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Probabilistic representation of a class of non-conservative

nonlinear Partial Differential Equations.

ANTHONY LE CAVIL ∗, NADIA OUDJANE † AND FRANCESCO RUSSO ‡.

November 13th 2016

Short title. About probabilistic representation of non-conservative PDEs.

Abstract

We introduce a new class of nonlinear Stochastic Differential Equations in the sense of McKean, related

to non-conservative nonlinear Partial Differential equations (PDEs). We discuss existence and uniqueness

pathwise and in law under various assumptions.
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ferential Equations; Probabilistic representation of PDEs; Wasserstein type distance.
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1 Introduction

Probabilistic representations of nonlinear Partial Differential Equations (PDEs) are interesting in several

aspects. From a theoretical point of view, such representations allow for probabilistic tools to study the

analytical properties of the equation (existence and/or uniqueness of a solution, regularity,. . . ). They also

have their own interest, typically when they provide a microscopic interpretation of physical phenomena

macroscopically modeled by a nonlinear PDE. In addition, from a numerical point of view, such represen-

tations allow for new approximation schemes potentially less sensitive to the dimension of the state space

thanks to their probabilistic nature involving Monte Carlo based methods.

The paper focuses on a specific forward approach. The underlying idea of our paper consists in extend-

ing to fairly general PDEs the probabilistic representation of non-linear Fokker-Planck equations, which

are conservative. The probabilistic representation is based on a generalized nonlinear stochastic differen-

tial equation (SDE) in the sense of McKean [15], whose coefficients do not depend only on the position of

the solution Y , but also on the law of the process Y . In the companion paper [13], we will investigate the

associated interacting particle systems, the propagation of chaos with related numerical aspects.
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Let us consider d, p ∈ N⋆. Let Φ : [0, T ]×Rd×R → Rd×p, g : [0, T ]×Rd×R → Rd, Λ : [0, T ]×Rd×R → R,

be Borel bounded functions and ζ0 be a probability on Rd. When it is absolutely continuous v0 will designate

its density so that ζ0(dx) = v0(x)dx. The target of the present paper is a non-linear PDE (in the sense of

distributions) of the form




∂tv = 1
2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x, v)v

)
− div (g(t, x, v)v) + Λ(t, x, v)v , for any t ∈ [0, T ] ,

v(0, dx) = ζ0(dx),

(1.1)

where v :]0, T ]× Rd → R is the unknown function and the second equation means that v(t, x)dx converges

weakly to ζ0(dx) when t → 0. In our spirit this should constitute the first step of investigation of a class of

PDEs where the coefficients Φ, g,Λ may also depend on some space derivatives of v.

When Λ = 0, PDEs of the type (1.1) are non-linear generalizations of the Fokker-Planck equation. In that

case, solutions v of (1.1) are in general conservative in the sense that
∫
R
v(t, x)dx is constant in t, so equal to 1

if the initial condition is a probability measure. In particular when Φ and g do not depend on v, then previ-

ous equation is a classical (time-dependent) Fokker-Planck type equation. Under reasonnable conditions on Φ

and g (for instance if they are Lipschitz with linear growth or bounded continuous), then according to The-

orem 5.1.1 and Corollary 6.4.4 of [17], there is a process Y which is a solution, at least in law (for any initial

condition) to a SDE with diffusion (resp. drift) coefficient equal to Φ (resp. g). Indeed that solution does not

explode. So Itô’s formula applied to ϕ(Y ), where ϕ is a test function, allows to show that the function ν de-

fined on [0, T ] with values in the space of finite measures such that νt is the marginal law of Yt, is a solution

of (1.1). This shows in particular that ν is conservative. Coming back to the non-linear case, i.e. when Φ, g

may depend on v, once a solution v of (1.1) (in the sense of distributions) is known, using approximation

arguments it is not difficult to show that v is conservative, at least when (s, x) 7→ g(s, x, v(s, x))v(s, x) and

(s, x) 7→ (ΦΦt)i,j(s, x, v(s, x))v(s, x) are integrable functions. An important particular case of (1.1) is given

by the case when g = 0 and Φ(t, x, v) = Φ̃(v)Id, where Id is the identity matrix on Rd and Φ̃ : R → R+.

When Φ̃(v) = |v|m−1
2 for m > 1 (resp. 0 < m < 1), (1.1) is called porous media (resp. fast diffusion)

equation. In that case explicit solutions exist, the so called Barenblatt solutions. If those solutions are all

conservative in the case of porous media, that property can be lost in the case of fast diffusion, see chapter

9 of [20] or more in details [19], at least when m < d−1
d

.

To summarize, if Λ = 0, in the conservative case, starting from a probability measure ζ0 as initial condi-

tion, the solutions of (1.1) are probability measures dynamics which often describe the macroscopic distri-

bution law of a microscopic particle which behaves in a diffusive way. More precisely, often, the solution v of

(1.1) is associated with a couple (Y, v), where Y is a stochastic process and v a real valued function defined

on [0, T ]× Rd such that
{
Yt = Y0 +

∫ t

0
Φ(s, Ys, v(s, Ys))dWs +

∫ t

0
g(s, Ys, v(s, Ys))ds , with Y0 ∼ ζ0

v(t, ·) is the density of the law of Yt ,
(1.2)

and (Wt)t≥0 is a p-dimensional Brownian motion on a filtered probability space (Ω,F ,Ft,P). A major

technical difficulty arising when studying the existence and uniqueness for solutions of (1.2) is due to the

point dependence of the SDE coefficients w.r.t. the probability density v. In the literature, (1.2) was generally

faced by analytical methods. A lot of work was performed in the case of smooth Lipschitz coefficients with

regular initial condition, see for instance Proposition 1.3 of [11]. The authors also assumed to be in the

non-degenerate case, with ΦΦt being an invertible matrix with related parabolicity condition. In dimension

d = 1, an important earlier work concerns the case of porous media equation, see e.g. [6]. Still in dimension
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d = 1, with g = 0 and Φ being bounded measurable, probabilistic representations of (1.1) via solutions of

(1.2) were obtained in [8, 1]. [4] extends partially those results to the multidimensional case. Finally [5]

treated the case of fast diffusion. All those techniques were based on the resolution of the corresponding

non-linear Fokker-Planck equation.

In the present article, we are however especially interested in (1.1), in the case where Λ does not vanish. In

that context, the natural generalization of (1.2) is given by





Yt = Y0 +
∫ t

0 Φ(s, Ys, v(s, Ys))dWs +
∫ t

0 g(s, Ys, v(s, Ys))ds , with Y0 ∼ ζ0 ,

v(t, ·) := dνt
dx

such that for any bounded continuous test function ϕ ∈ Cb(Rd)

νt(ϕ) := E

[
ϕ(Yt) exp

{∫ t

0
Λ
(
s, Ys, v(s, Ys)

)
ds
}]

, for any t ∈ [0, T ] .

(1.3)

The aim of the paper is precisely to extend the McKean probabilistic representation to a large class of

nonconservative PDEs. The first step in that direction was done by [2] where the Fokker-Planck equation

is a stochastic PDE with multiplicative noise. Even though that equation is pathwise not conservative, the

expectation of the mass was constant and equal to 1. Here again, these developments relied on analytical

tools.

To avoid the technical difficulty due to the pointwise dependence of the SDE coefficients w.r.t. the function

v, this paper focuses on the following regularized version of (1.3):

{
Yt = Y0 +

∫ t

0 Φ(s, Ys, u(s, Ys))dWs +
∫ t

0 g(s, Ys, u(s, Ys))ds , with Y0 ∼ ζ0 ,

u(t, y) = E[K(y − Yt) exp
{∫ t

0
Λ
(
s, Ys, u(s, Ys)

)
ds
}
] , for any t ∈ [0, T ] ,

(1.4)

where K : Rd → R is a mollifier in Rd. One historical contribution on the subject in the conservative case

Λ = 0, based on probabilistic methods, was performed by [18], which concentrated on non-linearities only

on the drift coefficients. When K = δ0 (1.4) reduces, at least formally to (1.3).

An easy application of Itô’s formula (see e.g. Theorem 6.1) shows that if there is a solution (Y, u) of (1.4),

then u is related to the solution (in the distributional sense) of the following partial integro-differential

equation (PIDE)





∂tv̄ = 1
2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x,K ∗ v̄)v̄

)
− div (g(t, x,K ∗ v̄)v̄) + Λ(t, x,K ∗ v̄)v̄

v̄(0, x) = v0 ,

(1.5)

by the relation u = K ∗ v̄ :=
∫
Rd K(· − y)v̄(y)dy. Setting Kε(x) = 1

εd
K1
( ·
ε

)
the generalized sequence Kε is

weakly convergent to the Dirac measure at zero. Now, consider the couple (Y ε, uε) solving (1.4) replacing

K with Kε. Ideally, uε should converge to a solution of the limit partial differential equation (1.1). In the

case Λ = 0, with smooth Φ, g and initial condition with other technical conditions, that convergence was

established in Lemma 2.6 of [11]. In our extended setting (Λ 6= 0), again, no mathematical argument is for

the moment available but this limiting behavior is explored empirically by numerical simulations in Section

3. of [13]. A convergence analysis has been however performed by the authors in [14], in the particular case

when Φ and g do not depend on v̄.

The main contribution of this paper comes from a refined analysis of existence and/or uniqueness of

a solution to (1.4) under a variety of regularity assumptions on the coefficients Φ, g and Λ. The system

(1.4), whose unknown is a couple (Y, u) where Y is a process and u is a function, is composed by two

equations. The first one is a stochastic differential equation whose coefficients depend on u and the second

equation links u to the law of Y in a non-anticipating way. In the classical McKean type equations, u(t, ·)
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was explicitly provided by the density of the (marginal) law of Yt, t > 0. This situation can be recovered

formally here when the function Λ = 0 and the mollifier K = δ0. The second equation of (1.4), which

involves Λ as a weighting function, is indeed the central object of the analysis. u(t, ·) is now implicitly related

to the the law mY of the whole path of process Y . That equation associates to a probability law m on

Cd := C([0, T ],Rd), a real-valued function u. A significant contribution of the paper consists in analyzing

the regularity properties of this relation.

In Section 3, one shows existence and uniqueness of strong solutions of (1.4) when Φ, g,Λ are Lipschitz.

This result is stated in Theorem 3.9. The second equation of (1.4) can be rewritten as

u(t, y) =

∫

Cd

K(y − ωt) exp

{∫ t

0

Λ
(
s, ωs, u(s, ωs)

)
ds

}
dm(ω) , (1.6)

where m = mY is the law of Y on the canonical space Cd. In particular, given a law m on Cd, using an

original fixed point argument on stochastic processes Z of the type Zt = u(t,Xt), where X is the canonical

process, in Theorem 3.1, we first study the existence of u = um being solution of (1.6). Proposition 3.3 fo-

cuses on the analysis of the functional (t, x,m) 7→ um(t, x): this associates to each Borel probability measure

m on Cd, the solution of of (1.6). In particular that proposition describes carefully the dependence on all

variables. The study of the first equation in (1.4) is based on more standard arguments following Sznit-

man [18]. The rest of the paper is organized as follows. In Section 4, we show strong existence of (1.4) when

Φ, g are Lipschitz and Λ is only continuous, see Theorem 4.2. Indeed, uniqueness, however, does not hold

if Λ is only continuous, see Example 4.1. In Section 5, Theorem 5.1 states existence in law in all cases when

Φ, g,Λ are only continuous. Section 6 establishes the link between (1.4) and the integro-partial-differential

equation (1.5).

2 Notations and assumptions

For any Polish spaceE, B(E) will denote its Borel σ-field. It is well-known that the space of Borel probability

measures on E, P(E) is also a Polish space with respect to the weak convergence topology, whose Borel

σ-field will be denoted by B(P(E)). See Proposition 7.20 and Proposition 7.23, Section 7.4 Chapter 7 in [7]

and Theorem 8.3.2 and Theorem 8.9.4 in [9].

Let us consider Cd := C([0, T ],Rd) metrized by the supremum norm ‖ · ‖∞. X will be the canonical

process on Cd. For t ≥ 0 we also denote Bt(Cd) := σ(Xu, 0 ≤ u ≤ t). Given r ≥ 0, Pr(Cd) will denote the

set of Borel probability measures on Cd admitting a moment of order r. For r = 0, P(Cd) := P0(Cd). When

d = 1, we often omit it and we simply set C := C1.

We recall that the Wasserstein distance of order (resp. the modified Wasserstein distance of order) r for r ≥ 1,

denoted by Wr
T (m,m

′) (resp. W̃r
T (m,m

′)), for any m and m′ in Pr(Cd), (resp. P(Cd)), are such that

(Wr
t (m,m

′))r := inf
µ∈Π(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|rdµ(ω, ω′)

}
, t ∈ [0, T ] , (2.1)

(W̃r
t (m,m

′))r := inf
µ∈Π̃(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|r ∧ 1 dµ(ω, ω′)

}
, t ∈ [0, T ] , (2.2)

where Π(m,m′) (resp. Π̃(m,m′)) denotes the set of Borel probability measures in P(Cd × Cd) with fixed

marginals m and m′ belonging to Pr(Cd) (resp. P(Cd) ). In this paper we will use very frequently the

Wasserstein distances of order 2. For that reason, we will simply use the convention Wt := W2
t (resp.

W̃t := W̃2
t ).
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Given N ∈ N⋆, l ∈ Cd, l1, · · · , lN ∈ Cd, a significant role in this paper will be played by the Borel measures

on Cd given by δl and
1

N

N∑

j=1

δlj .

Remark 2.1. Given l1, · · · , lN , l̃1, · · · , l̃N ∈ Cd, by definition of the Wasserstein distance we have, for all t ∈ [0, T ],

Wt


 1

N

N∑

j=1

δlj ,
1

N

N∑

j=1

δl̃j


 ≤ 1

N

N∑

j=1

sup
0≤s≤t

|ljs − l̃js|2 .

In this paper Cb(Cd) denotes the space of bounded, continuous real-valued functions on Cd. Rd is

equipped with the scalar product · and |x| stands for the induced Euclidean norm for x ∈ R
d. Given

two reals a, b, in the sequel we will adopt the notations a ∧ b := min(a, b) and a ∨ b := max(a, b).

S(Rd) is the space of Schwartz fast decreasing test functions and S ′(Rd) is its dual. Cb(Rd) is the space of

bounded, continuous real functions on Rd. C0(Rd) (resp. C∞
0 (Rd)) represents the space of real continuous

(resp. smooth) functions with compact support in Rd. Given a real (possibly signed) Borel measure µ in

Rd, we will denote by ϕ 7→ µ(ϕ) or by ϕ 7→ 〈µ, ϕ〉 the duality mapping, where ϕ ∈ Cb(R
d). W r,p(Rd) is the

Sobolev space of order r ∈ N, 1 ≤ p ≤ ∞. When r = 0 this equals (Lp(Rd), || · ||p). || · ||p will also denote

the standard norm related to (Lp(Rd;E) where E is another finite dimensional space. (φdn)n≥0 will denote

an usual sequence of mollifiers φdn(x) = 1
ǫdn
φd( x

ǫn
) where, φd is a non-negative function, belonging to the

Schwartz space whose integral is 1 and (ǫn)n≥0 is a sequence of strictly positive reals verifying ǫn −−−−−→
n −→ ∞

0.

When d = 1, we will simply write φn := φ1n, φ := φ1.

F(·) : f ∈ S(Rd) 7→ F(f) ∈ S(Rd) will be the Fourier transform on the classical Schwartz space S(Rd) such

that for all ξ ∈ Rd,

F(f)(ξ) =
1√
2π

∫

Rd

f(x)e−iξ·xdx .

We will indicate in the same manner the corresponding Fourier transform on S ′(Rd) .

A function F : [0, T ] × R
d × R → R will be said uniformly continuous with respect to (y, z) (the space

variables) in a subset B of Rd × R uniformly in t ∈ [0, T ] if for every ε > 0, there is δ > 0, such that

∀(y, z), (y′, z′) ∈ B,

|y − y′|+ |z − z′| ≤ δ =⇒ ∀t ∈ [0, T ], |F (t, y, z)− F (t, y′, z′)| ≤ ε. (2.3)

A function G : [0, T ]× Rd → R is said to have linear growth with rate L̃G if

∀t ∈ [0, T ], x ∈ Rd |G(t, x)| ≤ L̃G(1 + |x|).
We remark that if G is Lipschitz with respect to x with constant LG and mG := supt∈[0,T ] |G(t, 0)| then G

has linear growth with rate max(LG,mG). Let (Ω,F) be a measured space and E a Polish space. A

map η : (Ω,F) −→ (P(E),B(P(E))) will be called random probability (or random probability kernel)

if it is measurable. We will indicate by PΩ(E) the space of random probabilities. If P(E) is replaced by

the set M(E) of finite non-negative measures, we will use the term random measure instead of random

probability.

Remark 2.2. Let η : (Ω,F) −→ (M(E),B(M(E))). η is a random measure if and only if the two following

conditions hold:

• for each ω̄ ∈ Ω, ηω̄ ∈ M(E),

• for all Borel set A ∈ B(M(E)), ω̄ 7→ ηω̄(A) is F -measurable.
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This was highlighted in Remark 3.20 in [10] (see also Proposition 7.25 in [7]) for the case of random probabilities.

This argument can be easily adapted in the general case.

Remark 2.3. Given Rd-valued continuous processes Y 1, · · · , Y n, the application
1

N

N∑

j=1

δY j is a random probability

on P(Cd). In fact δY j , 1 ≤ j ≤ N is a random probability by Remark 2.2.

In this article will intervene some assumptions, as described below.

Assumption 1. 1. Φ and g are Lipschitz functions defined on [0, T ]×Rd×R taking values respectively in Rd×p

(space of d × p matrices) and Rd: there exist finite positive reals LΦ and Lg such that for any (t, y, y′, z, z′) ∈
[0, T ]× Rd × Rd × R× R, we have

|Φ(t, y′, z′)−Φ(t, y, z)| ≤ LΦ(|z′ − z|+ |y′ − y|) and |g(t, y′, z′)− g(t, y, z)| ≤ Lg(|z′ − z|+ |y′ − y|) .

2. Λ is a Borel real valued function defined on [0, T ]× Rd × R Lipschitz w.r.t. the space variables: there exists a

finite positive real, LΛ such that for any (t, y, y′, z, z′) ∈ [0, T ]× Rd × Rd × R× R, we have

|Λ(t, y, z)− Λ(t, y′, z′)| ≤ LΛ(|y′ − y|+ |z′ − z|) .

3. Λ is supposed to be uniformly bounded: there exist a finite positive real MΛ such that, for any (t, y, z) ∈
[0, T ]× Rd × R,

|Λ(t, y, z)| ≤MΛ .

4. K : Rd → R+ will be a fixed regularization kernel such that
∫
Rd K(x)dx = 1. Moreover we will suppose that

it is bounded and Lipschitz: in particular we designate by MK and LK two positive reals such that for any

(y, y′) ∈ Rd × Rd

|K(y)| ≤MK , |K(y′)−K(y)| ≤ LK |y′ − y| .

5. ζ0 is a fixed Borel probability measure on Rd admitting a second order moment.

6. The functions s ∈ [0, T ] 7→ Φ(s, 0, 0) and s ∈ [0, T ] 7→ g(s, 0, 0) are bounded. mΦ (resp. mg) will denote the

quantity sups∈[0,T ] |Φ(s, 0, 0)| (resp. sups∈[0,T ] |g(s, 0, 0)|).

Given a finite Borel measure γ on Rd, K ∗ γ will denote the convolution function

x 7→
∫
Rd K(x− y)γ(dy).

To simplify we introduce the following notations.

• V : [0, T ]× Cd × C → R defined for any pair of functions y ∈ Cd and z ∈ C, by

Vt(y, z) := exp

(∫ t

0

Λ(s, ys, zs)ds

)
for any t ∈ [0, T ] . (2.4)

• The real valued process Z such that Zs = u(s, Ys), for any s ∈ [0, T ], will often be denoted by u(Y ).

With these new notations, the second equation in (1.4) can be rewritten as

νt(ϕ) = E[(K̂ ∗ ϕ)(Yt)Vt(Y, u(Y ))] , for any ϕ ∈ Cb(Rd) , (2.5)

where u(t, ·) = dνt
dx

and K̂(x) = K(−x).
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Remark 2.4. Under Assumption 1, item 3 (b), Λ is bounded. Consequently

0 ≤ Vt(y, z) ≤ etMΛ , for any (t, y, z) ∈ [0, T ]× R
d × R . (2.6)

Under Assumption 1, item 2. Λ is Lipschitz. Then V inherits in some sense this property. Indeed, let y, y′ ∈ Cd =

C([0, T ],Rd) and z, z′ ∈ C([0, T ],R). Taking a =
∫ t

0
Λ(s, ys, zs)ds and b =

∫ t

0
Λ(s, y′s, z

′
s)ds in the equality

eb − ea = (b − a)

∫ 1

0

eαb+(1−α)adα ≤ esup(a,b)|b− a|, ∀(a, b) ∈ R
2, (2.7)

we obtain

|Vt(y′, z′)− Vt(y, z)| ≤ etMΛ

∫ t

0

|Λ(s, y′s, z′s)− Λ(s, ys, zs)| ds

≤ etMΛLΛ

∫ t

0

(|y′s − ys|+ |z′s − zs|) ds . (2.8)

In Section 4, Assumption 1 will be replaced by what follows.

Assumption 2. 1. All the items of Assumption 1 are in force excepted 2. which is replaced by the following.

2. Λ is a real valued function defined on [0, T ]×R
d × R uniformly continuous w.r.t. the space variables (on each

compact) uniformly in the time variable, see e.g. (2.3).

Remark 2.5. The second item in Assumption 2 is fulfilled if the function Λ is continuous with respect to (t, y, z) ∈
[0, T ]× R

d × R.

In Section 5 we will treat the case when only weak solutions (in law) exist. In this case we will assume

the following.

Assumption 3. Items 3. and 4. of Assumption 1 are still in force. Besides we assume that Φ : [0, T ]× Rd × R −→
R

d×p, g : [0, T ]×R
d ×R −→ R

d and Λ : [0, T ]×R
d ×R → R are uniformly continuous (on each compact) with

respect to the space variables uniformly in the time variable and Φ, g are uniformly bounded.

Definition 2.6. 1. We say that (1.4) admits strong existence if for any filtered probability space (Ω,F ,Ft,P)

equipped with an (Ft)t≥0-Brownian motion W , an F0-random variable Y0 distributed according to ζ0, there is

a couple (Y, u) where Y is an (Ft)t≥0-adapted process and u : [0, T ]× Rd → R, verifies (1.4).

2. We say that (1.4) admits pathwise uniqueness if for any filtered probability space (Ω,F ,Ft,P) equipped

with an (Ft)t≥0-Brownian motion W , an F0-random variable Y0 distributed according to ζ0, the following

holds. Given two pairs (Y 1, u1) and (Y 2, u2) as in item 1., verifying (1.4) such that Y 1
0 = Y 2

0 P-a.s. then

u1 = u2 and Y 1 and Y 2 are indistinguishable.

Definition 2.7. 1. We say that (1.4) admits existence in law (or weak existence) if there is a filtered probabil-

ity space (Ω,F ,Ft,P) equipped with an (Ft)t≥0-Brownian motion W , a pair (Y, u), verifying (1.4), where Y

is an (Ft)t≥0-adapted process and u is a real valued function defined on [0, T ]× Rd.

2. We say that (1.4) admits uniqueness in law (or weak uniqueness), if the following holds. Let (Ω,F ,Ft,P)

(resp. (Ω̃, F̃ , F̃t, P̃)) be a filtered probability space. Let (Y 1, u1) (resp. (Ỹ 2, ũ2)) be a solution of (1.4). Then

u1 = ũ2 and Y 1 and Ỹ 2 have the same law.
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3 Existence and uniqueness of the problem in the Lipschitz case

In this section we will fix a probability space (Ω,F ,Ft,P) equipped with an (Ft)-Brownian motion (Wt).

We will proceed in two steps. We first study in Section 3.1, the second equation of (1.4) defining u. Then, in

Section 3.2, we will address the equation defining the process Y .

Later in this section, Assumption 1 will be in force, in particular ζ0 will be supposed to have a second

order moment.

3.1 Existence/uniqueness and regularity of a solution to the linking equation

This subsection relies only on items 2., 3. and 4. of Assumption 1.

Here, we focus on equation (1.6) which links a probability measure m on the canonical space Cd into a

function u defined on [0, T ] × Rd. When Λ = 0, i.e. in the conservative case, (1.6) gives u(t, ·) = K ∗ mt,

wheremt is the marginal law ofXt underm. Informally speaking, whenK is the Delta Dirac measure, then

u(t, ·) = mt.

More precisely, for a given probability measure m ∈ P(Cd), let us consider the equation




u(t, y) =
∫
Cd K(y −Xt(ω))Vt(X(ω), u(X(ω)))dm(ω) , for all t ∈ [0, T ], y ∈ Rd , with

Vt(X(ω), u(X(ω))) = exp
(∫ t

0
Λ
(
s,Xs(ω), u(s,Xs(ω))

)
ds
)
,

(3.1)

where we recall that X denotes the canonical process X : Cd → Cd defined by Xt(ω) = ω(t), t ≥ 0, ω ∈ Cd.

Equation (3.1) will be called linking equation: it constitutes the second line of the solution of (1.4).

The aim of this section consists in discussing existence/uniqueness and regularity of the solution of

(3.1). This includes the study of the dependence with respect to m, towards two metrics on P2(Cd).

We first state the result about well-posedness of (3.1).

Theorem 3.1. We assume the validity of items 2., 3. and 4. of Assumption 1.

For a given probability measure m ∈ P(Cd), equation (3.1) admits a unique solution, um.

Remark 3.2. 1. For (m, y) ∈ P(Cd)×R
d, t 7→ um(t, y) is continuous. This follows by an application of Lebesgue

dominated convergence theorem in (3.1).

2. Since Λ is bounded, and K is Lipschitz, it is clear that if u := um is a solution of (3.1) then we have the

following.

• sup |u| ≤MK exp(MΛT ).

• u is Lipschitz with respect to the second variable with Lipschitz constant LK exp(MΛT ). Indeed, for

t ∈ [0, T ]

|u(t, x)− u(t, y)| ≤
∫
Cd

∣∣K(x−Xt(ω))−K(y −Xt(ω))
∣∣ exp

( ∫ t

0
Λ(r,Xr(ω), u(r,Xr(ω)))dr

)
]

≤ LK exp(MΛT )|x− y|.
(3.2)

Proof of Theorem 3.1. Let us introduce the linear space C1 of real valued continuous processes Z on [0, T ]

(defined on the canonical space Cd) such that

‖Z‖∞,1 := E
m

[
sup
t≤T

|Zt|
]
:=

∫

Cd

sup
0≤t≤T

|Zt(ω)|dm(ω) <∞ .
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(C1, ‖ ·‖∞,1) is a Banach space. For any M ≥ 0, a well-known equivalent norm to ‖ ·‖∞,1 is given by ‖ ·‖M∞,1,

where ‖Z‖M∞,1 = Em [ supt≤T e−Mt|Zt| ]. Let us define the operator Tm : C1 → C([0, T ]×Rd,R) such that for

any Z ∈ C1,

Tm(Z)(t, y) :=

∫

Cd

K
(
y −Xt(ω)

)
Vt
(
X(ω), Z(ω)

)
dm(ω). (3.3)

Then we introduce the operator τ : f ∈ C([0, T ] × Rd,R) 7→ τ(f) ∈ C1, where τ(f)t(ω) = f(t, ωt). We

observe that τ ◦ Tm is a map C1 → C1.

Notice that equation (3.1) is equivalent to

u = (Tm ◦ τ)(u). (3.4)

We first admit the existence and uniqueness of a fixed point Z ∈ C1 for the map τ ◦Tm. In particular we

have Z = (τ ◦ Tm)(Z). We can now deduce the existence/uniqueness for the function u for problem (3.4).

Concerning existence, we choose vm := Tm(Z). Since Z is a fixed-point of the map τ ◦Tm, by the definition

of vm we have

Z = τ(Tm(Z)), (3.5)

so that vm is a solution of (3.4).

Concerning uniqueness of (3.4), we consider two solutions of (3.4) v̄, ṽ, i.e. such that v̄ = (Tm ◦ τ)(v̄), ṽ =

(Tm ◦ τ)(ṽ). We set Z̄ := τ(v̄), Z̃ := τ(ṽ). Since v̄ = Tm(Z̄) we have Z̄ = τ(v̄) = τ(Tm(Z̄)). Similarly

Z̃ = τ(ṽ) = τ(Tm(Z̃)). Since Z̄ and Z̃ are fixed points of τ ◦ Tm, it follows that Z̄ = Z̃ dm a.e. Finally

v̄ = Tm(Z̄) = Tm(Z̃) = ṽ. It remains finally to prove that τ ◦ Tm admits a unique fixed point, Z .

The upper bound (2.8) implies that for any pair (Z,Z ′) ∈ C1 × C1, for any (t, y) ∈ [0, T ]× Rd,

|Tm(Z ′)− Tm(Z)|(t, y) =

∣∣∣∣
∫

Cd

K(y −Xt(ω)) [Vt(X(ω), Z ′(ω))− Vt(X(ω), Z(ω))] dm(ω)

∣∣∣∣

≤ MKe
tMΛLΛ

∫

Cd

∫ t

0

|Z ′
s(ω)− Zs(ω)|ds dm(ω)

≤ MKe
TMΛLΛE

[∫ t

0

eMse−Ms|Z ′
s − Zs|ds

]

≤ MKe
TMΛLΛE

[∫ t

0

eMs sup
r≤t

e−Mr|Z ′
r − Zr|ds

]

≤ MKe
TMΛLΛ

eMt − 1

M
E

[
sup
r≤t

e−Mr|Z ′
r − Zr|

]

≤ MKe
TMΛLΛ

eMt − 1

M
‖Z ′ − Z‖M∞,1 .

Then considering (τ ◦ Tm)(Z ′)t = Tm((Z ′)(t,Xt) and (τ ◦ Tm)(Z)t = T (Z)(t,Xt), we obtain

sup
t≤T

e−Mt |(τ ◦ Tm)(Z ′)t − (τ ◦ Tm)(Z)t| = sup
t≤T

e−Mt |Tm(Z ′)(t,Xt)− Tm(Z)(t,Xt)|

≤ MKe
TMΛLΛ

1

M
‖Z ′ − Z‖M∞,1 .

Taking the expectation yields |(τ ◦ Tm)(Z ′)t − (τ ◦ Tm)(Z)t‖M∞,1 ≤ MKe
TMΛLΛ

1
M
‖Z ′ − Z‖M∞,1. Hence, as

soon as M is sufficiently large, M > MKe
TMΛLΛ, (τ ◦ Tm) is a contraction on (C1, ‖ · ‖M∞,1) and the proof

ends by a simple application of the Banach fixed point theorem.

In the sequel, we will need a stability result on um solution of (3.1), w.r.t. the probability measure m,

which will be treated in the fundamental proposition below. The proof will be postponed in the Appendix,

see Section 7.1.
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Proposition 3.3. We assume the validity of items 2., 3. and 4. of Assumption 1.

Let u be a solution of (3.1). The following assertions hold.

1. For any couple of probabilities (m,m′) ∈ P2(Cd)× P2(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y
)
− um

′(
t, y′

)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |Wt(m,m

′)|2
]
, (3.6)

where CK,Λ(t) := 2C′
K,Λ(t)(t + 2)(1 + e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K + 2M2

KL
2
Λt). In particular

the functions CK,Λ only depend on MK , LK ,MΛ, LΛ and t and are increasing with t.

2. For any (m,m′) ∈ P(Cd)× P(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y
)
− um

′(
t, y′

)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |W̃t(m,m

′)|2
]
, (3.7)

where CK,Λ(t) := 2C′
K,Λ(t)(t+2)(1+e2tC

′
K,Λ(t)) with C′

K,Λ(t) := 2e2tMΛ(max(LK , 2MK)2+2M2
K max(LΛ, 2MΛ)

2t).

3. The map (m, t, x) 7→ um(t, x) is continuous on P(Cd)× [0, T ]×Rd where P(Cd) is endowed with the topology

of weak convergence.

4. Suppose that K ∈W 1,2(Rd). Then for any (m,m′) ∈ P2(Cd)× P2(Cd), t ∈ [0, T ]

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + 2tCK,Λ(t))|Wt(m,m
′)|2 , (3.8)

where CK,Λ(t) := 2C′
K,Λ(t)(t+2)(1+ e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K +2M2

KL
2
Λt) and C̃K,Λ(t) :=

2e2tMΛ(2MKL
2
Λt(t+ 1) + ‖∇K‖22), recalling that ‖ · ‖2 denotes the standard L2(Rd) or L2(Rd,Rd)-norms.

Moreover t 7→ C̃K,Λ, CK,Λ are increasing in t.

5. Suppose thatF(K) ∈ L1(Rd). Then there exists a constant C̄K,Λ(t) > 0 (depending only on t,MΛ, LΛ, ‖F(K)‖1)

such that for any random probability η : (Ω,F) −→ (P(Cd),B(P(Cd))), for all (t,m) ∈ [0, T ]× P(Cd)

E[‖uη(t, ·)− um(t, ·)‖2∞] ≤ C̄K,Λ(t) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2]. (3.9)

We remark that the expectation in both sides of (3.9) is taken w.r.t. the randomness of the random probability η.

Remark 3.4. a) By Corollary 6.13, Chapter 6 in [21], W̃T is a metric compatible with the weak convergence on

P(Cd).

b) The map dΩ2 : (ν, µ) 7→
√

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈ν − µ, ϕ〉|2] defines a (homogeneous) distance on PΩ(Cd). That distance is

used in [13] in order to control the error induced by the interacting particle approximation scheme.

c) The Lipschitz continuity stated in item 2. of Proposition 3.3 implies the one of item 1. For expository reasons, we

have decided to start with the less general case.

To conclude this part, we want to highlight some properties of the function um, which will is used in

Section 3 of [13]. In fact, the map (m, t, x) ∈ P(Cd)×[0, T ]×R
d 7→ um(t, x) has an important non-anticipating

property. We begin by defining the notion of induced measure. For the rest of this section, we fix t ∈ [0, T ].

Definition 3.5. Given a non-negative Borel measure m on (Cd,B(Cd)). From now on, mt will denote the (unique)

induced measure on (Cd
t ,B(Cd

t )) (with Cd
t := C([0, t],Rd)) defined by

∫

Cd
t

F (φ)mt(dφ) =

∫

Cd

F (φ|[0,t])m(dφ),

where F : Cd
t −→ R is bounded and continuous.
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Remark 3.6. Let t ∈ [0, T ],m = δξ , ξ ∈ Cd. The induced measure, mt, on Cd
t is δ(ξr |0≤r≤t).

The same construction as the one carried on in Theorem 3.1 allows us to define the unique solution to

umt(s, y) =
∫
Cd
t
K(y −Xs(ω)) exp

(∫ s

0 Λ(r,Xr(ω), u
mt(r,Xr(ω)))dr

)
mt(dω) ∀s ∈ [0, t] . (3.10)

Proposition 3.7. Under the assumption of Theorem 3.1, we have

∀(s, y) ∈ [0, t]× R
d, um(s, y) = umt(s, y).

Proof. By definition of mt, it follows that (s, y) 7→ um(s, y)|[0,t]×Rd is a solution of (3.10). Invoking the

uniqueness of (3.10) ends the proof.

Corollary 3.8. Let N ∈ N, ξ1, · · · , ξi, · · · , ξN be (Gt)-adapted continuous processes, where G is a filtration (defined

on some probability space) fulfilling the usual conditions. Let m(dω) = 1
N

∑N
i=1 δξi(dω). Then, (um(t, y)) is a

(Gt)-adapted random field, i.e. for any (t, y) ∈ [0, T ]× Rd, the process is (Gt)-adapted.

3.2 Existence and uniqueness of the solution to the McKean stochastic differential

equations

For a given m ∈ P2(Cd), um is well-defined according to Theorem 3.1. Let Y0 ∼ ζ0. The well-posedness of

(1.4) is equivalent to the one related to the following McKean type SDE:

{
Yt = Y0 +

∫ t

0
Φ(s, Ys, u

m(s, Ys))dWs +
∫ t

0
g(s, Ys, u

m(s, Ys))ds

m = L(Y ) .
(3.11)

The aim of the present section is to prove, following Sznitman [18], by a fixed point argument the following

result.

Theorem 3.9. Under Assumption 1, the McKean type SDE (1.4) admits the following properties.

1. Strong existence and pathwise uniqueness;

2. existence and uniqueness in law.

Proof of Theorem 3.9. We fix m ∈ P2(Cd). Thanks to Assumption 1 and Proposition 3.3 implying the Lips-

chitz property of um w.r.t. the space variable (uniformly in time), the first line of (3.11) admits a unique

strong solution Y m, for which by classical arguments as Burkholder-Davies-Gundy (BDG) and Jensen’s in-

equality, there exists a positive realC0 = C0(LΦ, Lg,mΦ,mg) > 0 such that E[supt≤T |Yt|2] ≤ C0

(
1 + E[|Y0|2]

)
.

Consequently the law Θ(m) := L(Y m) belongs to P2(Cd). We consider now the application Θ : P2(Cd) →
P2(Cd).

Let now m and m′ in P2(Cd). We are interested in proving that Θ is a contraction for the Wasserstein

metric. Let u := um, u′ := um
′

be solutions of (3.1) related to m and m′. Let Y (resp. Y ′) be the solution of

the first line of (3.11) related to m (resp. m′).

By definition of the Wasserstein metric (2.1)

|WT (Θ(m),Θ(m′))|2 ≤ E[sup
t≤T

|Y ′
t − Yt|2] . (3.12)

Hence, we control |Y ′
t − Yt| with the help of Lemma 7.1 in the Appendix.
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Using the overmentioned Lemma 7.1 and Proposition 3.3, by applying successively inequalities (7.33)

and (3.6), gives

E[sup
t≤a

|Y ′
t − Yt|2] ≤ C

[∫ a

0

E[sup
s≤t

|Y ′
s − Ys|2]dt+

∫ a

0

|Wt(m,m
′)|2dt

]
, (3.13)

for any a ∈ [0, T ], where C = CΦ,g(T )CK,Λ(T ).

Applying Gronwall’s lemma to (3.13) yields

E[sup
t≤a

|Yt − Y ′
t |2] ≤ CeCT

∫ a

0

|Ws(m,m
′)|2ds . (3.14)

Then recalling (3.12), this finally gives

|Wa(Θ(m),Θ(m′))|2 ≤ CeCT

∫ a

0

|Ws(m,m
′)|2ds, a ∈ [0, T ]. (3.15)

We end the proof of item 1. by classical fixed point argument, similarly to the one of Chapter 1, section 1 of

Sznitman [18].

Concerning item 2. it remains to show uniqueness in law for (1.4). Let (Y 1,m1), (Y 2,m2) be two solutions

of (3.11) on different probability spaces, Brownian motions and initial conditions distributed according to

ζ0. Given m ∈ P2(Cd), we indicate by Θ(m) the law of Ȳ , where Ȳ is the (strong) solution of

Ȳt = Y 1
0 +

∫ t

0

Φ(s, Ȳs, u
m2

(s, Ȳs))dWs +

∫ t

0

g(s, Ȳs, u
m2

(s, Ȳs))ds , (3.16)

on the same probability space and same Brownian motion on which Y 1 lives. Since um
2

is fixed, Ȳ is

solution of a classical SDE with Lipschitz coefficients for which pathwise uniqueness holds. By Yamada-

Watanabe theorem, Y 2 and Ȳ have the same distribution. Consequently, Θ(m2) = L(Ȳ ) = L(Y 2) = m2. It

remains to show that Y 1 = Ȳ in law, i.e. m1 = m2. By the same arguments as for the proof of 1., we get

(3.15), i.e. for all a ∈ [0, T ],

|Wa(L(Y 1),L(Ȳ ))|2 = |Wa(Θ(m1),Θ(m2))|2 ≤ CeCT

∫ a

0

|Ws(m
1,m2)|2ds.

Since Θ(m1) = m1 and Θ(m2) = m2, by Gronwall’s lemma m1 = m2 and finally Y 1 = Ȳ (in law). This

concludes the proof of Proposition 3.9.

4 Strong Existence under weaker assumptions

Let us fix a filtered probability space (Ω,F , (Ft)t≥0,P) equipped with a p dimensional (Ft)t≥0-Brownian

motion (Wt)t≥0.

In this section Assumption 2 will be in force. In particular, we suppose that ζ0 is a Borel probability measure

having a second order moment.

Before proving the main result of this part, we remark that in this case, uniqueness fails for (1.4). To

illustrate this, we consider the following counterexample, which is even valid for d = 1.

Example 4.1. Consider the case Φ = g = 0, Y0 = 0 so that ζ0 = δ0. This implies that Yt ≡ 0 is a strong solution of

the first line of (1.4). Since u(0, .) = (K ∗ ζ0)(·), we have u(0, ·) = K .

A solution u of the second line equation of (1.4), will be of the form

u(t, y) = K(y) exp

(∫ t

0

Λ(r, 0, u(r, 0))dr

)
, (4.1)
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for some suitable Λ fulfilling Assumption 2, item 2. We will in fact consider Λ independent of the time and β(u) :=

Λ(0, 0, u). Without restriction of generality we can suppose K(0) = 1. We will show that the second line equation

of (1.4) is not well-posed for some particular choice of β. Now (4.1) becomes

u(t, y) = K(y) exp

(∫ t

0

β(u(r, 0))dr

)
. (4.2)

By setting y = 0, we get φ(t) := u(t, 0) and in particular, necessarily we have

φ(t) = exp

(∫ t

0

β(φ(r))dr

)
. (4.3)

A solution u given in (4.2) is determined by setting u(t, y) = K(y)φ(t). Now, we choose the function β such that for

given constants α ∈ (0, 1) and C > 1,

β(r) =





|r − 1|α , if r ∈ [0, C]

|C − 1|α , if r ≥ C

1 , if r ≤ 0 .

(4.4)

β is clearly a bounded, uniformly continuous function verifying β(1) = 0 and β(r) 6= 0, for all r 6= 1.

We define F : R −→ R, by F (u) =
∫ u

1
1

rβ(r)dr. F is strictly positive on (1,+∞), and it is a homeomorphism

from [1,+∞) to R+, since
∫ +∞
1

1
rβ(r)dr = ∞.

On one hand, by setting φ(t) := F−1(t), for t > 0, we observe that φ verifies φ′(t) = φ(t)β(φ(t)), t > 0 and so

φ is a solution of (4.3). On the other hand, the function φ ≡ 1 also satisfies (4.3), with the same choice of Λ, related

to β. This shows the non-uniqueness for the second equation of (1.4).

The main theorem of this section states existence (even though non-uniqueness) for (1.4), when only the

coefficients Φ and g of the SDE are Lipschitz in (x, u). The idea of this section is to regularize the coefficient

Λ into Λn := Λ ∗ φd+1
n , to make use of results of Section 3 and then to control the limit.

Theorem 4.2. Under Assumption 2, (1.4) admits strong existence.

The proof uses three main ingredients.

1. The tightness of processes (Y n)n∈N corresponding to the solutions (Yn, un)n∈N related to Λn, see

Lemma 7.10 in the Appendix.

2. Given a sequence (Yn)n∈N of processes converging in law to some Borel probability measurem on Cd,

we show the convergence of (un)n∈N to some function u verifying the linking equation (3.1) related to

m, see Proposition 4.3.

3. The strong convergence of (Yn)n∈N to some process Y , whose law is m, see Lemma 7.8 in the Ap-

pendix.

Before proving the main result, we first establish proposition below, permitting us to prove the statement

2. above.

Proposition 4.3. Let (Λn)n∈N be a sequence of Borel uniformly bounded functions defined on [0, T ]× Rd × R such

that for every n ∈ N, Λn(t, ·, ·) is continuous. Assume the existence of a Borel function Λ : [0, T ] × Rd × R → R

such that for almost all t ∈ [0, T ], [Λn(t, ·, ·) − Λ(t, ·, ·)] −−−−−→
n→+∞

0 uniformly on each compact of Rd × R. Let (Y n)
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be a sequence of Rd-valued continuous processes, whose law is denoted by mn.

We set Zn := un(. , Y
n), where for any (t, x) ∈ [0, T ]× Rd,

un(t, x) =
∫
Cd K(x−Xt(ω)) exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn(ω). (4.5)

We suppose that (Y n, Zn) converges in law.

Then (un) converges uniformly on each compact to some continuous u : [0, T ]× Rd → R which fulfills

u(t, x) =

∫

Cd

K(x−Xt(ω)) exp
( ∫ t

0

Λ(r,Xr(ω), u(r,Xr(ω)))dr
)
dm(ω), (4.6)

where m is the limit of (mn)n≥0.

Proof. We draw the reader’s attention on the fact that all the technical results invoked in this proof are stated

and proved in Subsection 7.3 of the Appendix.

Let ν denote the Borel probability measure on Cd × C to which the law of (Y n, Zn) converge. Without loss

of generality, the proof below is written with d = 1. By Proposition 7.6, the left-hand side of (4.5) converges

uniformly on each compact to the continuous function u defined by

u(t, x) =

∫

Cd×C
K(x−Xt(ω)) exp

{∫ t

0

Λ
(
r,Xr(ω), X

′
r(ω

′)
)
dr

}
dν(ω, ω′), (t, x) ∈ [0, T ]× R . (4.7)

It remains to show that u fulfills (4.6). For this we will take the limit of the right-hand side (r.h.s.) of (4.5)

and we will show that it gives the r.h.s. of (4.6). For n ∈ N, (r, x) ∈ [0, T ]× R, we set

Λ̃n(r, x) := Λn(r, x, un(r, x)) (4.8)

Λ̃(r, x) := Λ(r, x, u(r, x)). (4.9)

We fix (t, x) ∈ [0, T ]× R. In view of applying Lemma 7.2, we define fn, f : C → R such that

fn(y) = K(x− yt) exp
( ∫ t

0

Λ̃n(r, yr)dr
)

f(y) = K(x− yt) exp
( ∫ t

0

Λ̃(r, yr)dr
)
.

We also set Pn := mn. Since (Y n, Zn) converges in law to ν, mn converges weakly to m. Since the

sequence of functions |Λ̃n| is uniformly bounded then the sequence of functions (fn) is also uniformly

bounded. We denote by MΛ the common upper bound of the each Λn.

The maps (fn) are continuous by Lemma 7.5, and also the function f since, u is continuous on [0, T ]×R.

Taking into account Remark 7.3, we will show that fn → f uniformly on each ball of C.

Let us fix M > 0 and set B1(0,M) := {y ∈ C, ||y||∞ := sups∈[0,T ] |ys| ≤ M}. For any locally bounded

function ℓ : [0, T ]× R → R, we set ||ℓ||∞,M := sups∈[0,T ],ξ∈[−M,M ] |ℓ(s, ξ)|. Let ε > 0.

Since un → u uniformly on [0, T ]× [−M,M ], there exists n0 ∈ N such that,

n ≥ n0 =⇒ ||un − u||∞,M < ε . (4.10)

The sequence un|[0,T ]×[−M,M ] is uniformly bounded. Let IM be a compact interval including the subset

{un(s, x) | (s, x) ∈ [0, T ]× [−M,M ]}.
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For all (s, x) ∈ [0, T ]× [−M,M ],

|Λ̃n(s, x)− Λ̃(s, x)| = |Λn(s, x, un(s, x)) − Λ(s, x, u(s, x))|
≤ |Λn(s, x, un(s, x)) − Λ(s, x, un(s, x))| + |Λ(s, x, un(s, x)) − Λ(s, x, u(s, x))|
:= I1(n, s, x) + I2(n, s, x) .

(4.11)

Concerning I1, since for almost all s ∈ [0, T ], Λn(s, ·, ·) −−−−→
n → ∞

Λ(s, ·, ·) uniformly on [−M,M ] × IM , we

have for x ∈ [−M,M ],

0 ≤ I1(n, s, x) ≤ sup
x∈[−M,M ],ξ∈IM

|Λn(s, x, ξ)− Λ(s, x, ξ)| −−−−→
n → ∞

0 ds-a.e. ,

from which we deduce

sup
x∈[−M,M ]

I1(n, s, x) −−−−→
n → ∞

0 ds-a.e. (4.12)

Now, we treat the term I2. Taking into account (4.10), we get for n ≥ n0 (n0 depending on ε),

0 ≤ sup
s∈[0,T ],x∈[−M,M ]

I2(n, s, x) ≤ S(ε), (4.13)

where

S(ε) := sup
s∈[0,T ],x∈[−M,M ],|ξ1−ξ2|≤ε

|Λ(s, x, ξ1)− Λ(s, x, ξ2)|.

We take the lim sup on both sides of (4.13), which gives,

lim sup
n−→∞

sup
s∈[0,T ],x∈[−M,M ]

I2(n, s, x) ≤ S(ε). (4.14)

Summing up (4.12), (4.14) and taking into account (4.11), we get,

0 ≤ lim sup
n→∞

sup
x∈[−M,M ]

|Λ̃n(s, x)− Λ̃(s, x)| ≤ S(ε) ds-a.e. (4.15)

Since Λ satisfies Assumption 2, the uniform continuity on each compact of (x, ξ) ∈ R × R 7→ Λ(s, x, ξ)

(uniformly with respect to s) holds and limε−→0 S(ε) = 0. Finally,

sup
x∈[−M,M ]

|Λ̃n(s, x)− Λ̃(s, x)| −−−−→
n → ∞

0 ds-a.e. (4.16)

Now, for n ≥ n0, using (2.7), we obtain

supy∈B1(0,M) |fn(y)− f(y)| ≤ MK exp(MΛT )
∫ T

0
supx∈[−M,M ] |Λ̃n(r, x)− Λ̃(r, x)|dr. (4.17)

Since (Λ̃n),Λ are uniformly bounded, taking into account (4.16) and Lebesgue’s dominated convergence

theorem, the right-hand side of (4.17) goes to 0 when n −→ 0. This shows that fn −→ f uniformly on

B1(0,M).

We can now apply Lemma 7.2 (with Pn and fn defined above) to obtain, for n −→ ∞,

∫

C
K(x−Xt(ω)) exp

(∫ t

0

Λn(r,Xr(ω), un(r,Xr(ω)))dr

)
dmn(ω)

converges to ∫

C
K(x−Xt(ω)) exp

(∫ t

0

Λ(r,Xr(ω), u(r,Xr(ω)))dr

)
dm(ω),

which finally proves (4.6) and concludes the proof of Proposition 4.3.
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Now, we are able to prove the main result of this section.

Proof of Theorem 4.2. Let Y0 be a r.v. distributed according to ζ0. We define

Λn : (t, x, ξ) ∈ [0, T ]× R
d × R 7→ Λn(t, x, ξ) :=

∫

Rd×R

φdn(x− x1)φn(ξ − ξ1)Λ(t, x1, ξ1)dx1dξ1, (4.18)

where (φn)n≥0 is a usual mollifier sequence converging (weakly) to the Dirac measure. Thanks to the

classical properties of the convolution, we know that Λ being bounded implies that

∀n ∈ N, ||Λn||∞ ≤ ||φdn||L1 ||φn||L1 ||Λ||∞ = ||Λ||∞. For fixed n ∈ N, φn are Lipschitz so that Λn defined in

(4.18) is also Lipschitz (and uniformly bounded). Then, for fixed n ∈ N, Φ, g are Lipschitz and they have

linear growth by item 6. of Assumption 1. So we can apply the results of Section 3 (see Theorem 3.9) to

obtain the existence of a pair (Y n, un) such that





dY n
t = Φ(t, Y n

t , un(t, Y
n
t ))dWt + g(t, Y n

t , un(t, Y
n
t ))dt

Y n
0 = Y0,

un(t, x) = E[K(x− Y n
t ) exp

( ∫ t

0
Λn(r, Y

n
r , un(r, Y

n
r ))dr

)
].

(4.19)

We recall that Λn are uniformly bounded and we remark that Φ, g have linear growth, taking into ac-

count the fact that they are Lipschitz and fulfill item 6. of Assumption 1; moreover {Y n
0 }n∈N are obviously

tight. Consequently Lemma 7.10 in the Appendix gives the existence of a subsequence (nk) such that

(Y nk , unk
(·, Y nk· )) converges in law to some Borel probability measure ν on Cd × C. By Assumption 2, for

all t ∈ [0, T ], Λn(t, ·, ·) converges to Λ(t, ·, ·), uniformly on every compact subset of Rd × R.

In view of applying Proposition 4.3, we set Znk

t := unk
(t, Y nk

t ) and mnk := L(Y nk). We know that

(Λnk
),Λ satisfy the hypotheses of Proposition 4.3. On the other hand (Y nk , Znk) converges in law to ν.

Now Proposition 4.3 says that (unk
) converges uniformly on each compact to some u which verifies (4.6),

where m is the first marginal of ν. In particular we emphasize that the sequence (Y nk) converges in law to

m.

We continue the proof of Theorem 4.2 concentrating on the first line of (1.4).

We set, for all (t, x) ∈ [0, T ]× Rd, k ∈ N,

ak(t, x) := Φ(t, x, unk
(t, x))

bk(t, x) := g(t, x, unk
(t, x))

a(t, x) := Φ(t, x, u(t, x))

b(t, x) := g(t, x, u(t, x)) .

(4.20)

Here, the functions un being fixed, the first equation of (4.19) is a classical SDE, whose coefficients depend

on the (deterministic) continuous function un. By item 2. of Remark 3.2, the functions un appearing in

(4.19) are Lipschitz with respect to the second argument with constant not depending on n and uniformly

bounded. This implies that the coefficients ak, bk are Lipschitz (with constant not depending on k) and have

linear growth with uniform rate.

Since (unk
) converges pointwise to u, then (ak), (bk) converges pointwise respectively to a, b where

a(t, x) = Φ(t, x, u(t, x)), b(t, x) = g(t, x, u(t, x)).

Consequently, we can apply Lemma 7.8 with the sequence of classical SDEs

{
dY nk

t = ak(t, Y
nk

t )dWt + bk(t, Y
nk

t )dt

Y nk

0 = Y0,
(4.21)
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to obtain

sup
t≤T

|Y nk

t − Yt|
L2(Ω)−−−−−−→

k −→ +∞
0,

where Y is the (strong) solution to the classical SDE





dZt = a(t, Zt)dWt + b(t, Zt)dt

Z0 = Y0

a(t, x) = Φ(t, x, u(t, x))

b(t, x) = g(t, x, u(t, x)) .

(4.22)

We remark that Y verifies the first equation of (1.4) and the corresponding u fulfills (4.6). To conclude the

proof of Theorem 4.2 it remains to identify the law of Y with m. Since Y nk converges strongly, then the

laws mnk of Y nk converge to the law of Y , which by Proposition 4.3, coincides necessarily to m.

5 Weak Existence when the coefficients are continuous

In this section we consider again (1.4) i.e. problem





Yt = Y0 +
∫ t

0
Φ(r, Yr, u(r, Yr))dWr +

∫ t

0
g(r, Yr, u(r, Yr))dr , with Y0 ∼ ζ0 ,

u(t, x) =
∫
Cd dm(ω)

[
K(x−Xt(ω)) exp

{∫ t

0
Λ
(
r,Xr(ω), u(r,Xr(ω))

)
dr
}]

, for (t, x) ∈ [0, T ]× Rd

m = L(Y ) ,

(5.23)

but without the Lipschitz conditions on the coefficients Φ, g,Λ and the condition ζ0 is allowed to be any

probability measure. In that case the existence or the well-posedness will only be possible in the weak

sense, i.e., not on a fixed (a priori) probability space.

The aim of this section is to show weak existence for problem (5.23), in the sense of Definition 2.7 under As-

sumption 3. The idea consists here in regularizing the functions Φ and g and truncating the initial condition

ζ0 to use existence result stated in Section 4, i.e. Theorem 4.2.

Theorem 5.1. Under Assumption 3, the problem (1.4) admits existence in law, i.e. there is a solution (Y, u) of (5.23)

on a suitable probability space equipped with some Brownian motion.

Proof. We consider the following mollifications (resp. truncations) of the coefficients (resp. the initial con-

dition).

Φn : (t, x, ξ) ∈ [0, T ]× Rd × R 7→
∫
Rd×R

φdn(x− r′)φn(ξ − r)Φ(t, r′, r)dr′dr

gn : (t, x, ξ) ∈ [0, T ]× R
d × R 7→

∫
Rd×R

φdn(x− r′)φn(ξ − r)g(t, r′, r)dr′dr

∀ϕ ∈ Cb(Rd),
∫
Rd ζ

n
0 (dx)ϕ(x) =

∫
Rd ζ0(dx)ϕ(−n ∨ x ∧ n) .

(5.24)

We fix a filtered probability space (Ω,F ,P) equipped with an (Ft)t≥0-Brownian motion W . First of all, we

point out the fact that the function Λ satisfies the same assumptions as in Section 4. On one hand, by (5.24),

since φdn belongs to S(Rd), Φn and gn are uniformly bounded and Lipschitz with respect to (x, ξ) uniformly

w.r.t. t for each n ∈ N. Also ζn0 admits a second moment and (ξn0 ) weakly converges to ξ0. For each n, let

Y n
0 be a (square integrable) r.v. distributed according to ζn0 . On the other hand, by Theorem 4.2, there is a
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pair (Y n, un) fulfilling (1.4) with Φ, g, ζ0 replaced by Φn, gn, ζ
n
0 . In particular we have





Y n
t = Y n

0 +
∫ t

0 Φn(r, Y
n
r , un(r, Y

n
r ))dWr +

∫ t

0 gn(r, Y
n
r , un(r, Y

n
r ))dr , with Y n

0 ∼ ζn0 ,

un(t, x) =
∫
Cd dm

n(ω)
[
K(x−Xt(ω)) exp

{∫ t

0 Λ
(
r,Xr(ω), un(r,Xr(ω))

)
dr
}]

, for (t, x) ∈ [0, T ]× R
d ,

mn = L(Y n).

(5.25)

Since (ζn0 )n∈N weakly converges to ζ0, it is tight. Being Φn and gn uniformly bounded, the hypotheses of

Lemma 7.10 are fulfilled. So, setting Zn := un(·, Y n), that lemma implies that there is a sequence (Y nk , Znk)

converging in law. For simplicity we replace in the sequel the subsequence (nk) by (n). Let (Y n) be the

sequence of processes solving (5.25). We recall that (mn) denotes the sequence of their law. The final result

will be established once we will have proved the following statements.

a) un converges to some (continuous) function u : [0, T ]×Rd → R, uniformly on each compact of [0, T ]×Rd,

which verifies

∀(t, x) ∈ [0, T ]× R
d, u(t, x) =

∫

Cd

K(x−Xt(ω)) exp

{∫ t

0

Λ
(
r,Xr(ω), u(r,Xr(ω)))

)
dr

}
dm(ω),

where m is the limit of the laws of mn.

b) The processes Y n converge in law to Y , where Y is a solution, in law, of

{
Yt = Y0 +

∫ t

0 Φ(r, Yr, u(r, Yr))dWr +
∫ t

0 g(r, Yr, u(r, Yr))dr

Y0 ∼ ζ0 .
(5.26)

Step a) is a consequence of Proposition 4.3 with for all n ∈ N, Λn = Λ.

To prove the second step b), we will pass to the limit in the first equation of (5.25). To this end, let us

designate by C2
0 (R

d), the space of C2(Rd) functions with compact support. Without loss of generality, we

suppose d = 1. We will prove that m is a solution to the martingale problem (in the sense of Stroock and

Varadhan, see chapter 6 in [17]) associated with the first equation of (5.23). In fact we will show that

{
∀ϕ ∈ C2

0 (R), t ∈ [0, T ], Mt := ϕ(Xt)− ϕ(X0)−
∫ t

0 (Arϕ)(Xr)dr, is a FX
t -martingale, where

(FX
t , t ∈ [0, T ]) is the canonical filtration generated by X,

(5.27)

where we set (Arϕ)(x) =
1
2Φ

2(r, x, u(r, x)))ϕ′′(x) + g(r, x, u(r, x))ϕ′(x), r ∈ [0, T ], x ∈ R.

Let 0 ≤ s < t ≤ T fixed, F : C([0, s],R) → R continuous and bounded. Indeed, we will show

∀ϕ ∈ C2
0 (R), E

m
[(
ϕ(Xt)− ϕ(X0)−

∫ t

0 (Arϕ)(Xr)dr
)
F (Xr, r ≤ s)

]
= 0 (5.28)

We recall that, for n ∈ N, by definition, mn is the law of the strong solution Y n of

Y n
t = Y n

0 +

∫ t

0

Φn(r, Y
n
r , un(r, Y

n
r ))dWr +

∫ t

0

gn(r, Y
n
r , un(r, Y

n
r ))dr ,

on a fixed underlying probability space (Ω,F ,P) with related expectation E.

Then, by Itô’s formula, we easily deduce that ∀n ∈ N,

E

[(
ϕ(Y n

t )− ϕ(Y n
s )−

∫ t

s

(
1

2
Φ2

n(r, Y
n
r , un(r, Y

n
r ))ϕ′′(Y n

r ) + gn(r, Y
n
r , un(r, Y

n
r ))ϕ′(Y n

r )

)
dr

)
F (Y n

r , r ≤ s)

]
= 0 .

(5.29)
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Transferring this to the canonical space C and to the probability mn gives

E
mn

[(
ϕ(Xt)− ϕ(Xs)−

∫ t

s

(
1

2
Φ2

n(r,Xr, un(r,Xr))ϕ
′′(Xr) + gn(r,Xr, un(r,Xr))ϕ

′(Xr)

)
dr

)
F ((Xu, 0 ≤ u ≤ s))

]
= 0.

(5.30)

From now on, we are going to pass to the limit when n −→ +∞ in (5.30) to obtain (5.27). Thanks to the

weak convergence of the sequence mn, for ϕ ∈ C2
0 (R), we have immediately

E
mn [(ϕ(Xt)− ϕ(Xs))F (Xu, 0 ≤ u ≤ s)]− E

m[(ϕ(Xt)− ϕ(Xs))F (Xu, 0 ≤ u ≤ s)] −−−−−→
n −→ ∞

0. (5.31)

It remains to show,





limn−→∞ Emn [Hn(X)F (Xu, 0 ≤ u ≤ s)] = Em[H(X)F (Xu, 0 ≤ u ≤ s)],

with Hn(α) :=
∫ t

s
(12Φ

2
n(r, αr, un(r, αr))ϕ

′′(αr) + gn(r, αr , un(r, αr))ϕ
′(αr)dr,

H(α) :=
∫ t

s
(12Φ

2(r, αr, u(r, αr))ϕ
′′(αr) + g(r, αr, u(r, αr))ϕ

′(αr)dr .

(5.32)

In order to show that Emn [Hn(X)F (X)]− Em[H(X)F (X)] goes to zero, we will apply again Lemma 7.2.

As we have mentioned above, F is continuous and bounded. Similarly as for Lemma 7.5, the proof of the

continuity of H (resp. Hn) makes use of the continuity of Φ, g, ϕ′′, ϕ′ (resp. Φn, gn,ϕ′′, ϕ′) and Lebesgue

dominated convergence theorem.

Taking into account Remark 7.3, it is enough to prove the uniform convergence of Hn : C −→ R to

H : C −→ R on each ball of C. This relies on the uniform convergence of Φn(t, ·, ·) (resp. gn(t, ·, ·) ) to

Φ(t, ·, ·) (resp. g(t, ·, ·) ) on every compact subset R × R, for fixed t ∈ [0, T ]. Since the sequence (mn)

converges weakly, finally Lemma 7.2 allows to conclude (5.32).

6 Link with nonlinear Partial Differential Equation

From now on, in all the sequel, to simplify notations, we will often use the notation ft(·) = f(t, ·) for

functions f : [0, T ]× E −→ R, E being some metric space.

In the following, we suppose again the validity of Assumption 3.

In this section, we want to link the nonlinear SDE (1.4) to a partial integro-differential equation (PIDE) that

we have to determine. We start by considering problem (1.4) written under the form





Yt = Y0 +
∫ t

0
Φ(s, Ys, u

m
s (Ys))dWs +

∫ t

0
g(s, Ys, u

m
s (Ys))ds, Y0 ∼ ζ0

umt (x) =
∫
Cd K(x−Xt(ω)) exp

{∫ t

0
Λ
(
r,Xr(ω), u

m
r (Xr(ω)))

)
dr
}
dm(ω)

L(Y ) = m.

(6.1)

Suppose that K is formally the Dirac measure at zero and consider a solution (Y, v) of (6.1). We can easily

show that v is a solution of (1.3) in the sense of distributions. Indeed let ϕ ∈ S(Rd). Applying Itô formula

to ϕ(Yt) we can easily show that the function v, which is the density of the measure ν defined in (1.3), is

a solution in the sense of distributions of (1.1). For K being a mollifier of the Dirac measure, applying the

same strategy, we cannot easily identify the deterministic problem (e.g. PDE or PIDE) solved by um.

For that reason we begin by establishing a correspondence between (6.1) and another McKean type
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stochastic differential equation, i.e.





Yt = Y0 +
∫ t

0 Φ(s, Ys, (K ∗ γm)(s, Ys))dWs +
∫ t

0 g(s, Ys, (K ∗ γm)(s, Ys))ds, Y0 ∼ ζ0

γmt is the measure defined by, for all ϕ ∈ Cb(Rd)

γmt (ϕ) := 〈γmt , ϕ〉 :=
∫
Cd ϕ(Xt(ω))Vt(X, (K ∗ γm)(X))dm(ω)

L(Y ) = m ,

(6.2)

where we recall the notations (K ∗ γ)(s, ·) := (K ∗ γs)(·) and γmt (ϕ) :=
∫
Rd ϕ(x)γ

m
t (dx) .

Theorem 6.1. We suppose the validity of Assumption 3. The existence of the McKean type stochastic differential

equation (6.1) is equivalent to the one of (6.2). More precisely, given a solution (Y, γm) of (6.2), (Y, um), with

um = K ∗ γm, is a solution of (6.1) and if (Y, um) is a solution of (6.1), there exists a measure valued function γm

such that (Y, γm) is solution of (6.2).

In addition, if the measurable set {ξ ∈ Rd|F(K)(ξ) = 0} is Lebesgue negligible, (6.1) and (6.2) are equivalent, i.e.,

the solution measure γm (of (6.2)) is uniquely determined by the solution function um ((6.1)) and conversely. We

recall that the map F denotes Fourier transform.

Proof. Let (Y, um) be a solution of (6.1). Let us fix t ∈ [0, T ].

Since K ∈ L1(Rd), the Fourier transform applied to the function um(t, ·) gives

F(um)(t, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xt(ω) exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω) . (6.3)

By Lebesgue dominated convergence theorem, one can show that the function

fm : ξ ∈ R
d 7→ fm(ξ) :=

∫

Cd

e−iξ·Xt(ω) exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω) ,

is continuous. Since Λ is bounded, fm is also bounded. Let (ak)k=1,··· ,d be a sequence of complex numbers

and (xk)k=1··· ,d ∈ (Rd)d. Remarking that for all ξ ∈ Rd

d∑

k=1

d∑

p=1

akāpe
−iξ·(xk−xp) =

(
d∑

k=1

ake
−iξ·xk

)(
d∑

p=1

ape−iξ·xp

)
=

∣∣∣∣∣

d∑

k=1

ake
−iξ·xk

∣∣∣∣∣

2

,

which shows that fm is non-negative definite. Then, by Bochner’s theorem (see Theorem 24.9 Chapter I.24

in [16]), there exists a finite non-negative Borel measure µt on R
d such that for all ξ ∈ R

d

fm(ξ) =
1√
2π

∫

Rd

e−iξ·θµm
t (dθ) . (6.4)

We wish to show that γmt := µm
t fulfills the third line equation of (6.2).

Since µm
t is a finite (non-negative) Borel measure, it is a Schwartz (tempered) distribution such that

F−1(fm) = µm
t and ∀ψ ∈ S(Rd),

∣∣∣∣
∫

Rd

ψ(x)µm
t (dx)

∣∣∣∣ ≤ ‖ψ‖∞µm
t (Rd) <∞ .

On one hand, equalities (6.3) and (6.4) give

F(um)(t, ·) = F(K)F(µm
t ) =⇒ um(t, ·) = K ∗ µm

t . (6.5)
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On the other hand, for all ψ ∈ S(Rd),

〈µm
t , ψ〉 = 〈F−1(fm), ψ〉

= 〈fm,F−1(ψ)〉

=

∫

Rd

F−1(ψ)(ξ)

(∫

Cd

e−iξ·Xt(ω) exp(

∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω))))dm(ω)

)
dξ

=

∫

Cd

(∫

Rd

F−1(ψ)(ξ)e−iξ·Xt(ω)dξ

)
exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω)

=

∫

Cd

(∫

Rd

F−1(ψ)(ξ)e−iξ·Xt(ω)dξ

)
exp

(∫ t

0

Λ(r,Xr(ω), (K ∗ µm
r )(Xr(ω)))

)
dm(ω)

=

∫

Cd

ψ(Xt(ω)) exp

(∫ t

0

Λ(r,Xr(ω), (K ∗ µm
r )(Xr(ω)))

)
dm(ω) ,

where the fourth equality is justified by Fubini theorem and the fifth equality follows by (6.5). This allows

to conclude the necessary part of the first lemma statement.

Regarding the converse, let (Y, γm) be a solution of (6.2). We set umt (x) := (K ∗ γmt )(x), so that the

first equation in (6.1) is satisfied for (Y, um). Since µm
t is finite, the second equation follows directly setting

ϕ = K(x− ·) in (6.2).

To establish the second statement of the theorem, it is enough to observe that from the r.h.s. of (6.5) we have

Leb({ξ ∈ R
d|F(K)(ξ) = 0}) = 0 =⇒ F(µm

t ) =
F(um)(t, ·)

F(K)
a.e. , t ∈ [0, T ],

where Leb denotes the Lebesgue measure on R
d. This shows effectively that γm (resp. um) is uniquely

determined by um (resp. γm) and ends the proof.

Now, by applying Itô’s formula , we can show that the associated measure γm (second equation in (6.2))

satisfies a PIDE.

Theorem 6.2. The measure γmt , defined in the second equation of (6.2), satisfies the PIDE




∂tγ
m
t = 1

2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x, (K ∗ γmt ))γmt

)
− div (g(t, x,K ∗ γmt )γmt ) + γmt Λ(t, x, (K ∗ γmt ))

γm0 (dx) = ζ0(dx) ,

(6.6)

in the sense of distributions, i.e. for every t ∈ [0, T ], ϕ ∈ S(Rd) we have
∫

Rd

ϕ(x)γmt (dx) =

∫

Rd

ϕ(x)ζ0(dx)

+

∫ t

0

∫

Rd

ϕ(x)Λ(s, x, (K ∗ γm)(s, x))γms (dx)ds

+

∫ t

0

∫

Rd

∇ϕ(x) · g(s, x, (K ∗ γm)(s, x))γms (dx)dsdx (6.7)

+
1

2

d∑

i,j=1

∫ t

0

∫

Rd

∂2ijϕ(x)(ΦΦ
t)i,j(s, x, (K ∗ γm)(s, x))γms (dx)dsdx .

Proof. It is enough to use the definition of γmt and, as mentioned above, apply Itô’s formula to the process

ϕ(Yt)Vt(Y, (K ∗ γm)(Y )), for ϕ ∈ C∞
0 (Rd) and Y (defined in the first equation of (6.2)). Indeed, for ϕ ∈
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C∞
0 (Rd), Itô’s formula gives

E[ϕ(Yt)Vt(Y, (K ∗ γm)(Y ))] = E[ϕ(Y0)]

+

∫ t

0

E [ϕ(Ys)Λ(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))] ds

+

∫ t

0

d∑

i=1

E [∂iϕ(Ys)gi(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))] ds

+
1

2

∫ t

0

d∑

i,j=1

E[∂2ijϕ(Ys)(ΦΦ
t)i,j(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))]ds .

By the definition of the measure γmt , for each t ∈ [0, T ], in (6.2), we have

∫

Rd

ϕ(x)γmt (dx) =

∫

Rd

ϕ(x)ζ0(dx)

+

∫ t

0

∫

Rd

ϕ(x)Λ(s, x, (K ∗ γm)(s, x))γms (dx)ds

+

∫ t

0

∫

Rd

∇ϕ(x) · g(s, x, (K ∗ γm)(s, x))γms (dx)ds

+
1

2

d∑

i,j=1

∫ t

0

∫

Rd

∂2ijϕ(x)(ΦΦ
t)i,j(s, x, (K ∗ γm)(s, x))γms (dx)ds .

This concludes the proof of Theorem 6.2.

7 Appendix

In this appendix, we present the proof of some technical results used in previous sections.

7.1 Proofs of the technicalities related to Section 3.1

In this section, we prove the fundamental properties of the map (m, t, x) → um(t, x) announced in Proposi-

tion 3.3.

Proof of Proposition 3.3. We will prove successively the inequalities (3.6), (3.7), (3.8) and (3.9).

Let us consider (t, y, y′) ∈ [0, T ]× Rd × Rd.

• Proof of (3.6) . Let (m,m′) ∈ P2(Cd)× P2(Cd).

We have

|um(t, y)− um
′

(t, y′)|2 ≤ 2|um(t, y)− um(t, y′)|2 + 2|um(t, y′)− um
′

(t, y′)|2 . (7.1)

The first term on the r.h.s. of the above equality is bounded using the Lipschitz property of um

that derives straightforwardly from the Lipschitz property of the mollifier K and the boundedness

property of Vt (2.6):

|um(t, y′)− um(t, y)| =

∣∣∣∣
∫

Cd

[K(y −Xt(ω))−K(y′ −Xt(ω))] Vt(X(ω), um(X(ω)))dm(ω)

∣∣∣∣

≤ LKe
tMΛ |y − y′| . (7.2)
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Now let us consider the second term on the r.h.s. of (7.1). By Jensen’s inequality we get

|um(t, y′)− um
′

(t, y′)|2 =

∣∣∣∣
∫

Cd

K(y′ −Xt(ω))Vt
(
X(ω), um(X(ω))

)
dm(ω)

−
∫

Cd

K(y′ −Xt(ω
′))Vt

(
X(ω′), um

′

(X(ω′))
)
dm′(ω′)

∣∣∣∣
2

≤
∫

Cd×Cd

∣∣∣K(y′ −Xt(ω))Vt
(
X(ω), um(X(ω))

)

− K(y′ −Xt(ω
′))Vt

(
X(ω′), um

′

(X(ω′))
)∣∣∣

2

dµ(ω, ω′) , (7.3)

for any µ ∈ Π(m,m′). Let us consider four continuous functions x, x′ ∈ C([0, T ],Rd) and z, z′ ∈
C([0, T ],R). We have

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2 |K(y′ − xt)−K(y′ − x′t)|

2 |Vt(x, z)|2

+2 |Vt(x, z)− Vt(x
′, z′)|2 |K(y′ − x′t)|2 .

Then, using the Lipschitz property of K and the upper bound (2.8) gives

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2L2

Ke
2tMΛ |xt − x′t|2

+ 4M2
KL

2
Λe

2tMΛt

∫ t

0

[
|xs − x′s|2 + |zs − z′s|2

]
ds (7.4)

≤ C′
K,Λ(t)

[
(1 + t) sup

s≤t

|xs − x′s|2 +
∫ t

0

|zs − z′s|2 ds
]
,

where C′
K,Λ(t) = 2e2tMΛ(L2

K + 2M2
KL

2
Λt). Injecting the latter inequality in (7.3) yields

|um(t, y′)− um
′

(t, y′)|2 ≤ C′
K,Λ(t)

∫

Cd×Cd

[
(1 + t) sup

s≤t

|Xs(ω)−Xs(ω
′)|2

+

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds

]
dµ(ω, ω′) .

Injecting the above inequality in (7.1) and using (7.2) yields

|um(t, y)− um
′

(t, y′)|2 ≤ 2C′
K,Λ(t)

[
|y − y′|2 + (1 + t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

]
,

Replacing y (resp. y′) with Xt(ω) (resp. Xt(ω
′)) in (7.5), we get for all ω ∈ Cd (resp. ω′ ∈ Cd),

|um(t,Xt(ω))− um
′

(t,Xt(ω
′))|2 ≤ 2C′

K,Λ(t)
[
|Xt(ω)−Xt(ω

′)|2

+(1 + t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

]
.

Let us introduce the notation

γ(s) :=

∫

Cd×Cd

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 dµ(ω, ω′) , for any s ∈ [0, T ].
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Integrating each side of inequality (7.5) w.r.t. the variables (ω, ω′) according to µ, implies

γ(t) ≤ 2C′
K,Λ(t)

∫ t

0

γ(s)ds+ 2(t+ 2)C′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) ,

for all t ∈ [0, T ]. In particular, observing that C′
K,Λ(a) is increasing in a, we have for fixed t ∈]0, T ] and

all a ∈ [0, t]

γ(a) ≤ 2C′
K,Λ(t)

∫ a

0

γ(s)ds+ 2(t+ 2)C′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) .

Using Gronwall’s lemma yields

γ(t) :=

∫

Cd×Cd

|um(t,Xt(ω))− um
′

(t,Xt(ω
′))|2 dµ(ω, ω′)

≤ 2(t+ 2)C′
K,Λ(t)e

2tC′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) .

Injecting the above inequality in (7.5) implies

|um(t, y)−um′

(t, y′)|2 ≤ 2C′
K,Λ(t)(t+2)(1+e2tC

′
K,Λ(t))

[
|y − y′|2 +

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

]
.

(7.5)

The above inequality holds for any µ ∈ Π(m,m′), hence taking the infimum over µ ∈ Π(m,m′) con-

cludes the proof of (3.6).

• Proof of (3.7). Let (m,m′) ∈ P(Cd)×P(Cd). The proof of (3.7) follows at the beginning the same lines

as the one of (3.6), but the inequality (7.4) is replaced by

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2 |K(y′ − xt)−K(y′ − x′t)|

2 |Vt(x, z)|2

+2 |Vt(x, z)− Vt(x
′, z′)|2 |K(y′ − x′t)|2

≤ 2e2tMΛ max(LK , 2MK)2(|xt − x′t|
2 ∧ 1)

+4M2
Ke

2tMΛ max(LΛ, 2MΛ)
2t

∫ t

0

(
|x′s − xs|2 ∧ 1

+ |zs − z′s|2
)
ds

≤ C
′
K,Λ(t)

[
(1 + t)(sup

s≤t

|xs − x′s|2 ∧ 1) +

∫ t

0

|zs − z′s|2 ds
]
,

where C
′
K,Λ(t) := 2e2tMΛ(max(LK , 2MK)2 + 2M2

K max(LΛ, 2MΛ)
2t). Following the same lines as for

the proof of item 1. leads to

|um(t, y)− um
′

(t, y′)|2 ≤ 2C′
K,Λ(t)(t + 2)(1 + e2tC

′
K,Λ(t))

[
|y − y′|2

+

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2 ∧ 1 dµ(ω, ω′)

]
,

which constitutes the analogue of (7.5) and we conclude in the same way as for the previous item.

• Proof of the continuity of (m, t, x) 7→ um(t, x).

P(Cd)× [0, T ]×Rd being a separable metric space, we characterize the continuity through converging
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sequences. We also recall that W̃T is a distance compatible with the weak convergence on P(Cd), see

Remark 3.4 a).

By (3.7), the application is continuous with respect to (m,x) uniformly with respect to time. Conse-

quently it remains to show that the map t 7→ um(t, x) is continuous for fixed (m,x) ∈ P(Cd)× R
d.

Let us fix (m, t0, x) ∈ P(Cd)× [0, T ]× Rd. Let (tn)n∈N be a sequence in [0, T ] converging to t0.

We define Fn as the real-valued sequence of measurable functions on Cd such that for all ω ∈ Cd,

Fn(ω) := K(x−Xtn(ω)) exp

(∫ tn

0

Λ(r,Xr(ω), u
m(r,Xr(ω))dr

)
. (7.6)

Each ω ∈ Cd being continuous, Fn converges pointwise to F : Cd → R defined by

F (ω) := K(x−Xt0(ω)) exp

(∫ t0

0

Λ(r,Xr(ω), u
m(r,Xr(ω))dr

)
. (7.7)

Since K and Λ are uniformly bounded, MKe
TMΛ is a uniform upper bound of the functions Fn. By

Lebesgue dominated convergence theorem, we conclude that

|um(tn, x)− um(t0, x)| =
∣∣∣∣
∫

Cd

Fn(ω)dm(ω)−
∫

Cd

F (ω)dm(ω)

∣∣∣∣ −−−−−→n→+∞
0 .

This ends the proof.

• Proof of (3.8). Let (m,m′) ∈ P2(Cd)× P2(Cd).

Since K ∈ L2(Rd), by Jensen’s inequality, it follows easily that the functions x 7→ um(r, x) and x 7→
um

′

(r, x) belong to L2(Rd), for every r ∈ [0, T ]. Then, for any µ ∈ Π(m,m′),

‖um(t, ·)− um
′

(t, ·)‖22 =

∫

Rd

|um(t, y)− um
′

(t, y)|2dy

=

∫

Rd

∣∣∣∣
∫

Cd×Cd

[
K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
]
dµ(ω, ω′)

∣∣∣
2

dy

≤
∫

Rd

∫

Cd×Cd

∣∣∣K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
∣∣∣
2

dµ(ω, ω′) dy

=

∫

Cd×Cd

∫

Rd

∣∣∣K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
∣∣∣
2

dy dµ(ω, ω′) , (7.8)

where the third inequality follows by Jensen’s and the latter equality is justified by Fubini theorem.

We integrate now both sides of (7.4), with respect to the state variable y over Rd, for all (x, x′) ∈
Cd × Cd, (z, z′) ∈ C × C,
∫

Rd

|K(y − xt)Vt(x, z)−K(y − x′t)Vt(x
′, z′)|2 dy ≤ 2

∫

Rd

|K(y − xt)−K(y − x′t)|2|Vt(x, z)|2 dy

+2

∫

Rd

|Vt(x, z)− Vt(x
′, z′)|2|K(y − x′t)|2 dy. (7.9)

We remark now that, by classical properties of Fourier transform, since K ∈ L2(Rd), we have

∀ (x, ξ) ∈ R
d × R

d, F(Kx)(ξ) = e−iξ·xF(K)(ξ) ,
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where in this case, the Fourier transform operator F acts from L2(Rd) to L2(Rd) and Kx : ȳ ∈ Rd 7→
K(ȳ − x). Since K ∈ L2(Rd), Plancherel’s theorem gives, for all (ȳ, x, x′) ∈ Rd × Cd × Cd,

∫

Rd

|K(ȳ − xt)−K(ȳ − x′t)|2dȳ =

∫

Rd

|Kxt
(ȳ)−Kx′

t
(ȳ)|2dȳ

=

∫

Rd

|e−iξ·xtF(K)(ξ)− e−iξ·x′
tF(K)(ξ)|2dξ

=

∫

Rd

|F(K)(ξ)|2 |e−iξ·xt − e−iξ·x′
t |2dξ

≤
∫

Rd

|F(K)(ξ)|2 |ξ · (xt − x′t)|2dξ

≤ |xt − x′t|2
∫

Rd

|F(K)(ξ)|2 |ξ|2dξ

= |xt − x′t|2
∫

Rd

|F(K)(ξ)ξ|2dξ

= |xt − x′t|2
∫

Rd

|F(∇K)(ξ)|2dξ

= |xt − x′t|2‖∇K‖22 . (7.10)

Injecting this bound into (7.9), taking into account (2.8), yields

∫

Rd

|K(y − xt)Vt(x, z)−K(y − x′t)Vt(x
′, z′)|2 dy ≤ 2‖∇K‖22 |xt − x′t|2 exp(2tMΛ)

+ 2MK |Vt(x, z)− Vt(x
′, z′)|2

≤ 2e2tMΛ‖∇K‖22|xt − x′t|2

+4MKL
2
Λe

2tMΛ t

∫ t

0

[
|xs − x′s|2 + |zs − z′s|2

]
ds

≤ 2e2tMΛ(2MKL
2
Λt

2 + ‖∇K‖22) sup
0≤r≤t

|xr − x′r|2

+4MKL
2
Λe

2tMΛ t

∫ t

0

|zs − z′s|2 ds

≤ C̃K,Λ(t)

[
sup

0≤r≤t

|xr − x′r|2 +
∫ t

0

|zs − z′s|2 ds
]
,

(7.11)

for all (x, x′) ∈ Cd × Cd and (z, z′) ∈ C × C, with C̃K,Λ(t) := 2e2tMΛ(2MKL
2
Λt(t+ 1) + ‖∇K‖22).

Inserting (7.11) into (7.8), after substituting X(ω) with x, X(ω′) with x′, z with um(X(ω)) and z′ with

um
′

(X(ω′)), for any µ ∈ Π(m,m′), we obtain the inequality

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)

{∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2 dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

}
. (7.12)

Since inequality (3.6) is verified for all y ∈ Rd , s ∈ [0, T ], we obtain for all ω, ω′ ∈ Cd

|um
(
s,Xs(ω)

)
− um

′(
s,Xs(ω

′)
)
|2 ≤ CK,Λ(s)

[
|Xs(ω)−Xs(ω

′)|2 + |Ws(m,m
′)|2
]

≤ CK,Λ(s)

[
sup

0≤r≤s

|Xr(ω)−Xr(ω
′)|2 + |Ws(m,m

′)|2
]
.
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Integrating each side of the above inequality with respect to the time variable s and the measure

µ ∈ Π(m,m′) and observing that CK,Λ(s) is increasing in s, yields

I :=

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

≤ CK,Λ(t)t

[∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2 dµ(ω, ω′) + |Wt(m,m

′)|2
]
. (7.13)

By injecting inequality (7.13) in the right-hand side of inequality (7.12), we obtain

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + tCK,Λ(t))

∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2dµ(ω, ω′)

+tC̃K,Λ(t)CK,Λ(t)|Wt(m,m
′)|2 . (7.14)

By taking the infimum over µ ∈ Π(m,m′) on the right-hand side, we obtain

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + 2tCK,Λ(t))|Wt(m,m
′)|2 . (7.15)

• Proof of (3.9).

By the hypothesis 4. in Assumption 1, K ∈ L1(Rd). Given a function g : [0, T ] × Rd → C, (s, x) 7→
g(s, x) , its Fourier transform in the space variable x will be denoted by (s, ξ) 7→ F(g)(s, ξ) instead of

Fg(s, ·)(ξ). Then for (ω̄, s, ξ) ∈ Ω× [0, T ]× Rd, the Fourier transform of the functions uηω̄ and um are

given by

F(uηω̄ )(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω) exp

(∫ s

0

Λ
(
r,Xr(ω), u

ηω̄(r,Xr(ω))
)
dr

)
dηω̄(ω) (7.16)

F(um)(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω) exp

(∫ s

0

Λ
(
r,Xr(ω), u

m(r,Xr(ω))
)
dr

)
dm(ω) . (7.17)

To simplify notations in the sequel, we will often use the convention

V ν
r (y) := Vr(y, u

ν(y)) = exp

(∫ r

0

Λ
(
θ, yθ, u

ν(θ, yθ)
)
dθ

)
,

where uν is defined in (3.1), with m = ν.

In this way, relations (7.16) and (7.17) can be re-written as

F(uηω̄ )(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)

(7.18)

F(um)(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω)V m
s (X(ω))dm(ω) ,

for (ω̄, s, ξ) ∈ Ω× [0, T ]× Rd.

For a function f ∈ L1(Rd) such that F(f) ∈ L1(Rd), the inversion formula of the Fourier transform is

valid and implies

f(x) =
1√
2π

∫

Rd

F(f)(ξ)eiξ·xdξ, x ∈ R
d . (7.19)

f is obviously bounded and continuous taking into account Lebesgue dominated convergence theo-

rem. Moreover

‖f‖∞ ≤ 1√
2π

‖F(f)‖1, (7.20)
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where we recall that ‖ · ‖1 denotes the L1(Rd)-norm. As F(K) belongs to L1(Rd), from (7.20) applied

to the function f = uηω̄ (s, ·)− um(s, ·) with fixed ω̄ ∈ Ω, s ∈ [0, T ], we get

E[‖uη(s, ·)− um(s, ·)‖2∞] ≤ 1√
2π

E[‖F(uη)(s, ·)−F(um)(s, ·)‖21]

≤ 1√
2π

E

[(∫

Rd

|F(uηω̄ )(s, ξ)−F(um)(s, ξ)|dξ
)2
]
, (7.21)

where we recall that E is taken w.r.t. to dP(ω̄).

The terms intervening in the expression above are measurable. This can be justified by Fubini-Tonelli

theorem and the fact that (ω̄, s, x) 7→ uηω̄(s, x) is measurable from (Ω × [0, T ] × Rd,F ⊗ B([0, T ]) ⊗
B(Rd)) to (R,B(R)). We prove the latter point. By item 3. of this Lemma, we recall that the function

(m, t, x) 7→ um(t, x) is continuous on P(Cd) × [0, T ] × Rd and so measurable from (P(Cd) × [0, T ] ×
Rd,B(P(Cd))⊗B([0, T ])⊗B(Rd)) to (R,B(R)). The application (ω̄, t, x) 7→ (ηω̄ , t, x) being measurable

from (Ω× [0, T ]× Rd,F ⊗ B([0, T ]⊗B(Rd))) to (P(Cd)⊗B([0, T ])⊗ B(Rd)), by composition the map

(ω̄, s, x) 7→ uηω̄(s, x) is measurable. By Fubini-Tonelli theorem (ω̄, s, ξ) 7→ F(uηω̄ )(s, ξ)) is measurable

from (Ω × [0, T ] × Rd,F ⊗ B([0, T ]) ⊗ B(Rd) to (C,B(C)) and (s, ξ) 7→ um(s, ξ) is measurable from

([0, T ]× Rd,B([0, T ]⊗ Rd) to (R,B(R)).

We are now ready to bound the right-hand side of (7.21). For all (ω̄, s) ∈ Ω× [0, T ], by (7.18)

|F(um)(s, ξ) −F(uηω̄)(s, ξ)| ≤ |F(K)(ξ)|
∣∣∣∣
∫

Cd

e−iξ·Xs(ω)V m
s (X(ω))dm(ω)−

∫

Cd

e−iξ·Xs(ω)V m
s (X(ω))dηω̄(ω)

∣∣∣∣

+ |F(K)(ξ)|
∣∣∣∣
∫

Cd

e−iξ·Xs(ω)Vm
s (X(ω))dηω̄(ω)−

∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)

∣∣∣∣ ,

(7.22)

which implies

(∫

Rd

|F(uηω̄ )(s, ξ)−F(um)(s, ξ)|dξ
)2

≤
(∫

Rd

|F(K)(ξ)||As,ω̄(ξ)|dξ +
∫

Rd

|F(K)(ξ)||Bs,ω̄(ξ)|dξ
)2

≤ 2(I1s,ω̄ + I2s,ω̄) , (7.23)

where {
I1s,ω̄ :=

(∫
Rd |F(K)(ξ)||As,ω̄(ξ)|dξ

)2

I2s,ω̄ :=
(∫

Rd |F(K)(ξ)||Bs,ω̄(ξ)|dξ
)2

,
(7.24)

and for all ω̄ ∈ Ω, s ∈ [0, T ]

{
As,ω̄(ξ) :=

∫
Cd e

−iξ·Xs(ω)V m
s (X(ω))dηω̄(ω)−

∫
Cd e

−iξ·Xs(ω)Vm
s (X(ω))dm(ω)

Bs,ω̄(ξ) :=
∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)−

∫
Cd e

−iξ·Xs(ω)V m
s (X(ω))dηω̄(ω) .

(7.25)

We observe that (ω̄, s, ξ) 7→ As,ω̄(ξ) and (ω̄, s, ξ) 7→ Bs,ω̄(ξ) are measurable. Indeed, the map

(ω, ω̄, s, ξ) 7→ e−iξ·Xs(ω)V ηω̄
s (X(ω)) is Borel. By Remark 2.2 we can easily show that for all N ∈ N⋆,

(ω̄, s, ξ) 7→ 1∆N
(ξ)ηω̄(ω) is (still) a random (finite) measure when Ω is replaced by Ω × [0, T ] × Rd

and ∆N is the centered ball of Rd with radius N . Proposition 3.3, Chapter 3. of [10] tells us that

(ω̄, s, ξ) 7→
∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))1∆N

(ξ)dηω̄(ω) is measurable, and letting N → +∞, we observe

that (ω̄, s, ξ) 7→
∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω) is also measurable.

The measurability of A,B follows again by use of Fubini-Tonelli theorem.
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Regarding As,ω̄, let ϕs,ξ denotes the function defined by y ∈ Cd 7→ e−iξ·ysV m
s (y). Then, one can write

As,ω̄ = 〈ηω̄ − m,ϕs,ξ〉, where 〈·, ·〉 denotes the pairing between measures and bounded, continuous

functionals. ϕs,ξ is clearly bounded by esMΛ ; inequalities (2.8) and (3.6) imply the continuity of ϕs,ξ

on (Cd, ‖ · ‖∞), for fixed (s, ξ) ∈ ×[0, T ]× Rd. By Cauchy-Schwarz inequality we obtain for all ω̄ ∈ Ω,

s ∈ [0, T ]

I1s,ω̄ ≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)||As,ω̄ |2dξ
)

≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)||〈ηω̄ −m,ϕs,ξ〉|2dξ
)
. (7.26)

Since the right-hand side of (7.26) is measurable, taking expectation w.r.t. dP(ω̄) in both sides yields

E[I1s ] ≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)| E[|〈η −m,ϕs,ξ〉|2] dξ
)

≤ e2sMΛ‖F(K)‖1



∫

Rd

|F(K)(ξ)| sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2]dξ




≤ e2sMΛ‖F(K)‖21 sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] . (7.27)

Concerning the second term Bs,ω̄, for all (s, ξ) ∈ [0, T ]× Rd, we have

|Bs,ω̄(ξ)|2 =

∣∣∣∣
∫

Cd

e−iξ·Xs(ω)
(
V ηω̄
s (X(ω))− Vm

s (X(ω))
)
dηω̄(ω)

∣∣∣∣
2

≤
∫

Cd

|V ηω̄
s (X(ω))− Vm

s (X(ω))|2 dηω̄(ω)

≤ e2sMΛL2
Λ

∫

Cd

∣∣∣∣
∫ s

0

uηω̄(r,Xr(ω))− um(r,Xr(ω))dr

∣∣∣∣
2

dηω̄(ω) , by (2.8)

≤ se2sMΛL2
Λ

∫

Cd

∫ s

0

|uηω̄(r,Xr(ω))− um(r,Xr(ω))|2 dr dηω̄(ω)

≤ se2sMΛL2
Λ

∫ s

0

‖uηω̄(r, ·)− um(r, ·)‖2∞ dr , (7.28)

where we recall that ηω̄ is a probability measure on Cd for all ω̄ and that functions (r, x, ω̄) ∈ [0, T ]×
Rd × Ω 7→ uηω̄(r, x) and (r, x) ∈ [0, T ]× Rd 7→ um(r, x) are uniformly bounded.

Taking into account (7.28), the measurability of the function (ω̄, r) ∈ Ω×[0, T ] 7→ ‖uηω̄(r, ·)−um(r, ·)‖2∞
and Fubini’s theorem imply

E[I2s ] ≤ E



(∫

Rd

|F(K)(ξ)| sup
ξ∈Rd

|Bs,·(ξ)|dξ
)2



≤ E[ sup
ξ∈Rd

|Bs,·(ξ)|2 ‖F(K)‖21]

≤ se2sMΛL2
Λ‖F(K)‖21

∫ s

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr . (7.29)

Taking the expectation of both sides in (7.23), we inject (7.27) and (7.29) in the expectation of the
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right-hand side of (7.23) so that (7.21) gives for all s ∈ [0, T ]

E
[
‖uη(s, ·)− um(s, ·)‖2∞

]
≤ C2(s)

∫ s

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr

+C1(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2], (7.30)

where C1(s) := 1√
2π
esMΛ‖F(K)‖21 and C2(s) := 1√

2π
se2sMΛL2

Λ‖F(K)‖21. On one hand, since the

functions uη and um are uniformly bounded, E[‖uη(s, ·)− um(s, ·)‖∞2] is finite. On the other hand,

observing that a 7→ C1(a) and a 7→ C2(a) are increasing, we have for all s ∈]0, T ], a ∈ [0, s]

E
[
‖uη(a, ·)− um(a, ·)‖2∞

]
≤ C2(s)

∫ a

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr + C1(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] .

By Gronwall’s lemma, we finally obtain

∀ s ∈ [0, T ], E
[
‖uη(s, ·)− um(s, ·)‖2∞

]
≤ C1(s)e

sC2(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] . (7.31)

7.2 Technicalities about Section 3.2

Lemma 7.1. We suppose the validity of Assumption 1. Let r : [0, T ] 7→ [0, T ] be a non-decreasing function such that

r(s) ≤ s for any s ∈ [0, T ]. Let U : (t, y) ∈ [0, T ]× Cd → R (respectively U ′ : (t, y) ∈ [0, T ]× Cd → R), be a given

Borel function such that for all t ∈ [0, T ], there is a Borel map Ut : C([0, t],Rd) → R (resp. U ′

t : C([0, t],Rd) → R)

such that U(t, ·) = Ut(·) (resp. U ′(t, ·) = U ′
t(·)). Setting CΦ,g(T ) = 12(4L2

Φ + TL2
g)e

12T (4L2
Φ+TL2

g), the following

two assertions hold.

1. Consider Y (resp. Y ′) a solution of the following SDE for v = U (resp. v = U ′):

Yt = Y0 +
∫ t

0
Φ(r(s), Yr(s), v(r(s), Y·∧r(s)))dWs +

∫ t

0
g(r(s), Yr(s), v(r(s), Y·∧r(s)))ds , for any t ∈ [0, T ] ,

(7.32)

where, we emphasize that for all θ ∈ [0, T ], Z·∧θ := {Zu, 0 ≤ u ≤ θ} ∈ C([0, θ],Rd) for any continuous

process Z . For any a ∈ [0, T ], we have

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )E

[∫ a

0

|U(r(t), Y·∧r(t))− U ′(r(t), Y ′
·∧r(t))|2dt

]
. (7.33)

2. Suppose moreover that Φ and g are 1
2 -Holder continuous w.r.t. the time variable and Lipschitz w.r.t. the space

variables i.e. there exist some positive constants LΦ and Lg such that for any (t, t′, y,′ y′, z, z′) ∈ [0, T ]2 ×
R2d × R2 {

|Φ(t, y, z)− Φ(t′, y′, z′)| ≤ LΦ(|t− t′| 12 + |y − y′|+ |z − z′|)
|g(t, y, z)− g(t′, y′, z′)| ≤ Lg(|t− t′| 12 + |y − y′|+ |z − z′|) .

(7.34)

Let r1, r2 : [0, T ] 7→ [0, T ] being two non-decreasing functions verifying r1(s) ≤ s and r2(s) ≤ s for any

s ∈ [0, T ]. Let Y (resp. Y ′) be a solution of (7.32) for v = U and r = r1 (resp. v = U ′ and r = r2). Then for

any a ∈ [0, T ], the following inequality holds:

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )

(
‖r1 − r2‖1 +

∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E

[∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt
])

, (7.35)
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where ‖ · ‖2 is the L2([0, T ])-norm.

Proof. 1. Let us consider the first assertion of Lemma 7.1. Let Y (resp. Y ′) be a solution of (7.32) with

associated function U (resp. U ′). Let us fix a ∈]0, T ]. We have

Yθ − Y ′
θ = αθ + βθ, θ ∈ [0, a], (7.36)

where

αθ :=

∫ θ

0

(
Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′

r(s),U ′(r(s), Y ′
·∧r(s)))

)
dWs

βθ :=

∫ θ

0

(
g(r(s), Yr(s),U(r(s), Y·∧r(s)))− g(r(s), Y ′

r(s),U ′(r(s), Y ′
·∧r(s)))

)
ds .

By BDG inequality, we obtain

E sup
θ≤a

|αθ|2 ≤ 4E

[∫ a

0

∣∣∣Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))
∣∣∣
2

ds

]

= 4

∫ a

0

E

[∣∣∣Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))
∣∣∣
2
]
ds

≤ 8L2
Φ

∫ a

0

E

[∣∣∣U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))

∣∣∣
2
]
ds+ 8L2

Φ

∫ a

0

E

[
|Yr(s) − Y ′

r(s)|2
]
ds .

(7.37)

Concerning β in (7.36), by Cauchy-Schwarz inequality, we get

E sup
θ≤a

|βθ|2 ≤ aE

[∫ a

0

|g(r(s), Yr(s),U(r(s), Y·∧r(s)))− g(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))|2ds
]

≤ 2aL2
gE

[∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds

]
+ 2aL2

g

∫ a

0

E

[
|Yr(s) − Y ′

r(s)|2
]
ds .

(7.38)

Gathering (7.38) together with (7.37) and using the fact that r(s) ≤ s, implies

E[sup
θ≤a

|Y ′
θ − Yθ|2] ≤ 4(4L2

Φ + TL2
g)

(
E[

∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds]

+

∫ a

0

E[|Yr(s) − Y ′
r(s)|2] ds

)

≤ 4(4L2
Φ + TL2

g)

(
E[

∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds]

+

∫ a

0

E[sup
θ≤s

|Yθ − Y ′
θ |2] ds

)
,

for any a ∈ [0, t].

We conclude the proof by applying Gronwall’s lemma.

2. Consider now the second assertion of Lemma 7.1. Following the same lines as the proof of assertion

1. and using the Lipschitz property of Φ and g w.r.t. to both the time and space variables (7.34), we
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obtain the inequality

E[sup
t≤a

|Y ′
t − Yt|2] ≤ 12(4L2

Φ + TL2
g)

(∫ a

0

|r1(t)− r2(t)|dt+
∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E[

∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt] +
∫ a

0

E[|Yr1(t) − Y ′
r1(t)

|2] dt
)

≤ 12(4L2
Φ + TL2

g)

(
‖r1 − r2‖1 +

∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E[

∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt] +
∫ a

0

E[sup
s≤t

|Ys − Y ′
s |2] dt

)
.

Applying again Gronwall’s lemma concludes the proof.

7.3 Some technical proofs of the convergence of approximating sequences related to

Section 4 and Section 5

The results stated and established in this section are the main tools that will be used in Section 4 and Section

5 to prove the main theorems, i.e. Theorem 4.2 and Theorem 5.1.

Lemma 7.2. Let (Pn)n≥0 be a sequence of probability measures on Cd converging weakly to some probability P. Let

(fn)n≥0 be a uniformly bounded sequence of real-valued, continuous functions defined on Cd, converging uniformly

on every compact subset to some continuous f . Then
∫

Cd

fn(ω)dPn(ω) −−−−−−→
n → +∞

∫

Cd

f(ω)dP(ω) .

Remark 7.3. We apply several times Lemma 7.2. We will verify its assumptions showing that the sequence (fn)

converges uniformly on each bounded ball of Cd. This will be enough since every compact of Cd is bounded.

We emphasize that the hypothesis of uniform convergence in Lemma 7.2 is crucial, see remark below,

Remark 7.4. Let define Ω = [0, 1] equipped with the Borel σ-field, (Zn)n≥0 a sequence of continuous, real-valued

functions s.th. 



0 , x ≥ 2
n

nx , x ∈ [0, 1
n
]

−nx+ 2 , x ∈ [ 1
n
, 2
n
].

(7.39)

We consider a sequence of probability measures (mn)n≥0 s.th. mn(dx) = δ 1
n
(dx) and m0(dx) = δ0(dx).

On one hand, we can observe the following.

• Zn −−−−−−→
n → +∞

0, pointwise.

• for all n ≥ 0, |Zn| ≤ 1, surely.

• mn −−−−−−→
n → +∞

m, weakly.

On the other hand,
∫ 1

0 Zndmn = Zn(
1
n
) = 1 9 0.

The proof of Proposition 4.3 goes through several steps.

We first formulate below an useful elementary result, which follows by a simple application of Lebesgue

dominated convergence theorem. It will be often used in the sequel.
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Lemma 7.5. Let Λ : [0, T ] × Rd × R −→ R be a Borel bounded function such that for almost all t ∈ [0, T ]

Λ(t, ·, ·) is continuous. The function F : [0, T ] × Cd × C −→ R, x0 ∈ R, defined by F (t, y, z) = K(x0 −
yt) exp

(∫ t

0 Λ(r, yr, zr)dr
)

is continuous.

The proposition below establishes an important result about the convergence of the sequence (un)n∈N.

Proposition 7.6. Let (Λn)n∈N be a sequence of Borel uniformly bounded functions defined on [0, T ]×Rd ×R, such

that for every n, Λn(t, ·, ·) is continuous. Assume the existence of a Borel function Λ : [0, T ]× Rd × R → R such

that, for almost all t ∈ [0, T ],
[
Λn(t, ., .)− Λ(t, ., .)

]
−−−−−−→
n → +∞

0, uniformly on each compact of Rd × R.

Let (Y n)n∈N be a sequence of continuous processes. We consider a sequence (un) such that, for all (t, x) ∈ [0, T ]×Rd

{
un(t, x) =

∫
Cd K(x−Xt(ω)) exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn(ω)

mn := L(Y n) .
(7.40)

We set Zn := un(·, Y n) for all n ∈ N. Suppose moreover that νn := L(Y n, Zn) converges weakly to some Borel

probability measures ν on Cd × C.

Then, (un) converges uniformly on each compact of [0, T ]× Rd to a function u : [0, T ]× Rd → R such that

u(t, x) =

∫

Cd×C
K(x−Xt(ω)) exp

{∫ t

0

Λ
(
r,Xr(ω), X

′
r(ω

′)
)
dr

}
dν(ω, ω′) , (7.41)

for all (t, x) ∈ [0, T ]× Rd. In particular u is continuous.

The proof of Proposition 7.6 is based on a technical lemma.

Lemma 7.7. Let (Λn), Λ be as stated in Proposition 7.6. Let x0 ∈ Rd, we designate by Fn, F : [0, T ]×Cd ×C → R,

the maps

Fn(t, y, z) := K(x0 − yt) exp

(∫ t

0

Λn(r, yr, zr)

)
and F (t, y, z) := K(x0 − yt) exp

(∫ t

0

Λ(r, yr, zr)

)
.

Then for every M > 0, Fn converges to F when n goes to infinity uniformly with respect to (t, y, z) ∈ [0, T ] ×
Bd(0,M)×B1(0,M), with Bk(O,M) := {y ∈ Ck, ||y||∞ := supu∈[0,T ] |yu| ≤M} for k ∈ N⋆.

Proof of Lemma 7.7. We want to evaluate ||Fn − F ||∞,M := sup
(t,y,z)∈[0,T ]×Bd(O,M)×B1(0,M)

|Fn(t, y, z)− F (t, y, z)|.

Since (Λn)n≥0 are uniformly bounded, there is a constant MΛ such that

∀r ∈ [0, T ], sup
(y′,z′)∈Bd(O,M)×B1(0,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)| ≤ 2MΛ.

By use of (2.7), we obtain for all (t, y, z) ∈ [0, T ]×Bd(O,M)×B1(0,M),

|Fn(t, y, z)− F (t, y, z)| ≤MK exp(MΛ)

∫ t

0

sup
(y′,z′)∈Bd(O,M)×B1(0,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)|dr, (7.42)

which implies

||Fn − F ||∞,M ≤MK exp(MΛ)

∫ T

0

sup
(y′,z′)∈Bd(O,M)×B1(0,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)|dr. (7.43)

By Lebesgue’s dominated convergence theorem, we have

∫ T

0

sup
(y′,z′)∈Bd(O,M)×B1(0,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)| dr −→ 0 ,

which concludes the proof of Lemma 7.7.
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Now, we proceed with the proof of Proposition 7.6.

Proof of Proposition 7.6. The first step consists in proving the pointwise convergence of (un)n∈N.

Observe that un(t, x) =
∫
Cd×CK(x − Xt(ω)) exp

{∫ t

0
Λn

(
r,Xr(ω), X

′
r(ω

′)
)
dr
}
dνn(ω, ω′). Let us fix t ∈

[0, T ], x ∈ Rd. Let us introduce the sequence of real valued functions (fn)n∈N and f defined on Cd × C
such that

fn(y, z) = K(x− yt) exp

{∫ t

0

Λn

(
r, yr, zr

)
dr

}
and f(y, z) = K(x− yt) exp

{∫ t

0

Λ
(
r, yr, zr

)
dr

}
.

By Lemma 7.5, fn and f are continuous.

By Lemma 7.7, it follows that fn −−−−−−→
n −→ +∞

f uniformly on each closed ball (and therefore also for each

compact subset) of Cd × C. Then applying Lemma 7.2 and Remark 7.3, with Cd × C, P = ν, Pn = νn allows

to conclude that (un)n∈N converges pointwise to u when n goes to ∞, with u defined by (7.41).

We go on proving the uniform convergence of (un)n∈N on each compact of [0, T ]× Rd.

We fix a compact C of Rd. The restrictions of un to [0, T ]× C are uniformly bounded. Provided we prove

that the sequence (un|[0,T ]×C) is equicontinuous, Ascoli-Arzela theorem would imply that the set of restric-

tions of un to [0, T ]× C is relatively compact with respect to uniform convergence norm topology.

To conclude, given a subsequence (unk
) it is enough to extract a subsubsequence converging to u. Since

the set of restrictions of unk
to C is relatively compact, there is a function v : [0, T ]× C → R to which unk

converges uniformly on [0, T ] × C. Since (un) converges pointwise to u, obviously v coincides with u on

[0, T ]× C.

It remains to show the equicontinuity of the sequence (un) on [0, T ]× C. We do this below.

Let ε′ > 0. We need to prove that ∃δ, η > 0, ∀(t, x), (t′, x′) ∈ [0, T ]× C,

|t− t′| < δ, |x− x′| < η =⇒ ∀n ∈ N, |un(t, x) − un(t
′, x′)| < ε′. (7.44)

We start decomposing as follows:

|un(t, x) − un(t
′, x′)| ≤ |(un(t, x)− un(t, x

′))|+ |(un(t, x′)− un(t
′, x′))|. (7.45)

As far as the first term in the right-hand side of (7.45) is concerned, we have

|un(t, x)− un(t, x
′)| ≤

∫
Cd |K(x−Xt(ω))−K(x′ −Xt(ω))| exp(MΛT )dm

n(ω),

≤ exp(MΛT )LK |x− x′|,
(7.46)

where the constant MΛ is an uniform upper bound of (|Λn|, n ≥ 0). We choose η = ε′

3 exp(MΛT )LK
to obtain

|(un(t, x)− un(t, x
′))| ≤ ε′

3
, (7.47)

for x, x′ ∈ C such that |x− x′| < η and t ∈ [0, T ].

Regarding the second one we have

|un(t, x′)− un(t
′, x′)| ≤ B1 +B2, (7.48)
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where

B1 :=
∣∣∣
∫
Cd

[
K(x′ −Xt(ω))−K(x′ −Xt′(ω))

]
exp

{∫ t

0
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn((ω))

∣∣∣
B2 :=

∣∣∣
∫
Cd K(x′ −Xt′(ω))

[
exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
−

exp
{∫ t′

0
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
} ]
dmn(ω)

∣∣∣ .
(7.49)

We first estimate B1. We fix ε > 0. Since (mn) are tight, by Proposition 7.9 there is δε > 0 such that

∀n ∈ N, P(Ωn
ε,δε

) ≤ ε , (7.50)

where Ωn
ε,δε

:=

{
ω̄ ∈ Ω

∣∣∣ sup
(t,t′)∈[0,T ]2,|t−t′|≤δε

|Y n
t (ω̄)− Y n

t′ (ω̄)| ≥ ε

}
.

In the sequel of the proof, for simplicity we will simply write Ωn
ε := Ωn

ε,δε
. Suppose that |t− t′| ≤ δε.

Then, for all x′ ∈ C

B1 =
∣∣∣E
[(
K(x′ − Y n

t )−K(x′ − Y n
t′ )
)
exp

{∫ t

0

Λ(r, Y n
r , u

n(r, Y n
r ))
}]∣∣∣

≤ exp(MΛT )E
[
|K(x′ − Y n

t )−K(x′ − Y n
t′ )|
]
,

where

I1(ε, n) := E

[
|K(x′ − Y n

t )−K(x′ − Y n
t′ | 1Ωn

ε

]
(7.51)

I2(ε, n) := E

[
|K(x′ − Y n

t )−K(x′ − Y n
t′ | 1(Ωn

ε )
c

]
. (7.52)

We have

I1(ε, n) ≤ 2MKP(Ωn
ε ) ≤ 2MKε , (7.53)

and

I2(ε, n) ≤ LKE

[
|Y n

t − Y n
t′ | 1(Ωn

ε )
c

]
≤ εLK . (7.54)

At this point, we have shown that for |t− t′| ≤ δε, x′ ∈ C,

B1 ≤ ε(2MK + LK) exp(MΛT ) . (7.55)

We can now choose ε := ε′

3(2MK+LK) exp(−MΛT ) so that B1 ≤ ε′

3 .

Concerning the term B2, using (2.7), we have

B2 ≤
∫
Cd |K(x′ −Xt′(ω))|

∣∣∣ e
{∫

t
0
Λn

(
r,Xr(ω),un(r,Xr(ω))

)
dr

}

− e

{∫
t′

0
Λn

(
r,Xr(ω),un(r,Xr(ω))

)
dr

}∣∣∣dmn(ω)

≤ MK exp(MΛT )
∫
Cd dm

n(ω)
∣∣∣
∫ t′

t
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
∣∣∣

≤ MK exp(MΛT )MΛ|t− t′| .
(7.56)

We choose δ = min(δǫ,
ε′

3MKMΛ exp(MΛ)). For |t − t′| < δ, we have B2 ≤ ε′

3 . By additivity B1 + B2 ≤ 2ε′

3

and finally, taking into account (7.47) and (7.48), (7.44) is verified. This concludes the proof of Proposition

7.6.

We end this section by recalling the following classical result on strong convergence of solutions of SDEs.

Lemma 7.8. Let R0 be a square integrable random variable on some filtered probability space, equipped with a p

dimensional Brownian motion W . Let an : [0, T ] × Rd −→ Rd×p and bn : [0, T ] × Rd −→ Rd Borel functions

verifying the following.
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• ∃L > 0, for all (x, y) ∈ Rd × Rd, supn≥0 |an(t, x)− an(t, y)|+ supn≥0 |bn(t, x)− bn(t, y)| ≤ L|x− y|;

• ∃c > 0, for all x ∈ R
d, supn≥0(|an(t, x)|+ |bn(t, x)|) ≤ c(1 + |x|);

• (an), (bn) converge pointwise respectively to Borel functions a : [0, T ]×Rd → Rd×p and b : [0, T ]×Rd → Rd.

Then there exists a unique strong solution of
{
dYt = a(t, Yt)dWt + b(t, Yt)dt

Y0 = R0.
(7.57)

Moreover, let for each n, let the strong solution Xn (which of course exists) of

{
dY n

t = an(t, Y
n
t )dWt + bn(t, Y

n
t )dt

Y n
0 = R0.

(7.58)

Then,

sup
t≤T

|Y n
t − Yt| L2

−−−−−−→
n −→ +∞

0.

Proof. The existence and uniqueness of Y follows because a, b are Lipschitz with linear growth.

The proof of the convergence is classical: it relies on BDG and Jensen’s inequalities together with Gronwall’s

lemma.

7.4 Tightness of the approximating sequences of processes related to Sections 4 and

5.

Before stating a tightness criterion for our family of approximating sequences we need to express the classi-

cal Theorem of Kolmogorov-Centsov, stated in Theorem 4.10, Chapter 2 in [12], taking into account Remark

4.13.

Proposition 7.9. Let r ∈ N⋆. A sequence (Pn)n≥0 of Borel probability measures on Cr is tight if and only if

•
lim

λ−→+∞
sup
n∈N

Pn ({ω ∈ Cr | |ω0| > λ}) = 0 , (7.59)

• ∀(ε, s, t) ∈ R⋆
+ × [0, T ]× [0, T ],

lim
δ↓0

sup
n∈N

Pn({ω ∈ Cr | max
(s,t)∈[0,T ]2

|t−s|≤δ

|ωt − ωs| > ε}) = 0 . (7.60)

The following tightness result will be used in the proofs of Theorems 4.2 and 5.1.

Lemma 7.10. Let K : Rd → R be bounded and Lipschitz. For n ∈ N, let Λn : [0, T ]× Rd × R −→ R be uniformly

bounded in n. We consider Borel functions Φn : [0, T ]× Rd × R −→ Rd×p, gn : [0, T ] × Rd × R −→ Rd, which

have linear growth with respect to (y, z) (uniformly with respect to time t), with rates uniformly bounded in n. We

also consider a tight sequence (ζn0 ) of probability measures on Rd. Let (Y n, un) be solutions of




dY n
t = Φn(t, Y

n
t , un(t, Y

n
t ))dWt + gn(t, Y

n
t , un(t, Y

n
t ))dt

un(t, x) :=
∫
Cd K(x−Xt(ω)) exp

{∫ t

0
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn(ω)

mn = L(Yn),
(7.61)

where for all n ∈ N, Y n
0 is a r.v. distributed according to ζn0 .

Then, the family
(
νn = L(Y n

· , un(·, Y n
· )), n ≥ 0

)
is tight.
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Remark 7.11. In the proof below we will make use of the following classical statement, which can be established easily

with the help BDG and Cauchy-Schwarz inequalities.

Let Φ̃ : [0, T ]× Rd → Rd×p and g̃ : [0, T ]× Rd → Rd be Borel functions with linear growth in the second variable

(uniformly with respect to the time variable). Let Y be solution of the SDE

Yt = Y0 +

∫ t

0

Φ̃(s, Ys)dWs +

∫ t

0

g̃(s, Ys)ds,

where W is a p-dimensional Brownian motion. Then, for every k ≥ 1, there is a constant C only depending on the

linear growth rate and constant of Φ̃ and g̃ such that

E
(
(Yt − Ys)

2k
)
≤ C|t− s|k, ∀s, t ∈ [0, T ].

Proof. If we indicate by Pn the law of (Yn, u
n(·, Y n)) we bound the l.h.s. of (7.59) as follows:

Pn({ω ∈ Cd+1| |ω0| > λ}) = P({|(Y n
0 , u

n(0, Y n
0 ))| > λ})

≤ P({|Y n
0 |+ |un(0, Y n

0 )| > λ})

≤ P({|Y n
0 | > λ

2
}) + P({|un(0, Y n

0 )| > λ

2
})

≤ ζn0 ({x ∈ R
d| |x| > λ

2
}) + P({|un(0, Y n

0 )| > λ

2
}). (7.62)

Let us fix ε > 0. On one hand, (ζn0 ) being tight there exists a compact set Kε of Rd such that sup
n∈N

ζn0 (K
c
ε) ≤ ε.

Then, there exists λε > 0 such that {x ∈ Rd| |x| > λε

2 } ⊂ K
c
ε which implies

sup
n∈N

ζn0 ({x ∈ R
d| |x| > λε

2
}) ≤ sup

n∈N

ζn0 (K
c
ε) ≤ ε.

On the other hand, by item 2. of Remark 3.2, |un| is uniformly bounded by MK exp(MΛT ). Consequently,

for all λ > 2MK exp(MΛT ),

P({|un(0, Y n
0 )| > λ

2
}) = 0. (7.63)

Consequently for λ ≥ max(λε,MK exp(MΛT )), we get

sup
n∈N

Pn({ω ∈ Cd+1| |ω0| > λ}) ≤ ε . (7.64)

Taking the limit when λ goes to infinity, we finally get inequality (7.59) since ε > 0 is arbitrary.

It remains to prove (7.60).

We will make use of Garsia-Rodemich-Rumsey Theorem, see e.g. Theorem 2.1.3, Chapter 2 in [17] or [3].

We will show that, for all 0 ≤ s < t ≤ T , there exists a positive real constant C ≥ 0

E[|Y n
t − Y n

s |4 + |un(t, Y n
t )− un(s, Y

n
s )|4] ≤ C|t− s|2 , (7.65)

where C does not depend on n. Suppose for a moment that (7.65) holds true.

Let ε > 0 fixed. Let δ > 0. If Pn denotes again the law of (Y n, un(·, Y n)), the quantity

Pn({ω ∈ Cd+1 | sup
(s,t)∈[0,T ]2

|t−s|≤δ

|ωt − ωs| > ε}) (7.66)

intervening in (7.60) is bounded, up to a constant, by

P( max
(s,t)∈[0,T ]2

|t−s|≤δ

{|Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )|} > ε) . (7.67)
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Let us fix γ ∈]0, 14 [. By Garsia-Rodemich-Rumsey theorem, there is a sequence of non-negative r.v. Γn such

that, a.s.

sup
n∈N

E[(Γn)4] <∞

∀(s, t) ∈ [0, T ]2, |Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )| ≤ Γn|t− s|γ . (7.68)

If |t− s| ≤ δ (7.68) gives

max
(s,t)∈[0,T ]2

|t−s|≤δ

{|Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )|} ≤ Γnδγ . (7.69)

By (7.69) and Chebyshev’s inequality, for any n ∈ N, the quantity (7.66) is bounded by

P(Γnδγ > ε) = P(Γn > εδ−γ)

≤ δ4γ

ε4
,

for any n ∈ N. Since δ > 0 is arbitrary, (7.60) follows. To conclude the proof of the lemma, it remains to

show (7.65). For this, let 0 ≤ s < t ≤ T . We have first to bound E[|Y n
t − Y n

s |4].

We set Φ̃n(t, y) := Φn(t, y, un(t, y)), g̃n(t, y) := gn(t, y, un(t, y)). Let L̃Φ (resp. L̃g) denote the uniform

linear growth rate of Φn (resp. gn), by item 2. in Remark 3.2, we see that Φ̃n (resp. g̃n) have uniform linear

growth with rate L̃Φ(1+max(LK ,MK)eMΛT ) (resp. L̃g(1+max(LK ,MK)eMΛT )). Consequently by Remark

7.11, for every k ≥ 1,

E[|Y n
t − Y n

s |2k] ≤ C′|t− s|k, (7.70)

where the constant C′ does not depend on n and only depends on L̃Φ, L̃g,mΦ,mg,MΛ, LK , k, T .

Regarding the second expectation in (7.65), we get

E[|un(t, Y n
t )− un(s, Y

n
s )|4] =

∫

Cd

(
un(t,Xt(ω))− un(s,Xs(ω))

)4
dmn(ω)

(7.71)

≤ 8(I1 + I2) ,

where

I1 :=

∫

Cd

(
un(t,Xt(ω))− un(s,Xt(ω))

)4
dmn(ω)

I2 :=

∫

Cd

(
un(s,Xt(ω))− un(s,Xs(ω))

)4
dmn(ω) .

(7.72)

On one hand, for all x ∈ Rd,

|un(t, x)− un(s, x)| =
∣∣∣E
[
K(x− Y n

t )e
∫

t
0
Λn(r,Y

n
r ,un(r,Y

n
r ))dr

]
− E

[
K(x− Y n

s )e
∫

s
0
Λn(r,Y

n
r ,un(r,Y

n
r ))dr

]∣∣∣

≤
∫

Cd

|K(x−Xt(ω))−K(x−Xs(ω))| exp
(∫ t

0

Λn(r,Xr, un(r,Xr))dr

)
dmn(ω)

+

∫

Cd

K(x−Xs(ω))
∣∣∣ exp

(∫ t

0

Λn(r,Xr(ω), un(r,Xr(ω))

)
dr

− exp

(∫ s

0

Λn(r,Xr(ω), un(r,Xr(ω)))dr

) ∣∣∣ dmn(ω)
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By (2.7) and (7.70) (with k = 1) together with Cauchy-Schwarz inequality, this is lower than

LK exp(MΛT )

∫

Cd

|Xt(ω)−Xs(ω)|dmn(ω)

+ MK exp(MΛT )

∫

Cd

∣∣∣
∫ t

s

Λn(r,Xr(ω), un(r,Xr(ω)))dr
∣∣∣dmn(ω)

≤ (LK exp(MΛT )
√
C′ +MK exp(MΛT )MΛ

√
T )
√
|t− s|,

where MK is an upper bound of K . This implies

I1 =
∫
Cd |un(t,Xt(ω))− un(s,Xt(ω))|4dmn(ω) ≤ (LK exp(MΛT )

√
C′ +MK exp(MΛT )MΛ

√
T )4|t− s|2 .

(7.73)

(3.2) in item 2. of Remark 3.2 implies

I2 =
∫
Cd |un(s,Xt(ω))− un(s,Xs(ω))|4dmn(ω) ≤ LK exp(MΛT )

∫
Cd |Xt(ω)−Xs(ω)|4dmn(ω)

≤ LK exp(MΛT )C
′|t− s|2 ,

(7.74)

where the second inequality comes from (7.70) with k = 2.

Coming back to (7.71), we have |I1 + I2| ≤ C′′|t − s|2 with C′′ a constant value depending only on

T, L̃Φ, L̃g,mΦ,mg,MΛ,MK , LK , T . This enable us to conclude the proof of (7.65) and finally the one of

Lemma 7.10.
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