily big, the result follows.

4 Itô formula for C1,2 functions

4.1 The basic formulae

We start with the Itô formula for finite quadratic variation processes in the sense of calculus via
regularizations.

Proposition 4.1. Let X be a finite quadratic variation càdlàg process and F : [0, T ]×R → R a
function of class C1,2. Then we have

F (t,Xt) = F (0,X0) +

∫ t

0
∂sF (s,Xs) ds +

∫ t

0
∂xF (s,Xs) d

−Xs +
1

2

∫ t

0
∂2
xxF (s,Xs−) d[X,X]cs

+
∑

s≤t

[F (s,Xs)− F (s,Xs−)− ∂xF (s,Xs−)∆Xs]. (4.1)

Proof. Since X is a finite quadratic variation process, by Lemma A.5, taking into account Defi-
nition A.2 and Corollary A.4-2), for a given càdlàg process (gt) we have

∫ s

0
gt (X(t+ε)∧s −Xt)

2 dt

ε
ε→0
−→

∫ s

0
gt− d[X,X]t u.c.p..

Setting gt = 1 and gt =
∂2
xxF (t, Xt)

2 , there exists a positive sequence εn such that

lim
n→∞

∫ s

0
(X(t+εn)∧s −Xt)

2 dt

εn
= [X,X]s, (4.2)

lim
n→∞

∫ s

0

∂2
xxF (t, Xt)

2
(X(t+εn)∧s −Xt)

2 dt

εn
=

∫

]0, s]

∂2
xxF (t, Xt−)

2
d[X,X]t, (4.3)

uniformly in s, a.s. Let then N be a null set such that (4.2), (4.3) hold for every ω /∈ N .
In the sequel we fix γ > 0, ε > 0, and ω /∈ N , and we enumerate the jumps of X(ω) on [0, T ]

by (ti)i≥0. Let N = N(ω) such that

∞
∑

i=N+1

|∆Xti(ω)|
2 ≤ γ2. (4.4)

From now on the dependence on ω will be often neglected. The quantity

J0(ε, s) =
1

ε

∫ s

0
[F ((t+ ε) ∧ s, X(t+ε)∧s)− F (t, Xt)] dt, s ∈ [0, T ] (4.5)
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converges to F (s, Xs) − F (0, X0) uniformly in s. As a matter of fact, setting Yt = (t, Xt), we
have

J0(ε, s) =
1

ε

∫

[0, s[
F (Y(t+ε)∧s) dt−

1

ε

∫

[0, s[
F (Yt) dt

=
1

ε

∫

[ε, s+ε[
F (Yt∧s) dt−

1

ε

∫

[0, s[
F (Yt) dt

=
1

ε

∫

[s, s+ε[
F (Yt∧s) dt−

1

ε

∫

[0, ε[
F (Yt) dt

= F (Ys)−
1

ε

∫

[0, ε[
F (Yt) dt

−→
ε→0

F (Ys)− F (Y0) uniformly in s. (4.6)

As in (3.18), we define

A(ε,N) =

N
⋃

i=1

]ti − ε, ti], (4.7)

B(ε,N) =
N
⋃

i=1

]ti−1, ti − ε] = [0, T ] \ A(ε,N). (4.8)

J0(ε, s) can be also rewritten as

J0(ε, s) = JA(ε, N, s) + JB(ε, N, s), (4.9)

where

JA(ε, N, s) =
1

ε

∫ s

0
[F ((t+ ε) ∧ s, X(t+ε)∧s)− F (t, Xt)]1A(ε,N)(t) dt, (4.10)

JB(ε, N, s) =
1

ε

∫ s

0
[F ((t+ ε) ∧ s, X(t+ε)∧s)− F (t, Xt)]1B(ε,N)(t) dt. (4.11)

Applying Lemma 3.11 with n = 2 to Y = (Y 1, Y 2) = (t,X) and φ(y1, y2) = F (y11 , y
2
1)−F (y12 , y

2
2),

we have

JA(ε, N, s) =
N
∑

i=1

1

ε

∫ ti

ti−ε

[F ((t+ ε) ∧ s, X(t+ε)∧s)− F (t, Xt)] dt

ε→0
−→

N
∑

i=1

1]0, s](ti) [F (ti, Xti)− F (ti, Xti−)] uniformly in s. (4.12)

Concerning JB(ε, N, s), it can be decomposed into the sum of the two terms

JB1(ε, N, s) =
1

ε

∫ s

0
[F ((t+ ε) ∧ s, X(t+ε)∧s)− F (t, X(t+ε)∧s)]1B(ε,N)(t) dt,

JB2(ε, N, s) =
1

ε

∫ s

0
[F (t, X(t+ε)∧s)− F (t, Xt)]1B(ε,N)(t) dt.

Expanding in time we get

JB1(ε, N, s) = JB10(ε, s) + JB11(ε, N, s) + JB12(ε, N, s) + JB13(ε, N, s), (4.13)
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where

JB10(ε, s) =

∫ s

0
∂tF (t, Xt)

(t+ ε) ∧ s− t

ε
dt,

JB11(ε, N, s) = −
N
∑

i=1

∫ ti

ti−ε

∂tF (t, Xt)
(t+ ε) ∧ s− t

ε
dt,

JB12(ε, N, s) =

∫ s

0
R1(ε, t, s)1B(ε,N)(t)

(t+ ε) ∧ s− t

ε
dt,

JB13(ε, N, s) =

∫ s

0
R2(ε, t, s)1B(ε,N)(t)

(t+ ε) ∧ s− t

ε
dt,

and

R1(ε, t, s) =

∫ 1

0
[∂tF (t+ a ((t+ ε) ∧ s− t), X(t+ε)∧s)− ∂tF (t, X(t+ε)∧s)] da, (4.14)

R2(ε, t, s) = ∂tF (t, X(t+ε)∧s)− ∂tF (t, Xt). (4.15)

A Taylor expansion in space up to second order gives

JB2(ε, N, s) = JB20(ε, s) + JB21(ε, s) + JB22(ε, N, s) + JB23(ε, N, s), (4.16)

where

JB20(ε, s) =
1

ε

∫ s

0
∂xF (t, Xt) (X(t+ε)∧s −Xt) dt, (4.17)

JB21(ε, s) =
1

ε

∫ s

0

∂2
xxF (t, Xt)

2
(X(t+ε)∧s −Xt)

2 dt,

JB22(ε, N, s) = −
1

ε

N
∑

i=1

∫ ti

ti−ε

[

∂xF (t, Xt) (X(t+ε)∧s −Xt) +
∂2
xxF (t, Xt)

2
(X(t+ε)∧s −Xt)

2

]

dt,

JB23(ε, N, s) =

∫ s

0
R3(ε, t, s)1B(ε,N)(t)

(X(t+ε)∧s −Xt)
2

ε
dt,

and

R3(ε, t, s) =

∫ 1

0
[∂2

xxF (t, Xt + a(X(t+ε)∧s −Xt))− ∂2
xxF (t, Xt)] da. (4.18)

Let us consider the term JB22(ε, N, s). Applying Lemma 3.11 with n = 2 to Y = (Y 1, Y 2) =
(t,X) and φ(y1, y2) = ∂xF (y12 , y

2
2)(y

2
1 − y22) + ∂2

xxF (y12 , y
2
2)(y

2
1 − y22)

2, we get

lim
ε→0

JB22(ε, N, s) = −
N
∑

i=1

1]0, s](ti)

[

∂xF (ti, Xti−) (Xti −Xti−) +
∂2
xxF (ti, Xti−)

2
(Xti −Xti−)

2

]

(4.19)
uniformly in s. Moreover, the term JB10(ε, N, s) can be in

JB10(ε, s) =

∫ s

0
∂tF (t, Xt) dt+ JB10′(ε, s) + JB10′′ (ε, s), (4.20)

with

JB10′(ε, s) =

∫ s

s−ε

∂tF (t,Xt)
s− t

ε
dt, (4.21)
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JB10′′(ε, s) = −

∫ s

s−ε

∂tF (t,Xt) dt. (4.22)

At this point we remark that identity (4.9) can be rewritten as

J0(ε, s) = JA(ε,N, s) +

∫ s

0
∂tF (t, Xt) dt+ JB10′(ε, s) + JB10′′(ε, s) + JB11(ε,N, s) + JB12(ε,N, s)

+ JB13(ε,N, s) + JB20(ε, s) + JB21(ε, s) + JB22(ε,N, s) + JB23(ε,N, s). (4.23)

Passing to the limit in (4.23) on both the left-hand and right-hand sides, uniformly in s, as ε goes
to zero, taking into account convergences (4.6), (4.12), (4.19). we get

F (s, Xs)− F (0, X0) =

∫ s

0
∂tF (t, Xt) dt+

N
∑

i=1

1]0, s](ti)
[

F (ti, Xti)− F (ti, Xti−)
]

−
N
∑

i=1

1]0, s](ti)

[

∂xF (ti, Xti−) (Xti −Xti−)−
∂2
xxF (ti, Xti−)

2
(Xti −Xti−)

2

]

+ lim
ε→0

(JB20(ε, N, s) + JB21(ε, s) + L(ε,N, s)) (4.24)

where the previous limit is intended uniformly in s, and we have set

L(ε,N, s) := JB10′(ε, s) + JB10′′(ε, s) + JB11(ε, N, s) + JB12(ε, N, s)

+ JB13(ε, N, s) + JB23(ε, N, s).

We evaluate previous limit uniformly in s, for every ω /∈ N . Without restriction of generality it
is enough to show the uniform convergence in s for the subsequence εn introduced in (4.2)-(4.3),
when n → ∞.

According to (4.3), we get

lim
n→∞

JB21(εn, s) =

∫

]0, s]

∂2
xxF (t, Xt−)

2
d[X,X]t, (4.25)

uniformly in s.
We now should discuss JB12(εn, N, s), JB13(εn, N, s) and JB23(εn, N, s). In the sequel, ρ(f, ·)

will denote the modulus of continuity of a function f , and by Il the interval [tl−1, tl], l ≥ 0. Since
(t+ε)∧s−t

ε
≤ 1 for every t, s, by Remark 3.13 we get

1B(ε,N)(t) |R1(ε, t, s)| ≤ρ (∂tF, ε) ,

1B(ε,N)(t) |R2(ε, t, s)| ≤ρ
(

∂tF, sup
l

sup
t,a∈Il
|t−a|≤ε

|Xa −Xt|)
)

,

1B(ε,N)(t) |R3(ε, t, s)| ≤ρ
(

∂2
xxF, sup

l

sup
t,a∈Il
|t−a|≤ε

|Xa −Xt|)
)

.

Considering the two last inequalities, Lemma 3.12 applied successively to the intervals Il implies

1B(ε,N)(t) |R2(ε, t, s)| ≤ ρ(∂tF, 3γ),

1B(ε,N)(t) |R3(ε, t, s)| ≤ ρ(∂2
xxF, 3γ).

Then, using again (t+εn)∧s−t
ε

≤ 1, we get

sup
s∈[0, T ]

|JB12(εn, N, s)| ≤ ρ(∂tF, εn) · T,
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sup
s∈[0, T ]

|JB13(εn, N, s)| ≤ ρ(∂tF, 3γ) · T,

sup
s∈[0, T ]

|JB23(εn, N, s)| ≤ ρ(∂2
xxF, 3γ) · sup

n∈N,s∈[0, T ]
[X,X]ucpεn (s), (4.26)

where we remark that the supremum in the right-hand side of (4.26) is finite taking into account
(4.2). Therefore

lim sup
n→∞

sup
s∈[0, T ]

|JB23(εn, N, s)| = ρ(∂2
xxF, 3γ) · sup

n∈N,s∈[0, T ]
[X,X]ucpεn

(s), (4.27)

lim sup
n→∞

sup
s∈[0, T ]

|JB13(εn, N, s)| = ρ(∂tF, 3γ) · T, (4.28)

while
lim
n→∞

sup
s∈[0, T ]

|JB12(εn, N, s)| = 0. (4.29)

Let now consider the terms JB10′(εn, s), JB10′′(εn, s) and JB11(εn, N, s).

sup
s∈[0, T ]

|JB10′(εn, s)| ≤ sup
y ∈KX(ω)×[0, T ]

|∂tF (y)| · εn,

sup
s∈[0, T ]

|JB10′′(εn, s)| ≤ sup
y ∈KX(ω)×[0, T ]

|∂tF (y)| · εn,

sup
s∈[0, T ]

|JB11(εn, N, s)| ≤ sup
y ∈KX(ω)×[0, T ]

|∂tF (y)|N · εn,

where KX(ω) is the (compact) set {Xt(ω), t ∈ [0, T ]}. So, it follows

lim
n→∞

sup
s∈[0, T ]

|JB10′(εn, s)| = lim
n→∞

sup
s∈[0, T ]

|JB10′′(εn, s)| = lim
n→∞

sup
s∈[0, T ]

|JB11(εn, N, s)| = 0. (4.30)

Taking into account (4.30), (4.28), (4.27), and (4.25), we see that

lim sup
n→∞

sup
s∈[0, T ]

|L(εn, N, s)| = ρ(∂2
xxF, 3γ) · sup

n∈N,s∈[0, T ]
[X,X]ucpεn (s) + ρ(∂tF, 3γ) · T. (4.31)

Recalling that JB20(ε, s) in (4.17) is the ε-approximation of the forward integral
∫ t

0 ∂xF (s,Xs) d
−Xs,

to conclude it remains to show that

sup
s∈[0, T ]

∣

∣JB20(εn, s)− J(s)
∣

∣ −→
n→∞

0 a.s., (4.32)

where

J(s) = F (s, Xs)− F (0, X0)−

∫

]0, s]
∂tF (t, Xt) dt−

∑

t≤s

[F (t, Xt)− F (t, Xt−)]

+
∑

0<t≤s

[

∂xF (t, Xt−) (Xt −Xt−) +
∂2
xxF (t, Xt−)

2
(Xt −Xt−)

2

]

−
1

2

∫

]0, s]
∂2
xxF (t, Xt−) d[X,X]t. (4.33)

In particular this would imply that
∫

]0, s] ∂xF (t, Xt) d
−Xt exists and equals J(s). Taking into

account (4.23), we have

JB20(εn, s) = J0(εn, s)− JA(εn, N, s)−

∫ s

0
∂tF (t, Xt) dt− L(εn, N, s)− JB21(εn, s)− JB22(εn, N, s).

(4.34)
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Taking into account (4.33) and (4.34), we see that the term inside the absolute value in (4.32)
equals

J0(εn, s)− (F (s, Xs)− F (0, X0))

− JA(εn, N, s) +
N
∑

i=1

1]0, s](ti)[F (ti, Xti)− F (ti, Xti−)]

− JB22(εn, N, s)−
N
∑

i=1

1]0, s](ti)

[

∂xF (ti, Xti−) (Xti −Xti−) +
∂2
xxF (ti, Xti−)

2
(Xti −Xti−)

2

]

− JB21(εn, s) +
1

2

∫

]0, s]
∂2
xxF (t, Xt−) d[X,X]t

− L(εn, N, s)

+

∞
∑

i=N+1

1]0, s](ti)

[

F (ti, Xti)− F (ti, Xti−)− ∂xF (ti, Xti−) (Xti −Xti−)−
∂2
xxF (ti, Xti−)

2
(Xti −Xti−)

2

]

.

Taking into account (4.6), (4.12), (4.19), (4.29), (4.31),we have

lim sup
n→∞

sup
s∈[0, T ]

∣

∣

∣

∣

JB20(εn, s)− J(s)

∣

∣

∣

∣

≤ lim sup
n→∞

sup
s∈[0, T ]

|L(εn, N, s)|

+ sup
s∈[0, T ]

∞
∑

i=N+1

1]0, s](ti)

∣

∣

∣

∣

F (ti, Xti)− F (ti, Xti−)− ∂xF (ti, Xti−)∆Xti −
∂2
xxF (ti, Xti−)

2
(∆Xti)

2

∣

∣

∣

∣

= lim sup
n→∞

sup
s∈[0, T ]

|L(εn, N, s)|

+ sup
s∈[0, T ]

∞
∑

i=N+1

(∆Xs)
2
1]0, s](ti)

1

2

∣

∣

∣

∫ 1

0
∂2
xxF (ti, Xti− + a(∆Xti)) da − ∂2

xxF (ti, Xti−)
∣

∣

∣

≤ ρ(∂tF, 3γ) · T + ρ(∂2
xxF, 3γ) · sup

n∈N,s∈[0, T ]
[X,X]ucpεn (s) + γ2 sup

y∈KX(ω)×[0, T ]

|∂2
xxF (y)|, (4.35)

where the last term on the right-hand side of (4.35) is obtained using (4.4). Since γ is arbitrarily
small, we conclude that

lim
n→∞

sup
s∈[0, T ]

∣

∣

∣

∣

JB20(εn, s)− J(s)

∣

∣

∣

∣

= 0, ∀ω /∈ N .

This concludes the proof of the Itô formula.

From Proposition 4.1, Proposition 3.8-ii), and by classical Banach-Steinhaus theory (see, e.g.,
[7], Theorem 1.18 pag 55) for F -type spaces, we have the following.

Proposition 4.2. Let F : [0, T ] × R → R be a function of class C1 such that ∂xF is Hölder
continuous with respect to the second variable for some λ ∈ [0, 1[. Let (Xt)t∈[0, T ] be a reversible
semimartingale, satisfying moreover

∑

0<s≤t

|∆Xs|
1+λ < ∞ a.s.
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Then

F (t,Xt) = F (0,X0) +

∫ t

0
∂sF (s,Xs) ds +

∫ t

0
∂xF (s,Xs−) dXs +

1

2
[∂xF (·,X), X]t + J(F,X)(t),

where

J(F,X)(t) =
∑

0<s≤t

[

F (s,Xs)− F (s,Xs−)−
∂xF (s,Xs) + ∂xF (s,Xs−)

2
∆Xs

]

Remark 4.3. (i) Previous result can be easily extended to the case whenX is multidimensional.

(ii) When F does not depend on time, previous statement was the object of [10], Theorem 3.8,
example 3.3.1. In that case however, stochastic integrals and covariations were defined by
discretizations means.

(iii) The proof of Proposition 4.2 follows the same lines as the one of Theorem 3.8. in [10].

4.2 Itô formula related to random measures

The object of the present section is to reexpress the statement of Proposition 4.1 making use of the
jump measure µX associated with a càdlàg process X recalled in Section 2.1. The compensator
of µX(ds dy) is called the Lévy system of X, and will be denoted by νX(ds dy) (for more details
see Chapter II, Section 1, in [17]); we also set

ν̂Xt = νX({t}, dy) for every t ∈ [0, T ]. (4.36)

A function W defined on Ω̃ which is P̃-measurable will be called predictable.

Corollary 4.4. Let X be a finite quadratic variation càdlàg process and F : [0, T ] × R → R a
function of class C1,2. Then we have

F (t,Xt) = F (0,X0) +

∫ t

0
∂sF (s,Xs) ds+

∫ t

0
∂xF (s,Xs) d

−Xs +
1

2

∫ t

0
∂2
xxF (s,Xs) d[X,X]cs

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−))1{x≤1} (µ
X − νX)(ds dx)

−

∫

]0, t]×R

x ∂xF (s,Xs−)1{x≤1} (µ
X − νX)(ds dx)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{x>1} µ
X(ds dx)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{x≤1} ν
X(ds dx). (4.37)

Proof. We set

Ws(x) = (F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)) 1{|x|≤1},

Ks(x) = (F (s,Xs− + x)− F (s,Xs−)) 1{|x|≤1},

Ys(x) = x ∂xF (s,Xs−)1{|x|≤1}.

By Propositions 2.6, |W | ∗ µX belongs to A+
loc, while Proposition 2.7 insures that K2 ∗ µX and

Y 2 ∗ µX belong to A+
loc. Then, Proposition 1.28, Chapter II, in [17] implies that W ∈ G1

loc(µ
X)

and that the stochastic integral W ∗ (µX − νX) can be decomposed as W ∗ µX −W ∗ νX . On the
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other hand, since K,Y belong to G2
loc(µ) (see Lemma B.21-2. in [1]) Theorem 11.21-3) in [15] we

know that K, Y belong to G1
loc(µ

X) and that moreover K ∗ (µX − νX), Y ∗ (µX − νX) are purely
discontinuous square integrable local martingales.

5 About weak Dirichlet processes

5.1 Basic definitions

We consider again the filtration (Ft)t≥0 introduced at Section 2. Without further mention, the
underlying filtration will be indeed (Ft)t≥0.

Definition 5.1. Let X be an (Ft)-adapted process. We say that X is (Ft)-orthogonal if [X,N ] = 0
for every N continuous local (Ft)-martingale.

Remark 5.2. Basic examples of (Ft)-orthogonal processes are purely discontinuous (Ft)-local mar-
tingales. Indeed, according to Theorem 7.34 in [15] and the comments above, any (Ft)-local mar-
tingale, null at zero, is a purely discontinuous local martingale if and only if it is (Ft)-orthogonal.

Proposition 5.3. If M is a purely discontinuous (Ft)-local martingale, then

[M,M ]t =
∑

s≤t

(∆Ms)
2.

Proof. The result follows from Theorem 5.2, Chapter I, in [17], and Proposition 3.8-(i).

Definition 5.4. We say that an (Ft)-adapted process X is a Dirichlet process if it admits a
decomposition X = M + A, where M is a local martingale and A is a finite quadratic variation
process with [A,A] = 0.

Definition 5.5. We say that X is an (Ft)-adapted weak Dirichlet process if it admits a
decomposition X = M +A, where M is a local martingale and the process A is (Ft)-orthogonal.

Definition 5.6. We say that an (Ft)-adapted process X is a special weak Dirichlet process
if it admits a decomposition of the type above such that, in addition, A is predictable.

Remark 5.7. Obviously, a Dirichlet process is a special weak Dirichlet process.

Proposition 5.8. Let X be a special weak Dirichlet process of the type

X = M c +Md +A, (5.1)

where M c is a continuous local martingale, and Md is a purely discontinuous local martingale.
Supposing that A0 = Md

0 = 0, the decomposition (5.1) is unique. In that case the decomposition
X = M c +Md +A will be called the canonical decomposition of X.

Proof. Assume that we have two decompositions X = M c +Md + A = M c′ +Md′ +A′, with A
and A′ predictable, verifying [A,N ] = [A′, N ] = 0 for every continuous local martingale N . We

set Ã = A−A′, M̃ c = M c−M c′ and M̃d = Md −Md′ . By linearity, M̃ c+ M̃d + Ã = 0. We have

0 = [M̃ c + M̃d + Ã, M̃ c]

= [M̃ c, M̃ c] + [M̃d, M̃ c] + [Ã, M̃ c]

= [M̃ c, M̃ c],

21



therefore M̃ c = 0 since M̃ c is a continuous martingale. It follows in particular that Ã is a
predictable local martingale, hence a continuous local martingale, see e.g., Corollary 2.24 and
Corollary 2.31 in [17]. In particular

0 = [M̃d, M̃d] + [Ã, M̃d] = [M̃d, M̃d]

and, since M̃d
0 = 0, we deduce that M̃d = 0 and therefore Ã = 0.

Remark 5.9. Every (Ft)-special weak Dirichlet process is of the type (5.1). Indeed, every local
martingale M can be decomposed as the sum of a continuous local martingale M c and a purely
discontinuous local martingale Md, see Theorem 4.18, Chapter I, in [17].

Corollary 5.10. Let X be an (Ft)-special weak Dirichlet process. Then, for every t ∈ [0, T ],

(i) [X,X]t = [M c,M c]t +
∑

s≤t(∆Xt)
2;

(ii) [X,X]ct = [M c,M c]t.

Proof. (ii) follows from (i). Concerning (i), by the bilinearity of the covariation, and by the
definitions of purely discontinuous local martingale (see Remark 5.2) and of special weak Dirichlet
process, we have

[X,X]t = [M c,M c]t + [Md,Md]t

= [M c,M c]t +
∑

s≤t

(∆Md
s )

2

= [M c,M c]t +
∑

s≤t

(∆Xs)
2,

where the second equality holds because of Proposition 5.3.

We give a first relation between semimartingales and weak Dirichlet processes.

Proposition 5.11. Let S be an (Ft)-semimartingale which is a special weak Dirichlet process.
Then it is a special semimartingale.

Proof. Let S = M1+V such that M1 is a local martingale and V is a bounded variation process.
Let moreover S = M2 + A, where a predictable (Ft)-orthogonal process. Then 0 = V − A+M ,
where M = M2 − M1. So A is a predictable semimartingale. By Corollary 8.7 in [15], A is a
special semimartingale, and so by additivity S is a special semimartingale as well.

5.2 Stability of weak Dirichlet processes under C0,1 transformation

We begin with the C1,2 stability.

Lemma 5.12. Let X = M + A be a càdlàg weak Dirichlet process of finite quadratic variation
and F : [0, T ]× R → R be a C1,2-real valued function. Then

F (t,Xt) = F (0,X0) +

∫ t

0
∂xF (s,Xs−) dMs (5.2)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−))1{|x|≤1} (µ
X − νX)(ds dx),

−

∫

]0, t]×R

x ∂xF (s,Xs−)1{|x|≤1} (µ
X − νX)(ds dx),
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+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{|x|>1} µ
X(ds dx) + ΓF (t),

where

ΓF (t) :=

∫ t

0
∂sF (s,Xs) ds +

∫ t

0
∂xF (s,Xs) d

−As +

∫ t

0
∂2
xxF (s,Xs) d[X,X]cs

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{|x|≤1} ν
X(ds dx). (5.3)

Remark 5.13. Taking into account Proposition 3.3, we can observe that, if A is predictable, then
ΓF is a predictable process for any F ∈ C1,2.

Proof. Expressions (5.2)-(5.3) follow by Corollary 4.4, in particular by (4.37). We remark that,
since M is a local martingale and ∂xF (s,Xs) is a càdlàg process, by Proposition 3.8-(ii) we have

∫ t

0
∂xF (s,Xs) d

−Xs =

∫ t

0
∂xF (s,Xs) d

−Ms +

∫ t

0
∂xF (s,Xs) d

−As

=

∫ t

0
∂xF (s,Xs−) dMs +

∫ t

0
∂xF (s,Xs) d

−As.

Theorem 5.14. Let X = M +A be a càdlàg weak Dirichlet process of finite quadratic variation.
Then, for every F : [0, T ]× R → R of class C0,1, we have

F (t,Xt) = F (0,X0) +

∫ t

0
∂xF (s,Xs−) dMs

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−))1{|x|≤1} (µ
X − νX)(ds dx)

−

∫

]0, t]×R

x ∂xF (s,Xs−)1{|x|≤1} (µ
X − νX)(ds dx)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{|x|>1} µ
X(ds dx) + ΓF (t), (5.4)

where ΓF : C0,1 → Ducp is a continuous linear map, such that its restriction to C1,2 is given by
(5.3). Moreover, for every F ∈ C0,1, it fullfills the following properties.

(a) [ΓF , N ] = 0 for every N continuous local martingale.

(b) If A is predictable, then ΓF is predictable.

In particular point (a) implies that F (s,Xs) is a weak Dirichlet process when X is a weak Dirichlet
process.

Proof. In agreement with (5.4) we set

ΓF (t) :=F (t,Xt)− F (0,X0)−

∫ t

0
∂xF (s,Xs−) dMs (5.5)

−

∫

]0, t]×R

{F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)} 1{|x|>1} µ
X(ds dx)
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−

∫

]0, t]×R

{F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)} 1{|x|≤1} (µ
X − νX)(ds dx).

We need first to prove that C0,1 ⊃ F 7→ ΓF (t) is continuous with respect to the u.c.p.. topology.
For this we first observe that the map F 7→ F (t,Xt)−F (0,X0) fullfills the mentioned continuity.
Moreover, if Fn → F in C0,1, then

∫ t

0 (∂xF
n − ∂xF )(s,Xs−) dMs converges to zero u.c.p.. since

∂xF
n(s,Xs−) converges to ∂xF (s,Xs−) in Lucp, see Chapter II Section 4 in [19].
Let us consider the second line of (5.5). For almost all fixed ω, the process X has a finite

number of jumps, si = si(ω), 1 ≤ i ≤ N(ω), larger than one. Let Fn → F in C0,1. Since the map
is linear we can suppose that F = 0.

sup
0<t≤T

∣

∣

∣

∣

∫

]0, t]×R

{Fn(s,Xs−(ω) + x)− Fn(s,Xs−(ω))− x ∂xF
n(s,Xs−(ω))} 1{|x|>1} µ

X(ω, ds dx)

∣

∣

∣

∣

≤

∫

]0, T ]×R

|Fn(s,Xs−(ω) + x)− Fn(s,Xs−(ω))− x ∂xF
n(s,Xs−(ω))| 1{|x|>1} µ

X(ω, ds dx)

=

N(ω)
∑

i=1

|Fn(si,Xsi(ω))− Fn(si,Xsi−(ω))−∆Xsi(ω) ∂xF
n(si,Xsi−(ω))| 1{|∆Xsi

(ω)|>1}

→
n→∞

0.

This shows in particular that

∫

]0, ·]×R

{Fn(s,Xs−(ω)+x)−Fn(s,Xs−(ω))−x ∂xF
n(s,Xs−(ω))}1{|x|>1} µ

X(ω, ds dx) → 0 u.c.p..

and so the map defined by the second line in (5.5) is continuous.
Finally, the following proposition exploits the continuity properties of the last term in (5.5),

and allows to conclude the continuity of the map ΓF : C0,1 → Ducp.

Proposition 5.15. The map

I : C0,1 → Ducp

g 7→

∫

]0,·]×R

Gg (s, Xs−, x)1{|x|≤1} (µ
X − νX)(ds dx),

where
Gg (s, ξ, x) = g(s, ξ + x)− g(s, ξ)− x ∂ξg(s, ξ), (5.6)

is continuous.

Proof (of the Proposition). We consider the sequence (τl)l≥1 of increasing stopping times intro-
duced in Remark 2.3-(ii) for the process Yt = (Xt−,

∑

s<t |∆Xs|
2). Since Ω = ∪l {ω : τl(ω) > T}

a.s., the result is proved if we show that, for every fixed τ = τl,

g 7→ 1{τ>T}(ω)

∫

]0, ·]×R

Gg(s, Xs−, x)1{|x|≤1} (µ
X − νX)(ds dx)

is continuous. Let gn → g in C0,1. Then Ggn → Gg in C0([0, T ] × R2). Since the map is linear
we can suppose that g = 0. Let ε0 > 0. We aim at showing that

P

(

sup
t∈[0, T ]

∣

∣

∣

∣

1{τ>T}(ω)

∫

]0, t]×R

Ggn(s, Xs−, x)1{|x|≤1} (µ
X − νX)(ds dx)

∣

∣

∣

∣

> ε0

)

−→
n→∞

0. (5.7)
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Let W n
s (x) (resp. by Ŵ n

s ) denote the random field Ggn(s, Xs−, x)1{|x|≤1} (resp. the process
∫

R
Ggn(s, Xs−, x)1{|x|≤1} ν̂

X(dx)), and define

Int :=

∫

]0, t]×R

W n
s (x) (µ

X − νX)(ds dx).

(5.7) will follow if we show that

P
(

sup
t∈[0, T ]

|Int∧τ | > ε0
)

−→
n→∞

0. (5.8)

For every process φ = (φt)t, we indicate the stopped process at τ by φτ
t (ω) := φt∧τ(ω)(ω). We

have
(|W n|2 ∗ µX)τ ∈ A+. (5.9)

As a matter of fact, let M such that supt∈[0, T ] |Yt∧τ 1{τ>0}| ≤ M . Recalling Remark 2.1, an
obvious Taylor expansion yields

E

[

∫

]0, t∧τ ]×R

|W n
s (x)|

2 µX(ds, dx)

]

≤ 2 sup
y∈[−M,M ]

t∈[0, T ]

|∂xg
n|2(t, y)E

[

∑

0<s<τ

|∆Xs|
2
1{|∆Xs|≤1} 1{τ>0} + |∆Xτ |

2
1{|∆Xτ |≤1} 1{τ>0}

]

≤ 2 sup
y∈[−M,M ]

t∈[0, T ]

|∂xg
n|2(t, y) · (M + 1). (5.10)

It follows that W n
1[0, τ ] ∈ G2(µX) (see e.g. Lemma B.21-1. in [1]), and consequently, by Propo-

sition 3.66 of [16],

Int∧τ is a purely discontinuous square integrable martingale. (5.11)

On the other hand, W n ∈ G2
loc(µ

X), and by Theorem 11.12, point 3), in [15] , it follows that

〈In, In〉t =

∫

]0, t]×R

|W n
s (x)|

2 νX(ds dx) −
∑

0<s≤t

|Ŵ n
s |

2 ≤

∫

]0, t]×R

|W n
s (x)|

2 νX(ds dx). (5.12)

Taking into account (5.11), we can apply Doob inequality. Using estimates (5.10), (5.12) and
(5.11), we get

P

[

sup
t∈[0, T ]

|Int∧τ | > ε0

]

≤
1

ε20
E
[

|InT∧τ |
2
]

=
1

ε20
E [〈In, In〉T∧τ ]

≤
2 (M + 1)

ε20
sup

y∈[−M,M ]
t∈[0, T ]

|∂xg
n|2(t, y).

Therefore, since ∂xg
n → 0 in C0 as n goes to infinity,

lim
n→∞

P

[

sup
t∈[0, T ]

|Int∧τ | > ε0

]

= 0.
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We continue the proof of Theorem 5.14. The restriction of the map ΓF to C1,2 is given by
(5.3), taking into account (5.5) and Lemma 5.12. It remains to prove items (a) and (b).

(a) We have to prove that, for any continuous local martingale N , we have

[

F (·,X) −

∫ ·

0
∂xF (s,Xs−) dMs

−

∫

]0, ·]×R

{F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)} 1{|x|>1} µ
X(ds dx)

−

∫

]0, ·]×R

{F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)} 1{|x|≤1} (µ
X − νX)(ds dx), N

]

= 0.

We set

Yt =

∫

]0, t]×R

Ws(x)1{|x|≤1} (µ
X − νX)(ds dx),

Zt =

∫

]0, t]×R

Ws(x)1{|x|>1} µ
X(ds dx).

with
Ws(x) = F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−).

Since Z is a bounded variation process (X has almost surely a finite number of jumps larger than
one) and N is continuous, Proposition 3.14 insures that

[Z,N ] = 0.

By Proposition 2.7 W 2
1{|x|≤1} ∗ µX ∈ A+

loc, therefore W1{|x|≤1} belongs G2
loc(µ

X) as well, see
Lemma B.21-2. in [1]. In particular, by Theorem 11.21, point 3), in [15], Y is a purely discon-
tinuous (square integrable) local martingale. Recalling that a local (Ft)-martingale, null at zero,
is a purely discontinuous martingale if and only if it is (Ft)-orthogonal (see Remark 5.2), from
Proposition 3.8-(i) we have

[Y,N ] = 0.

From Proposition 3.8-(iii), and the fact that [M,N ] is continuous, it follows that

[
∫ ·

0
∂xF (s,Xs−) dMs, N

]

=

∫ ·

0
∂xF (s,Xs−) d [M,N ]s .

Therefore it remains to check that

[F (·,X), N ]t =

∫ ·

0
∂xF (s,Xs−) d [M,N ]s . (5.13)

To this end, we evaluate the limit of

1

ε

∫ t

0
(F ((s + ε) ∧ t,X(s+ε)∧t)− F (s,Xs)) (N(s+ε)∧t −Ns) ds

=
1

ε

∫ t

0
(F ((s + ε) ∧ t,X(s+ε)∧t)− F ((s + ε) ∧ t,Xs)) (N(s+ε)∧t −Ns) ds

+
1

ε

∫ t

0
(F ((s + ε) ∧ t,Xs)− F (s,Xs)) (N(s+ε)∧t −Ns) ds
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=: I1(ε, t) + I2(ε, t).

Concerning the term I1(ε, t), it can be decomposed as

I1(ε, t) = I11(ε, t) + I12(ε, t) + I13(ε, t),

where

I11(ε, t) =
1

ε

∫ t

0
∂xF (s,Xs) (N(s+ε)∧t −Ns)(X(s+ε)∧t −Xs) ds,

I12(ε, t) =
1

ε

∫ t

0
(∂xF ((s+ ε) ∧ t,Xs)− ∂xF (s,Xs)) (N(s+ε)∧t −Ns)(X(s+ε)∧t −Xs) ds,

I13(ε, t) =
1

ε

∫ t

0

(
∫ 1

0
(∂xF ((s + ε) ∧ t,Xs + a(X(s+ε)∧t −Xs))− ∂xF ((s+ ε) ∧ t,Xs)) da

)

·

· (N(s+ε)∧t −Ns)(X(s+ε)∧t −Xs) ds.

Notice that the brackets [X,X], [X,N ] and [N,N ] exist. Indeed, [X,X] exists by definition,
[N,N ] exists by Proposition 3.8-(i). Concerning [X,N ], it can be decomposed as

[X,N ] = [M,N ] + [A,N ],

where [M,N ] exists by Proposition 3.8-(i) and [A,N ] = 0 by hypothesis, since A comes from the
weak Dirichlet decomposition of X.

Then, from Corollary A.4-2) and Proposition A.7-(iii) we have

I11(ε, t) −→
ε→0

∫ t

0
∂xF (s,Xs−) d[M,N ]s u.c.p.. (5.14)

At this point, we have to prove the u.c.p.. convergence to zero of the remaining terms I12(ε, t),
I13(ε, t), I2(ε, t). First, since ∂xF is uniformly continuous on each compact, we have

|I12(ε, t)| ≤ ρ
(

∂xF

∣

∣

∣

∣

[0, T ]×KX

; ε
)

√

[X,X]ucpε [N,N ]ucpε , (5.15)

where KX is the (compact) set {Xt(ω) : t ∈ [0, T ]}. When ε goes to zero, the modulus of
continuity component in (5.15) converges to zero a.s., while the remaining term u.c.p.. converges
to
√

[X,X]t[N,N ]t by definition. Therefore,

I12(ε, t) −→
ε→0

0 u.c.p.. (5.16)

Let us then evaluate I13(t, ε). Since [X,X]ucpε , [N,N ]ucpε u.c.p.. converge, there exists of
a sequence (εn) such that [X,X]ucpεn , [N,N ]ucpεn converges uniformly a.s. respectively to [X,X],
[N,N ]. We fix a realization ω outside a null set. Let γ > 0. We enumerate the jumps of X(ω) on
[0, T ] by (ti)i≥0. Let M = M(ω) such that

∞
∑

i=M+1

|∆Xti |
2 ≤ γ2.

We define

A(εn,M) =

N
⋃

i=1

]ti − ε, ti]
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B(εn,M) = [0, T ] \A(εn,M).

The term I13(εn, t) can be decomposed as the sum of two terms:

IA13(εn, t) =

M
∑

i=1

∫ ti

ti−εn

ds

εn
1]0, t](s) (X(s+εn)∧t −Xs)(N(s+εn)∧t −Ns)·

·

∫ 1

0
(∂xF ((s+ εn) ∧ t, Xs + a(X(s+εn)∧t −Xs))− ∂xF ((s + εn) ∧ t, Xs)) da,

IB13(εn, t) =
1

εn

∫

]0, t]
(X(s+εn)∧t −Xs)(N(s+εn)∧t −Ns)R

B(εn, s, t,M) ds,

with

RB(εn, s, t,M) = 1B(εn,M)(s)

∫ 1

0
[∂xF ((s+εn)∧t, Xs+a(X(s+εn)∧t−Xs))−∂xF ((s+εn)∧t, Xs)] da.

By Remark 3.13, we have for every s, t,

RB(εn, s, t,M) ≤ ρ

(

∂xF

∣

∣

∣

∣

[0, T ]×KX

, sup
l

sup
r,a∈[tl−1, tl]

|r−a|≤εn

|Xa −Xr|

)

,

so that Lemma 3.12 applied successively to the intervals [tl−1, tl] implies

RB(εn, s, t,M) ≤ ρ
(

∂xF
∣

∣

[0, T ]×KX , 3γ
)

.

Then

|IB13(εn, t)| ≤ ρ
(

∂xF
∣

∣

[0, T ]×KX , 3γ
)

√

[N,N ]ucpεn (T ) [X,X]ucpεn (T ),

and we get
lim sup
n→∞

sup
t∈[0,T ]

|IB13(εn, t)| ≤ ρ
(

∂xF
∣

∣

[0, T ]×KX , 3γ
)
√

[N,N ]T [X,X]T . (5.17)

Concerning IA13(εn, t), we apply Lemma 3.11 to Y = (Y 1, Y 2, Y 3) = (t,X,N) and

φ(y1, y2) = (y21 − y22) (y
3
1 − y32)

∫ 1

0
[∂xF (y11 , y

2
2 + a(y21 − y22))− ∂xF (y11 , y

2
2)] da.

Then IA13(εn, t) converges uniformly in t ∈ [0, T ], as n goes to infinity, to

M
∑

i=1

1]0, t](ti) (Xti−Xti−)(Nti−Nti−)

∫ 1

0
[∂xF (ti, Xti−+a(Xti−Xti−))−∂xF (ti, Xti−)] da. (5.18)

In particular, (5.18) equals zero since N is a continuous process. Then, recalling (5.17), we have

lim sup
n→∞

sup
t∈[0, T ]

|I13(εn, t)| ≤ ρ(∂xF, 3 γ)
√

[N,N ]T [X,X]T ,

and, by the arbitrariness of γ, we conclude that

lim sup
n→∞

sup
t∈[0, T ]

|I13(εn, t)| = 0. (5.19)
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It remains to show the u.c.p.. convergence to zero of I2(ε, t), as ε → 0. To this end, let us
write it as the sum of the two terms

I21(ε, t) =
1

ε

∫ t

0
(F (s + ε,Xs)− F (s,Xs)) (N(s+ε)∧t −Ns) ds,

I22(ε, t) =
1

ε

∫ t

0
(F ((s + ε) ∧ t,Xs)− F (s + ε,Xs)) (N(s+ε)∧t −Ns) ds.

Concerning I21(ε, t), it can be written as

I21(ε, t) =

∫

]0, t]
Jε(r) dNr (5.20)

with

Jε(r) =

∫

[(r−ε)+, r[

F (s+ ε,Xs)− F (s,Xs)

ε
ds.

Since Jε(r) → 0 pointwise, it follows from the Lebesgue dominated convergence theorem that

∫ T

0
J2
ε (r) d〈N, N〉r

P
−→ 0 as ε → 0. (5.21)

Therefore, according to [18], Problem 2.27 in Chapter 3,

lim
ε→0

sup
t∈[0,T ]

|I21(ε, t)| = 0. (5.22)

As far as I22(ε, t) is concerned, we have

|I22(ε, t)| ≤
1

ε

∫ t

t−ε

|F (t,Xs)− F (s+ ε,Xs)| |Nt −Ns| ds

≤ 2 ρ
(

F
∣

∣

[0, T ]×KX , ε
)

||N ||∞

and we get
lim sup

ε→0
sup

t∈[0,T ]
|I22(ε, t)| = 0. (5.23)

This concludes the proof of item (a).
(b) Let Fn be a sequence C1,2 functions such that Fn → F and ∂xF

n → ∂xF , uniformly on
every compact subset. From Lemma 5.12, the process ΓFn

(t) in (5.3) equals

∫ t

0
∂sF

n(s,Xs) ds+

∫ t

0
∂xF

n(s,Xs) d
−As +

∫ t

0
∂2
xxF

n(s,Xs) d[X,X]cs

+

∫

[0, t]×R

(Fn(s,Xs− + x)− Fn(s,Xs−)− x ∂xF
n(s,Xs−))1{|x|≤1}ν

X(ds dx),

which is predictable, see Remark 5.13. Since, by Theorem 5.14, point a), the map ΓF : C0,1 → Ducp

is continuous, ΓFn

converges to ΓF u.c.p.. Then ΓF is predictable because it is the u.c.p.. limit
of predictable processes.
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5.3 A class of particular weak Dirichlet processes

The notion of Dirichlet process is a natural extension of the one of semimartingale only in the
continuous case. Indeed, if X is a càdlàg process, which is also Dirichlet, then X = M +A′ with
[A′, A′] = 0, and therefore A′ is continuous because of Lemma 3.9. This class does not include
all the càdlàg semimartingale S = M + V , perturbed by a zero quadratic variation process A′.
Indeed, if V is not continuous, S + A′ is not necessarily a Dirichlet process. even though X is
a weak Dirichlet process. Notice that, in general, it is even not a special weak Dirichlet process,
since V is generally not predictable.

We propose then the following natural extension of the semimartingale notion in the weak
Dirichlet framework.

Definition 5.16. We say that X is an (Ft)-particular weak Dirichlet process if it admits
a decomposition X = M + A, where M is an (Ft)-local martingale, A = V + A′ with V being
a bounded variation adapted process and A′ a continuous adapted process (Ft)-orthogonal process
such that A′

0 = 0.

Remark 5.17. 1. A particular weak Dirichlet process is a weak Dirichlet process. Indeed by
Proposition 3.14 we have [V,N ] = 0, so

[A′ + V,N ] = [A′, N ] + [V,N ] = 0.

2. There exist processes that are special weak Dirichlet and not particular weak Dirichlet. As
a matter of fact, let for instance consider the deterministic process At = 1Q∩[0, T ](t). Then
A is predictable and [A,N ] = 0 for any N continuous local martingale, since, the fact that
A ≡ 0 Lebesgue a.e. implies that [A,N ]ucpε ≡ 0. Moreover, since A is totally discontinuous,
it can not have bounded variation, so that A is special weak Dirichlet but not particular
weak Dirichlet.

In Propositions 5.18 and 5.19 and Corollary 5.22 we extend some properties valid for semi-
martingales to the case of particular weak Dirichlet processes.

Proposition 5.18. Let X be an (Ft)-adapted càdlàg process satisfying assumption (2.2). X is
a particular weak Dirichlet process if and only if there exist a continuous local martingale M c, a
predictable process α of the type αS +A′, where αS is predictable with bounded variation, A′ is a
(Ft)-adapted continuous orthogonal process, αS

0 = A′
0 = 0, and

X = M c + α+ (x1{|x|≤1}) ∗ (µ
X − νX) + (x1{|x|>1}) ∗ µ

X . (5.24)

In this case,

∆αt =

(

∫

|x|≤1
x ν̂Xt (dx)

)

, t ∈ [0, T ], (5.25)

where ν̂X has been defined in (4.36).

Proof. If we suppose that decomposition (5.24) holds, thenX is a particular weak Dirichlet process
satisfying

X = M + V +A′, M = M c + (x1{|x|≤1}) ∗ (µX − νX), V = αS + (x1{|x|>1}) ∗ ν
X .

Conversely, suppose that X = M+V +A′ is a particular weak Dirichlet process. Since S = M+V
is a semimartingale, by Theorem 11.25 in [15], it can be decomposed as

S = Sc + αS + (x1{|x|≤1}) ∗ (µ
S − νS) + (x1{|x|>1}) ∗ µ

S,
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where µS is the jump measure of S and νS is the associated Lévy system, Sc a continuous local
martigale, αS a predictable process with finite variation such that αS

0 = 0 and

∆αS
s =

(

∫

|x|≤1
x ν̂Ss (dx)

)

.

Consequently, since A′ is adapted and continuous, with A′
0 = 0, we have

X = S +A′ = Sc + (αS +A′) + (x1{|x|≤1}) ∗ (µ
X − νX) + (x1{|x|>1}) ∗ µ

X

and (5.24) holds with α = αS + A′ and M c = Sc. Let be N be a continuous local martingale.
The process α is (Ft)-orthogonal. Indeed, for every (Ft)-local martingale N , [A′, N ] = 0 and
[αS , N ] = 0 by Proposition 3.14. On the other hand, since ∆α = ∆αS , (5.25) follows.

The following condition on X will play a fundamental role in the sequel:

|x|1{|x|>1} ∗ µ
X ∈ A+

loc. (5.26)

Proposition 5.19. Let X be a particular (Ft)-weak Dirichlet process verifying the jump assump-
tion (2.2). X is a special weak Dirichlet process if and only if (5.26) holds.

Proof. Suppose the validity of (5.26). We can decompose

(x1{|x|>1}) ∗ µ
X = (x1{|x|>1}) ∗ (µ

X − νX) + (x1{|x|>1}) ∗ ν
X .

Using the notation of (5.24), by additivity we get

X = M +A, M = M c +Md, A = α+ (x1{|x|>1}) ∗ ν
X , (5.27)

where Md = x ∗ (µX − νX). In particular M and A are well-defined.
Since the process α + (x1{|x|>1}) ∗ νX is predictable, given a local martingale N , [A,N ] =

0 by Proposition 5.18 and again from the fact that (x1{|x|>1}) ∗ νX has bounded variation.
Consequently X is a special Dirichlet process.

Conversely, let X = M + V + A′ be a particular weak Dirichlet process, with V bounded
variation. We suppose that X is a special weak Dirichlet process. Since [A′, N ] = 0 for every
continuous local martingale, then by additivity X −A′ is still a special weak Dirichlet process, A′

being continuous adapted. But X −A′ = M + V is a semimartingale, and by Proposition 5.11 it
is a special semimartingale. By Corollary 11.26 in [15],

|x|1{|x|>1} ∗ µ
S ∈ A+

loc,

where µS is the jump measure of S. On the other hand, since A′ is continuous, µS coincides with
µX and (5.26) holds.

We recall the following result on the stochastic integration theory, for a proof see e.g. Propo-
sition B.30 in [1].

Proposition 5.20. Let W ∈ G1
loc(µ

X), and define Md
t =

∫

[0,t]×R
Ws(x) (µ

X − νX)(ds dx). Let

moreover (Zt) be a predictable process such that
√

∑

s≤·

Z2
s |∆Md

s |
2 ∈ A+

loc. (5.28)

Then
∫ ·
0 Zs dM

d
s is a local martingale and equals

∫

[0,·]×R

ZsWs(x) (µ
X − νX)(ds dx). (5.29)
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Remark 5.21. Recalling that
√

[M,M ]t ∈ A+
loc for any local martingale M (see, e.g. Theorem

2.34 and Proposition 2.38 in [16]), condition (5.28) is verified if for instance Z is locally bounded.

Remark 5.22. Let X be a finite quadratic variation process of the type (5.24). Let F : [0, T ]×R →
R be a C0,1-real valued function with partial derivative ∂xF . Then, formula (5.4) in Theorem
5.14 can be rewritten as

F (t,Xt) = F (0,X0) +

∫ t

0
∂xF (s,Xs) dM

c
s

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−))1{|x|≤1} (µ
X − νX)(ds dx)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{|x|>1} µ
X(ds dx) + ΓF (t). (5.30)

Indeed, setting

Md
t =

∫

[0,t]×R

x1{|x|≤1}(µ
X − νX)(ds dx),

by Propositions 5.20, taking into account Remark 5.21, we have

∫ t

0
∂xF (s,Xs−) dM

d
s =

∫

]0,t]×R

x ∂xF (s,Xs−)1{|x|≤1} (µ
X − νX)(ds dx).

5.4 Stability of special weak Dirichlet processes under C0,1 transformation

At this point, we investigate the stability properties of the class of special weak Dirichlet processes.
We start with an important property.

Proposition 5.23. Let X be special weak Dirichlet process with its canonical decomposition X =
M c +Md +A. We suppose that assumptions (2.2), (5.26) are verified. Then

Md
s =

∫

]0,s]×R

x (µX − νX)(dt dx). (5.31)

Proof. Taking into account assumption (2.2), Corollary 2.5 together with condition (5.26) insures
the fact that the right-hand side of (5.31) is well-defined. By definition, it is the unique purely
discontinuous local martingale whose jumps are indistinguishable from

∫

R

xµX({t}, dx) −

∫

R

x νX({t}, dx).

It remains to prove that

∆Md
t =

∫

R

xµX({t}, dx) −

∫

R

x νX({t}, dx), up to indistinguishability. (5.32)

We have

∆Md
t = ∆Xt −∆At, t ≥ 0,

Being A predictable, ∆A = p(∆A), see for instance Corollary A.24 in [1]. Now, by Corollary 1.23
in [17], for any local martingale L, p(∆L) = 0; so for any predictable time τ we have

∆Aτ 1{τ<∞} = E
[

∆Xτ 1{τ<∞}|Fτ−

]
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= E

[
∫

R

xµX({τ}, dx)1{τ<∞}|FT−

]

=

∫

R

x νX({τ}, dx)1{τ<∞} a.s.,

where for the latter equality we have used Proposition 1.17, point b), Chapter II, in [17]. Previous
arguments make use of a small abuse of terminology. In order to get them rigorous one can take
Ωn ∈ Fτ− such that ∪nΩn ∪ {τ < ∞} = {τ < ∞} a.s.

The Predictable Section Theorem (see e.g. Proposition 2.18, Chapter I, in [17]) insures that
∆At and

∫

R
x νX({t}, dx) are indistinguishable. Since ∆Xt =

∫

R
xµX({t}, dx), by additivity,

(5.32) is established.

Lemma 5.24. Let X be a càdlàg process satisfying condition (5.26). Let also F : [0, T ]×R → R

be a function of class C0,1 such that

∫

]0,s]×R

|F (t,Xt− + x)− F (t,Xt−)− x ∂xF (t,Xt−)|1{|x|>1} µ
X(dt dx) ∈ A+

loc. (5.33)

Then
∫

]0,s]×R

x ∂xF (t,Xt−)1{|x|>1} µ
X(dt dx) ∈ A+

loc, (5.34)

∫

]0,s]×R

|F (t,Xt− + x)− F (t,Xt−)|1{|x|>1} µ
X(dt dx) ∈ A+

loc. (5.35)

Remark 5.25. Condition (5.33) is automatically verified if X is a càdlàg process satisfying (5.26)
and F : [0, T ]× R → R is a function of C1 class with ∂xF bounded.

Proof. Condition (5.26) together the fact that the process (∂xF (t,Xt−)) is locally bounded implies
(5.34); then condition (5.35) follows from (5.34) and (5.33).

Theorem 5.26. Let X be special weak Dirichlet process of finite quadratic variation with its
canonical decomposition X = M c + Md + A. We denote by C̃0,1 the space of functions F :
[0, T ] × R → R satisfying condition (5.33). Then we have the following.

(1) For every F of class C̃0,1, we have that Yt = F (t,Xt) is a special weak Dirichlet process,
with decomposition Y = MF +AF , where

MF
t = F (0,X0) +

∫ t

0
∂xF (s,Xs) d(M

c +Md)s

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)) (µ
X − νX)(ds dx),

and F 7→ AFwell-defined, C̃0,1 → Ducp, is a linear map and, for every F ∈ C̃0,1, AF is a
predictable (Ft)-orthogonal process.

(2) If moreover condition (5.26) holds, MF reduces to

MF
t = F (0,X0) +

∫ t

0
∂xF (s,Xs) dM

c
s +

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx).
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Proof. (1) For every F of class C̃0,1, we set

AF = ΓF + V̄ F , (5.36)

where ΓF has been defined in Theorem 5.14, and

V̄ F
t :=

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−))1{|x|>1} ν
X(ds dx),

which is well-defined by assumption (5.33).
The map F 7→ AF is linear since F 7→ ΓF and F 7→ V̄ F are linear. Given F ∈ C̃0,1, AF is a

(Ft)-orthogonal process by Theorem 5.14-(a), taking into account that [V̄ F , N ] = 0 by Proposition
3.14. Using decomposition (5.36), Theorem 5.14-(b) and the fact that V̄ is predictable, it follows
that AF is predictable.

(2) It remains to show that

∫ t

0
∂xF (s,Xs−) dM

d
s =

∫

]0,t]×R

x ∂xF (s,Xs−) (µ
X − νX)(ds dx),

This follows from Proposition 5.20 and Proposition 5.23, taking into account Remark 5.21.

Remark 5.27. In Theorem 5.26 condition (5.26) is verified for instance if X is a particular weak
Dirichlet process, see Proposition 5.19.

5.5 The case of special weak Dirichlet processes without continuous local mar-

tingale.

We end this section by considering the case of special weak Dirichlet processes with canonical
decomposition X = M + A where M = Md is a purely discontinuous local martingale. In
particular there is no continuous martingale part. In this framework, under the assumptions of
Theorem 5.26, if assumption (5.26) in verified, then item (2) says that

F (t,Xt) = F (0,X0) +

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx) +AF (t). (5.37)

Since in the above formula no derivative appears, a natural question appears: is it possible to
state a chain rule (5.37) when F is not of class C0,1? Indeed we have the following result, which
does not suppose any weak Dirichlet structure on X.

We first introduce some notations. Let E be a closed subset of R on which X takes values.
Given a càdlàg function ϕ : [0, T ] → R, we denote by Cϕ the set of times t ∈ [0, T ] for which there
is a left (resp. right) neighborhood It− =]t− ε, t[ (resp. It+ = [t, t+ ε[) such that ϕ is constant
on It− and It+. We introduce the following assumption.

Hypothesis 5.28. There exists C ∈ [0, T ] such that for ω a.s. C ⊃ CX(ω), and

• ∀t ∈ C, t 7→ F (t, x) is continuous ∀x ∈ E;

• ∀t ∈ Cc, x ∈ E, (t, x) is a continuity point of F .

Remark 5.29. Hypothesis 5.28 is fulfilled in two typical situations.

1. C = [0, T ]. Almost surely X admits a finite number of jumps and t 7→ F (t, x) is continuous
∀x ∈ E.
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2. C = ∅ and F |[0, T ]×E is continuous.

From now on, we denote by ∆F (t,Xt) the jump of the time t the process (F (t,Xt)).

Remark 5.30. Assume that Hypothesis 5.28 holds. Then

(i) F (t,Xt) is necessarily a càdlàg process.

(ii) ∀t ∈ [0, T ], ∆F (t,Xt) = F (t,Xt)− F (t,Xt−).

Proposition 5.31. Let X be an adapted càdlàg process. Let F : [0, T ] × R → R be a function
satisfying Hypothesis 5.28. Assume that the following holds.

(i) F (t,Xt) is an (Ft)-orthogonal process such that
∑

s≤T |∆F (s,Xs)| < ∞, a.s.

(ii)
∫

]0, ·]×R
|F (s,Xs− + x)− F (s,Xs−)|µ

X(ds dx) ∈ A+
loc.

Then F (t,Xt) is a special weak Dirichlet process with decomposition

F (t,Xt) = F (0,X0) +

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx) +AF (t), (5.38)

and AF is a predictable (Ft)-orthogonal process.

Proof of Proposition 5.31. Since by condition (i),
∑

s≤t |∆F (s,Xs)| is finite a.s., the process
Bt =

∑

s≤t∆F (s,Xs) is well-defined and has bounded variation. We set A′
t := F (t,Xt) − Bt.

Then, we decompose F (t,Xt) as F (t,Xt) = Bt + A′
t. A′ is a continuous process, and is (Ft)-

orthogonal by additivity, since by assumption F (t,Xt) is (Ft)-orthogonal and B is (Ft)-orthogonal
by Proposition 3.14. Recalling the definition of the jump measure µX , by Remark 5.30 and
condition (ii), we get

Bt =
∑

s≤t

((F (s,Xs− +∆Xs)− F (s,Xs−))

=

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−))µ
X(ds dx)

=

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx)

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) ν
X(ds dx).

Finally, decomposition (5.38) holds with

AF (t) := A′
t +

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) ν
X(ds dx). (5.39)

The process AF in (5.39) is clearly predictable. The (Ft)-orthogonality property of AF follows
from the orthogonality of A′ and by Proposition 3.14, noticing that the integral term in (5.39) is
a bounded variation process.
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Appendix

A Additional results on calculus via regularization

In what follows, we are given a filtered probability space (Ω,F , (Ft),P), and an integer-valued
random measure µ.

For every functions f, g defined on R, let now set

Ĩ−(ε, t, f, dg) =

∫

]0, t]
f(s)

g(s + ε)− g(s)

ε
ds, (A.1)

Cε(f, g)(t) =
1

ε

∫

]0, t]
(f(s+ ε)− f(s))(g(s + ε)− g(s)) ds. (A.2)

Definition A.1. Assume that X,Y are two càdlàg processes. We say that the forward integral
of Y with respect to X exists in the pathwise sense, if there exists some process (I(t), t ≥ 0)
such that, for all subsequences (εn), there is a subsequence (εnk

) and a null set N with

∀ω /∈ N , lim
k→∞

|Ĩ−(εnk
, t, Y, dX)(ω) − I(t)(ω)| = 0 ∀t ≥ 0, a.s.

Definition A.2. Let X,Y be two càdlàg processes. the covariation between X and Y (the
quadratic variation of X) exists in the pathwise sense, if there exists a càdlàg process
(Γ(t), t ≥ 0) such that, for all subsequences (εn) there is a subsequence (εnk

) and a null set N :

∀ω /∈ N, lim
k→∞

|Cεnk
(X,Y )(t)(ω) − Γ(t)(ω)| = 0 ∀t ≥ 0, a.s.

Proposition A.3. Let X,Y be two càdlàg processes. Then

I−ucp(ε, t, Y, dX) = Ĩ−(ε, t, Y, dX) +R1(ε, t) (A.3)

[X,Y ]ucpε (t) = Cε(X,Y )(t) +R2(ε, t), (A.4)

where
Ri(ε, t)(ω) −→

ε→0
0 i = 1, 2, ∀t ∈ [0, T ], ∀ω ∈ Ω. (A.5)

Moreover, if X is continuous, then the convergence in A.5 holds u.c.p..

Proof. We fix t ∈ [0, T ]. Let γ > 0. The definition of right continuity in t insures that there
exists δ > 0 small enough such that

|X(t) −X(a)| ≤ γ if a− t < δ, a > t,

|Y (t)− Y (a)| ≤ γ if a− t < δ, a > t.

We start proving (A.3). From decomposition (3.3) and the definition of Ĩ−(ε, t, Y, dX) we get

I−ucp(ε, t, Y, dX) − Ĩ−(ε, t, Y, dX) =
1

ε

∫ t

(t−ε)+

Y (s) [X(t) −X(s)] ds

−
1

ε

∫ t

(t−ε)+

Y (s) [X(s + ε)−X(s)] ds

=
1

ε

∫ t

(t−ε)+

Y (s) [X(t) −X(s + ε)] ds =: R1(ε, t).

Choosing ε < δ we get
|R1(ε, t)| ≤ γ ||Y ||∞,
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and since γ is arbitrary, we conclude that R1(ε, t) → 0 as ε goes to zero, for every t ∈ [0, T ].
It remains to show (A.4). To this end we evaluate

[X,Y ]ucpε (t)− Cε(X,Y )(t) =
1

ε

∫ t

(t−ε)+

[X(t) −X(s)] [Y (t)− Y (s)] ds

−
1

ε

∫ t

(t−ε)+

[X(s + ε)−X(s)] [Y (s + ε)− Y (s)] ds

=: R2(ε, t).

We have

R2(ε, t) =
1

ε

∫ t

(t−ε)+

[X(t) −X(s)] [Y (t)− Y (s)] ds

−
1

ε

∫ t

(t−ε)+

[X(s + ε)−X(s)] [Y (t)− Y (s)] ds

+
1

ε

∫ t

(t−ε)+

[X(s + ε)−X(s)] [Y (t)− Y (s)] ds

−
1

ε

∫ t

(t−ε)+

[X(s + ε)−X(s)] [Y (s+ ε)− Y (s)] ds

=
1

ε

∫ t

(t−ε)+

[X(t) −X(s+ ε)] [Y (t)− Y (s)] ds

+
1

ε

∫ t

(t−ε)+

[X(s + ε)−X(s)] [Y (t)− Y (s+ ε)] ds.

Choosing ε < δ, the absolute value of previous expression is smaller than

2 γ (||Y ||∞ + ||X||∞).

Since γ is arbitrary, R2(ε, t) → 0 as ε goes to zero, for every t ∈ [0, T ].
Suppose now that X is continuous. The expression of R2(ε, t) can be uniformly (in t) bounded
by 2ρ(X, ε) ‖Y ‖∞, where ρ(X, ·) denotes the modulus of continuity of X; on the other hand
R1(ε, t) ≤ 2ρ(X, ε) ‖Y ‖∞,∀t ∈ [0, T ]. This concludes the proof of Proposition A.3.

Corollary A.4. Let X,Y be two càdlàg processes.

1) If the stochastic integral of Y with respect to X exists, then it exists in the pathwise sense.
In particular, there is a null set N and, for any sequence (εn) ↓ 0, a subsequence (εnk

) such
that

Ĩ−(εnk
, t, Y, dX)(ω) −→

k→∞

(

∫

]0, t]
Ys d

−Xs

)

(ω) ∀t ∈ [0, T ], ∀ω /∈ N . (A.6)

2) If the covariation between X and Y exists, then it exists in the pathwise sense. In particular,
there is a null set N and, for any sequence (εn) ↓ 0, a subsequence (εnk

) such that

Cεnk
(X,Y )(t)(ω) −→

k→∞
[X,Y ]t (ω) ∀t ∈ [0, T ], ∀ω /∈ N . (A.7)

Proof. The result is a direct application of Proposition A.3.
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Lemma A.5. Let g : [0, T ] → R be a càglàd process, X be a càdlàg process such that the quadratic
variation of X exists in the pathwise sense, see Definition A.2. Setting (improperly) [X,X] = Γ,
we have

∫ s

0
gt (X(t+ε)∧s −Xt)

2 dt

ε

ε→0
−→

∫ s

0
gt d[X,X]t u.c.p.. (A.8)

Proof. We have to prove that

sup
s∈[0, T ]

∣

∣

∣

∣

∫ s

0
gt (X(t+ε)∧s −Xt)

2 dt

ε
−

∫ s

0
gt d[X,X]t

∣

∣

∣

∣

P
−→ 0 as ε goes to zero. (A.9)

Let εn be a sequence converging to zero. Since [X,X] exists in the pathwise sense, there is a
subsequence εnk

, that we still symbolize by εn, such that

Cεn(X,X)(t)
n→∞
−→ [X,X]t ∀t ∈ [0, T ] a.s. (A.10)

Let N be a null set such that

Cεn(X,X)(ω, t)
n→∞
−→ [X,X]t(ω) ∀t ∈ [0, T ], ∀ω /∈ N . (A.11)

From here on we fix ω /∈ N . We have to prove that

sup
s∈[0, T ]

∣

∣

∣

∣

∫ s

0
gt (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
gt d[X,X]t

∣

∣

∣

∣

n→∞
−→ 0. (A.12)

We will do it in two steps.
Step 1. We consider first the case of a càglàd process (gt) with a finite number of jumps.
Let us fix γ > 0, ε > 0. We enumerate by (ti)i≥0 the set of jumps of X(ω) on [0, T ], union

{T}. Without restriction of generality, we will assume that the jumps of (gt) are included in
{ti}i≥0. Let N = N(ω) such that

∞
∑

i=N+1

|∆Xti |
2 ≤ γ2,

∞
∑

i=N+1

|∆gti | = 0. (A.13)

We define

A(ε,N) =

N
⋃

i=1

]ti − ε, ti]

B(ε,N) = [0, T ] \A(ε,N).

The term inside the supremum in (A.9) can be written as

1

ε

∫

]0, s]
gt (X(t+ε)∧s −Xt)

2 dt−

∫

]0, s]
gt d[X,X]t = J1(s, ε) + J2(s, ε) + J3(s, ε),

where

J1(ε, N, s) =
1

ε

∫

]0, s]∩A(ε,N)
gt (X(t+ε)∧s −Xt)

2 dt−
N
∑

i=1

1]0, s](ti) (∆Xti)
2 gti ,

J2(ε, N, s) =
1

ε

∫

]0, s]∩B(ε,N)
gt (Xt+ε −Xt)

2 dt−

∫

]0, s]
gt d[X,X]ct −

∞
∑

i=N+1

1]0, s](ti) (∆Xti)
2 gti ,
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J3(ε, N, s) =
1

ε

∫

]0, s]∩B(ε,N)
gt
[

(X(t+ε)∧s −Xt)
2 − (Xt+ε −Xt)

2
]

dt.

Applying Lemma 3.11 to J1(ε, N, s), with Y = (Y 1, Y 2) = (t,X) and φ(y1, y2) = gy12(y
2
1 − y22)

2,
we get

lim
ε→0

sup
s∈[0, T ]

|J1(ε, N, s)| = 0. (A.14)

Concerning J3(ε,N, s), we have

|J3(ε,N, s)| =

∣

∣

∣

∣

∫ s

0
gt 1B(ε,N)(t) (Xt+ε −Xt)

2 dt

ε
−

∫ s

0
gt 1B(ε,N)(t) (X(t+ε)∧s −Xt)

2 dt

ε

∣

∣

∣

∣

≤
||g||∞
ε

(
∫ s

s−ε

1B(ε,N)(t) (|Xt+ε −Xt|
2 + |Xs −Xt|

2)
dt

ε

)

.

We recall that

B(ε,N) =

N
⋃

i=1

]ti−1, ti − ε].

From Remark 3.13 it follows that, for every t ∈]ti−1, ti − ε] and s > t, (t + ε) ∧ s ∈ [ti−1, ti].
Therefore Lemma 3.12 applied successively to the intervals [ti−1, ti] implies that

lim sup
ε→0

sup
s∈[0, T ]

|J3(ε, N, s)| ≤ 18γ2 ||g||∞. (A.15)

It remains to evaluate the uniform limit of J2(εn, N, s). We start by showing that, for fixed
s ∈ [0, T ], we have the pointwise convergence

J2(εn, N, s) =
1

εn

∫

]0, s]∩B(εn,N)
gt (Xt+εn −Xt)

2 dt−

∫

]0, s]
gt d[X,X]ct −

∞
∑

i=N+1

1]0, s](ti) (∆Xti)
2 gti

→
n→∞

0, ∀s ∈ [0, T ]. (A.16)

We prove now that

dt

εn
1B(εn,N)(t) (Xt+εn −Xt)

2 ⇒ d

( ∞
∑

ti≤t
i=N+1

(∆Xti)
2 + [X,X]ct

)

. (A.17)

It will be enough to show that, ∀s ∈ [0, T ],

∫ s

0

dt

εn
1B(εn,N)(t) (Xt+εn −Xt)

2 →n→∞

∞
∑

ti≤s
i=N+1

(∆Xti)
2 + [X,X]cs. (A.18)

By (A.10) and Lemma 3.9, we have
∫ s

0
(Xt+εn −Xt)

2 dt

εn

n→∞
−→ [X,X]cs +

∑

ti≤s

(∆Xti)
2 ∀s ∈ [0, T ]. (A.19)

On the other hand, we can show that

∫ s

0

dt

εn
1A(εn,N)(t) (Xt+εn −Xt)

2 n→∞
−→

N
∑

ti≤s
i=1

(∆Xti)
2 ∀s ∈ [0, T ]. (A.20)
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Indeed

∣

∣

∣

∫ s

0

dt

εn
1A(εn,N)(t) (Xt+εn −Xt)

2 −
N
∑

ti≤s
i=1

(∆Xti)
2
∣

∣

∣

≤
∣

∣

∣

∫ s

0

dt

εn
1A(εn,N)(t) (X(t+εn)∧s −Xt)

2 −
N
∑

ti≤s
i=1

(∆Xti)
2
∣

∣

∣

+
∣

∣

∣

∫ s

0

dt

εn
1A(εn,N)(t) (X(t+εn)∧s −Xt)

2 −

∫ s

0

dt

εn
1A(εn,N)(t) (Xt+εn −Xt)

2
∣

∣

∣
∀s ∈ [0, T ].

The first addend converges to zero by Lemma 3.11 applied to Y = X and φ(y) = (y1 − y2)
2. The

second one converges to zero by similar arguments as those we have used to prove Proposition
A.3. This establishes (A.20). Subtracting (A.19) and (A.20), we get (A.18), and so (A.17).

We remark that the left-hand side of (A.17) are positive measures. Moreover, we notice that
t 7→ gt(ω) is µ-continuous, where µ is the measure on the right-hand side of (A.17). At this point,
Portmanteau theorem and (A.17) insure that J2(εn, N, s) converges to zero as n goes to infinity,
for every s ∈ [0, T ].

Finally, we control the convergence of J2(εn, N, s), uniformly in s. We make use of Lemma
3.15. We set

Gn(s) =
1

εn

∫

]0, s]
1B(εn,N)(t) (Xt+εn −Xt)

2 gt dt,

F (s) =

∫

]0, s]
gt d[X,X]ct ,

G(s) = −
∞
∑

i=N+1

1]0, s](ti) (∆Xti)
2 gti .

By (A.16), Fn := Gn +G converges pointwise to F as n goes to infinity. Since Gn is continuous
and increasing, F is continuous and G is càdlàg, Lemma 3.15 implies that

lim sup
n→∞

sup
s∈[0, T ]

|J2(εn, N, s)| ≤ 2γ2 ||g||∞. (A.21)

Collecting (A.14), (A.15) and (A.21), it follows that

lim sup
n→∞

sup
s∈[0, T ]

∣

∣

∣

∣

∫ s

0
gt (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
gt d[X,X]t

∣

∣

∣

∣

≤ 20γ2 ||g||∞.

Since γ is arbitrarily small, (A.12) follows.
Step 2. We treat now the case of a general càglàd process (gt).
Let us fix γ > 0, ε > 0. Without restriction of generality, we can write gt = gγ,BV

t + gγt , where

gγ,BV
t is a process with a finite number of jumps and gγt is such that |∆gγt | ≤ γ for every t ∈ [0, T ].
From Step 1, we have

I1,ns :=

∫ s

0
gγ,BV
t (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
gγ,BV
t d[X,X]t (A.22)

converges to zero, uniformly in s, as n goes to infinity. Concerning (gγt ), by Lemma 3.12 we see
that there exists ε̄0 = ε̄0(γ) such that

sup
a, t∈I

|a−t|≤ε̄0

|gγa − gγt | ≤ 3γ. (A.23)
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At this point, we introduce the càglàd process

gk,γt =

2k−1
∑

i=0

gγ
i 2−kT

1]i2−kT,(i+1)2−kT ](t), (A.24)

where k is such that 2−k < ε̄0. From (A.24), taking into account (A.23), we have

|gγt − gk,γt | = |gγt 1]i2−k T,(i+1)2−k T ](t)− gγ
i 2−k | ≤ 3γ ∀ t ∈ [0, T ]. (A.25)

We set

I2,ns :=

∫ s

0
(gγt − gk,γt ) (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
(gγt − gk,γt ) d[X,X]t.

From (A.25)

sup
s∈[0, T ]

|I2,ns | ≤ 3γ Γ

with

Γ = sup
n∈N,s∈[0, T ]

∣

∣

∣

∣

∫ s

0
(X(t+εn)∧s −Xt)

2 dt

εn

∣

∣

∣

∣

+ [X,X]T . (A.26)

Notice that Γ is finite, since the term inside the absolute value in (A.26) converges uniformly by

Step 1 with g = 1. On the other hand, by definition, (gk,γt ) has a finite number of jumps, therefore
from Step 1 we get that

I3,ns =

∫ s

0
gk,γt (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
gk,γt d[X,X]t (A.27)

converges to zero, uniformly in s, as n goes to infinity. Finally, collecting all the terms, we have

lim sup
n→∞

sup
s∈[0, T ]

∣

∣

∣

∣

∫ s

0
gt (X(t+εn)∧s −Xt)

2 dt

εn
−

∫ s

0
gt d[X,X]t

∣

∣

∣

∣

≤ lim sup
n→∞

sup
s∈[0, T ]

|I1,ns |+ lim sup
n→∞

sup
s∈[0, T ]

|I2,ns |+ lim sup
n→∞

sup
s∈[0, T ]

|I3,ns |

≤ 3 γΓ. (A.28)

and since γ is arbitrarily small, the result follows.

Remark A.6. Let X be a càdlàg processes. From Corollary A.4 2) and Lemma A.5 with g = 1,
the following properties are equivalent:

• X is a finite quadratic variation process;

• [X,X] exists in the pathwise sense.

Proposition A.7. Let X,Y be two càdlàg processes. The following properties are equivalent.

(i) [X,X], [X,Y ], [Y, Y ] exist in the pathwise sense;

(ii) For all (εn) ↓ 0 there is (εnk
) and a null set N such that, ∀ω /∈ N ,

dCεnk
(X,Y )(ω) −→

k→∞
d[X,Y ](ω) weakly,

dCεnk
(X,X)(ω) −→

k→∞
d[X,X](ω) weakly,

dCεnk
(Y, Y )(ω) −→

k→∞
d[Y, Y ](ω) weakly.
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(iii) For every càglàd process (gt),

lim
ε→0

∫ s

0
gt

(X((t+ ε) ∧ s)−X(t)) (Y ((t+ ε) ∧ s)− Y (t))

ε
dt =

∫ s

0
gt d[X,Y ]t u.c.p..,

lim
ε→0

∫ s

0
gt

(X((t + ε) ∧ s)−X(t))2

ε
dt =

∫ s

0
gt d[X,X]t u.c.p..,

lim
ε→0

∫ s

0
gt

(Y ((t+ ε) ∧ s)− Y (t))2

ε
dt =

∫ s

0
gt d[Y, Y ]t u.c.p..

Proof. Without loss of generality, we first reduce to the case g ≥ 0. Using polarity arguments of
the type

[X + Y,X + Y ]t = [X,X]t + [Y, Y ]t + 2 [X,Y ]t

[X + Y,X + Y ]ucpε (t) = [X,X]ucpε (t) + [Y, Y ]ucpε (t) + 2 [X,Y ]ucpε (t),

we can reduce to the case X = Y .
(i) implies (iii) by Lemma A.5.
(i) follows from (iii) choosing g = 1 and Corollary A.4 2).
(i) implies (ii) by Portmanteau theorem.

Remark A.8. Let X,Y be two càdlàg processes. The equivalence (i) ⇒ (iii) in Proposition A.7
with g = 1 implies that the following are equivalent:

• (X,Y ) admits all its mutual brackets;

• [X,X], [X,Y ], [Y, Y ] exist in the pathwise sense.

Proposition A.9. Let X be a finite quadratic variation process. The following are equivalent.

(i) X is a weak Dirichlet process;

(ii) X = M +A, [A,N ] = 0 in the pathwise sense ∀N continuous local martingale.

Proof. (i) ⇒ (ii) obviously. Assume now that (ii) holds. Taking into account Corollary A.4 2), it is
enough to prove that [A,N ] exists. Now, we recall that, whenever M and N are local martingale,
[M,N ] exists by Proposition 3.8. Let N be a continuous local martingale. By Remark A.6, [X,X]
and [N,N ] exist in the pathwise sense. By additivity and item (ii), [X,N ] = [M,N ] exists in the
pathwise sense. By Remark A.8, (X,N) admits all its mutual brackets. Finally, by bilinearity

[A,N ] = [X,N ] − [M,N ] = 0.
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adaptés. C. R. Acad. Sci. Paris Sér. I Math., 312(8):615–618, 1991.

[21] Russo, F. & Vallois, P. Forward, backward and symmetric stochastic integration. Probab.
Theory Related Fields, 97(3):403–421, 1993.

[22] Russo, F. & Vallois, P. Noncausal stochastic integration for làd làg processes. In Stochas-
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