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Particle system algorithm and chaos propagation related to

non-conservative McKean type stochastic differential

equations.

ANTHONY LE CAVIL ∗, NADIA OUDJANE † AND FRANCESCO RUSSO ‡.

August 2nd 2016

Abstract

We discuss numerical aspects related to a new class of nonlinear Stochastic Differential Equations in

the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential

equations (PDEs). We propose an original interacting particle system for which we discuss the propagation

of chaos. We consider a time-discretized approximation of this particle system to which we associate a

random function which is proved to converge to a solution of a regularized version of a nonlinear PDE.

Key words and phrases: Chaos propagation; Nonlinear Partial Differential Equations; McKean type Non-

linear Stochastic Differential Equations; Particle systems; Probabilistic representation of PDEs.
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1 Introduction

Stochastic differential equations of various types are very useful to investigate nonlinear partial differential

equations (PDEs) at the theoretical and numerical level. From a theoretical point of view, they constitute

probabilistic tools to study the analytic properties of the equation. Moreover they provide a microscopic

interpretation of physical phenomena macroscopically drawn by a nonlinear PDE. From a numerical point

of view, such representations allow for extended Monte Carlo type methods, which are potentially less

sensitive to the dimension of the state space.

Let us consider d, p ∈ N
⋆. Let Φ : [0, T ]×R

d ×R → R
d×p, g : [0, T ]×R

d ×R → R
d, Λ : [0, T ]×R

d ×R → R,

be Borel bounded functions, K : Rd → R be a smooth mollifier in R
d and ζ0 be a probability on R

d. When

it is absolutely continuous v0 will denote its density so that ζ0(dx) = v0(x)dx. The main motivation of this

work is the simulation of solutions to PDEs of the form
{

∂tv =
∑d

i,j=1 ∂
2
ij

(
(ΦΦt)i,j(t, x, v)v

)
− div

(
g(t, x, v)v

)
+ Λ(t, x, v)v

v(0, dx) = v0(dx),
(1.1)
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through probabilistic numerical methods. Examples of nonlinear and nonconservative PDEs that are of

that form arise in hydrodynamics and biological modeling. For instance one model related to underground

water flows is known in the literature as the Richards equation

{
∂tv = ∆(β(v)) + div

(
α(v)

)
+ φ(x)

v(0, ·) = v0 ,
(1.2)

where β : R −→ R, α : R −→ R
d and φ : Rd −→ R. Another example concerns biological mechanisms

as migration of biologial species or the evolution of a tumor growth. Such equations can be schematically

written as {
∂tv = ∆β(v) + f(v)

v(0, ·) = v0 ,
(1.3)

where β : R −→ R is bounded, monotone and f : R → R. This family of PDEs is sometimes called Porous

Media type Equation with proliferation, due to the presence of the term f that characterizes a proliferation

phenomena and the term ∆β(v) delineates a porous media effect. In particular, for β(v) = v2 and f(v) =

v(1− v), this type of equation appears in the modeling of tumors.

The present paper focuses on numerical aspects of a specific forward probabilistic representation initiated

in [20], relying on nonlinear SDEs in the sense of McKean [21]. In [20], we have introduced and studied a

generalized regularized McKean type nonlinear stochastic differential equation (NLSDE) of the form

{
Yt = Y0 +

∫ t

0 Φ(s, Ys, u(s, Ys))dWs +
∫ t

0 g(s, Ys, u(s, Ys))ds , with Y0 ∼ ζ0 ,

u(t, y) = E[K(y − Yt) exp
{∫ t

0 Λ
(
s, Ys, u(s, Ys)

)
ds
}
] , for any t ∈ [0, T ] ,

(1.4)

where the solution is the couple process-function (Y, u). The novelty with respect to classical McKean type

equations consists in the form of the second equation, where, for each t > 0, in the classical case (Λ = 0)

u(t, ·) was explicitely given by the marginal law of Yt. The present paper aims at proposing and imple-

menting a stochastic particle algorithm to approximate (1.4) and investigating carefully its convergence

properties.

(1.4) is the probabilistic representation of the partial integro-differential equation (PIDE)





∂tv̄ = 1
2

d∑

i,j=1

∂2
ij

(
(ΦΦt)i,j(t, x,K ∗ v̄)v̄

)
− div (g(t, x,K ∗ v̄)v̄) + Λ(t, x,K ∗ v̄)v̄,

v̄(0, x) = v0 ,

(1.5)

in the sense that, given a solution (Y, u) of (1.4), there is a solution v̄ of (1.5) in the sense of distributions,

such that u = K ∗ v̄ :=
∫
Rd K(· − y)v̄(y)dy. This follows, for instance, by a simple application of Itô’s

formula, as explained in Theorems 6.1 and 6.2, Section 6 in [20]. Ideally our interest is devoted to (1.4)

when the smoothing kernel K reduces to a Dirac measure at zero. To reach that scope, one would need

to replace in previous equation K into Kε, where Kε converges to the Dirac measure and to analyze the

convergence of the corresponding solutions. However, such a theoretical analysis is out of the scope of this

paper, but it will be investigated numerically via simulations reported at the end.

In fact, in the literature appear several probabilistic representations, with the objective of simulating

numerically the corresponding PDE. One method which has been largely investigated for approximating

solutions of time evolutionary PDEs is the method of forward-backward SDEs (FBSDEs). FBSDEs were ini-

tially developed in [23], see also [22] for a survey and [24] for a recent monograph on the subject. The idea is

to express the PDE solution v(t, ·) at time t as the expectation of a functional of a so called forward diffusion
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process X , starting at time t. Based on that idea, many judicious numerical schemes have been proposed

by [9, 14]. However, all those rely on computing recursively conditional expectation functions which is

known to be a difficult task in high dimension. Besides, the FBSDE approach is blind in the sense that the

forward process X is not ensured to explore the most relevant space regions to approximate efficiently the

solution of the FBSDE of interest. On the theoretical side, the FBSDE representation of fully nonlinear PDEs

still requires complex developments and is the subject of active research (see for instance [10]). Branching

diffusion processes provide alternative probabilistic representation of semi-linear PDEs, involving a specific

form of non-linearity on the zero order term. This type of approach has been recently extended in [15, 16]

to a more general class of non-linearities on the zero order term, with the so-called marked branching process.

One of the main advantages of this approach compared to FBSDEs is that it does not involve any regression

computation to calculate conditional expectations. A third class of numerical approximation schemes relies

on McKean type representations. In the time continuous framework, classical McKean representations are

restricted to the conservative case (Λ = 0). Relevant contributions at the algorithmic level are [7, 8, 6, 4],

and the survey paper [28]. In the case Λ = 0 with g = 0, but with Φ possibly discontinuous, some empirical

implementations were conducted in [2, 3] in the one-dimensional and multi-dimensional case respectively,

in order to predict the large time qualitative behavior of the solution of the corresponding PDE.

In the present paper we extend this type of McKean based numerical schemes to the case of non-

conservative PDEs (Λ 6= 0). An interesting aspect of this approach is that it is potentially able to represent

fully nonlinear PDEs, by considering a more general class of functions Λ which may depend non-linearly

not only on u but on its space derivatives up to the second order. This more general setting will be focused

in a future work. In the discrete-time framework, Feynman-Kac formula and various types of related parti-

cle approximation schemes were extensively analyzed in the reference books of Del Moral [12] and [13] but

without considering the specific case of a time continuous system (1.4) coupled with a weighting function

Λ which depends nonlinearly on u.

By (3.3) we introduce an interacting particle system associated to (1.4). Indeed we replace one sin-

gle McKean type stochastic differential equation with unknown process Y , with a system of N ordinary

stochastic differential equations, whose solution consists in a system of particles ξ = (ξj,N ), replacing the

law of the process Y by the empirical mean law SN (ξ) :=

N∑

j=1

δξj,N .

In Theorem 4.2 we prove the convergence of the time-discretized particle system under Lipschitz type

assumptions on the coefficients Φ, g and Λ, obtaining an explicit rate. The mentioned rate is based on the

contribution of two effects. First, the particle approximation error between the solution u of (1.4) and the

approximation uSN (ξ), solution of

u
SN (ξ)
t (y) =

1

N

N∑

j=1

K(y − ξj,Nt ) exp

{∫ t

0

Λ
(
s, ξj,Ns , uSN (ξ)(s, ξj,Ns )

)
ds

}
, (1.6)

which is evaluated in Theorem 3.1. The second effect is the time discretization error, established in Proposi-

tion 4.1. The errors are evaluated in the Lp, p = 2,+∞ mean distance, in terms of the number N of particles

and the time discretization step. One significant consequence of Theorem 3.1 is Corollary 3.2 which states

the chaos propagation of the interacting particle system.

We emphasize that the proof of Theorem 3.1 relies on Proposition 3.3, whose formula (3.12) allows to con-

trol the particle approximation error without use of exchangeability assumptions on the particle system,

see Remark 3.4.

The paper is organized as follows. After this introduction, we formulate the basic assumptions valid
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along the paper and recall important results proved in [20] and used in the sequel. The evaluation of

the particle approximation error is discussed in Section 3. Section 4 focuses on the convergence of the

time-discretized particle system. Finally in Section 5 we provide numerical simulations illustrating the

performances of the interacting particle system in approximating the limit PDE (i.e. when the smoothing

kernel K reduces to a Dirac measure at zero), in a specific case where the solution is explicitely known.

2 Notations and assumptions

Let us consider Cd := C([0, T ],Rd) metrized by the supremum norm ‖ · ‖∞, equipped with its Borel σ−
field B(Cd) = σ(Xt, t ≥ 0) (and Bt(Cd) := σ(Xu, 0 ≤ u ≤ t) the canonical filtration) and endowed with

the topology of uniform convergence. X will be the canonical process on Cd and Pr(Cd) the set of Borel

probability measures on Cd admitting a moment of order r ≥ 0. For r = 0, P(Cd) := P0(Cd) is naturally the

Polish space (with respect to the weak convergence topology) of Borel probability measures on Cd naturally

equipped with its Borel σ-field B(P(Cd)). When d = 1, we often omit it and we simply set C := C1.

We recall that the Wasserstein distance of order r and respectively the modified Wasserstein distance of order r

for r ≥ 1, between m and m′ in Pr(Cd), denoted by W r
T (m,m′) (and resp. W̃ r

T (m,m′)) are such that

(W r
t (m,m′))r := inf

µ∈Π(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|rdµ(ω, ω′)

}
, t ∈ [0, T ] , (2.1)

(W̃ r
t (m,m′))r := inf

µ∈Π̃(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|r ∧ 1 dµ(ω, ω′)

}
, t ∈ [0, T ] , (2.2)

where Π(m,m′) (resp. Π̃(m,m′)) denotes the set of Borel probability measures in P(Cd × Cd) with fixed

marginals m and m′ belonging to Pr(Cd) (resp. P(Cd) ). In this paper we will use very frequently the

Wasserstein distances of order 2. For that reason, we will simply set Wt := W 2
t (resp. W̃t := W̃ 2

t ).

Given N ∈ N
⋆, l ∈ Cd, l1, · · · , lN ∈ Cd, a significant role in this paper will be played by the Borel measures

on Cd given by δl and
1

N

N∑

j=1

δlj .

Remark 2.1. Given l1, · · · , lN , l̃1, · · · , l̃N ∈ Cd, by definition of the Wasserstein distance we have, for all t ∈ [0, T ]

Wt


 1

N

N∑

j=1

δlj ,
1

N

N∑

j=1

δl̃j


 ≤ 1

N

N∑

j=1

sup
0≤s≤t

|ljs − l̃js|2 .

In this paper Cb(Cd) denotes the space of bounded, continuous real-valued functions on Cd, for which the

supremum norm is denoted by ‖·‖∞. Rd is equipped with the scalar product · and |x| stands for the induced

Euclidean norm for x ∈ R
d. Given two reals a, b (d = 1) we will denote in the sequel a ∧ b := min(a, b) and

a ∨ b := max(a, b).

Mf (R
d) is the space of finite, Borel measures on R

d. S(Rd) is the space of Schwartz fast decreasing test

functions and S ′(Rd) is its dual. Cb(Rd) is the space of bounded, continuous functions on R
d, C∞

0 (Rd) is the

space of smooth functions with compact support. C∞
b (Rd) is the space of bounded and smooth functions.

C0(Rd) represents the space of continuous functions with compact support in R
d. W r,p(Rd) is the Sobolev

space of order r ∈ N in (Lp(Rd), || · ||p), with 1 ≤ p ≤ ∞.

F(·) : f ∈ S(Rd) 7→ F(f) ∈ S(Rd) will denote the Fourier transform on the classical Schwartz space S(Rd)

such that for all ξ ∈ R
d,

F(f)(ξ) =
1√
2π

∫

Rd

f(x)e−iξ·xdx .
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We will designate in the same manner the corresponding Fourier transform on S ′(Rd).

For any Polish space E, we will designate by B(E) its Borel σ-field. It is well-known that P(E) is also

a Polish space with respect to the weak convergence topology, whose Borel σ-field will be denoted by

B(P(E)) (see Proposition 7.20 and Proposition 7.23, Section 7.4 Chapter 7 in [5]).

Let (Ω,F) be a measured space. A map η : (Ω,F) −→ (P(E),B(P(E))) will be called random probabil-

ity (or random probability kernel) if it is measurable. We will indicate by PΩ(E) the space of random

probabilities.

Remark 2.2. Let η : (Ω,F) −→ (P(E),B(P(E))). η is a random probability if and only if the two following

conditions hold:

• for each ω̄ ∈ Ω, ηω̄ ∈ P(E),

• for all Borel set A ∈ B(P(E)), ω̄ 7→ ηω̄(A) is F -measurable.

This was highlighted in Remark 3.20 in [11] (see also Proposition 7.25 in [5]).

Remark 2.3. Given R
d-valued continuous processes Y 1, · · · , Y n, the application

1

N

N∑

j=1

δY j is a random probability

on P(Cd). In fact δY j , 1 ≤ j ≤ N is a random probability by Remark 2.2.

In this article, the following assumptions will be used.

Assumption 1. 1. Φ and g Borel functions defined on [0, T ]×R
d ×R taking values respectively in R

d×p (space

of d × p matrices) and R
d that are Lipschitz w.r.t. space variables: there exist finite positive reals LΦ and Lg

such that for any (t, y, y′, z, z′) ∈ [0, T ]× R
d × R

d × R× R, we have

|Φ(t, y′, z′)−Φ(t, y, z)| ≤ LΦ(|z′ − z|+ |y′ − y|) and |g(t, y′, z′)− g(t, y, z)| ≤ Lg(|z′ − z|+ |y′ − y|) .

2. Λ is a Borel real valued function defined on [0, T ]× R
d × R Lipschitz w.r.t. the space variables: there exists a

finite positive real, LΛ such that for any (t, y, y′, z, z′) ∈ [0, T ]× R
d × R

d × R× R, we have

|Λ(t, y, z)− Λ(t, y′, z′)| ≤ LΛ(|y′ − y|+ |z′ − z|) .

3. Λ is supposed to be uniformly bounded: there exist a finite positive real MΛ such that, for any (t, y, z) ∈
[0, T ]× R

d × R

|Λ(t, y, z)| ≤ MΛ .

4. K : Rd → R+ is integrable, Lipschitz, bounded and whose integral is 1: there exist finite positive reals MK

and LK such that for any (y, y′) ∈ R
d × R

d

|K(y)| ≤ MK , |K(y′)−K(y)| ≤ LK |y′ − y| and

∫

Rd

K(x)dx = 1 .

5. ζ0 is a fixed Borel probability measure on R
d admitting a second order moment.

6. The functions s ∈ [0, T ] 7→ Φ(s, 0, 0) and s ∈ [0, T ] 7→ g(s, 0, 0) are bounded. mΦ (resp. mg) will denote the

supremum sups∈[0,T ] |Φ(s, 0, 0)| (resp. sups∈[0,T ] |g(s, 0, 0)|).
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Given a finite signed Borel measure γ on R
d, K ∗γ will denote the convolution function x 7→ γ(K(x−·)).

In particular if γ is absolutely continuous with density γ̇, then (K ∗ γ)(x) =
∫
Rd K(x− y)γ̇(y)dy.

To simplify we introduce the following notations.

• V : [0, T ]× Cd × C → R defined for any pair of functions y ∈ Cd and z ∈ C, by

Vt(y, z) := exp

(∫ t

0

Λ(s, ys, zs)ds

)
for any t ∈ [0, T ] . (2.3)

• The real valued process Z such that Zs = u(s, Ys), for any s ∈ [0, T ], will often be denoted by u(Y ).

With these new notations, the second equation in (1.4) can be rewritten as

νt(ϕ) = E[(Ǩ ∗ ϕ)(Yt)Vt(Y, u(Y ))] , for any ϕ ∈ Cb(Rd,R) , (2.4)

where u(t, ·) = dνt
dx

and Ǩ(x) := K(−x).

Remark 2.4. Under Assumption 1. 3.(b), Λ is bounded. Consequently

0 ≤ Vt(y, z) ≤ etMΛ , for any (t, y, z) ∈ [0, T ]× R
d × R . (2.5)

Under Assumption 1. 2. Λ is Lipschitz. Then V inherits in some sense this property. Indeed, observe that for any

(a, b) ∈ R
2,

eb − ea = (b− a)

∫ 1

0

eαb+(1−α)adα ≤ esup(a,b)|b− a| . (2.6)

Then for any continuous functions y, y′ ∈ Cd = C([0, T ],Rd), and z, z′ ∈ C([0, T ],R), taking a =
∫ t

0
Λ(s, ys, zs)ds

and b =
∫ t

0 Λ(s, y
′
s, z

′
s)ds in the above equality yields

|Vt(y
′, z′)− Vt(y, z)| ≤ etMΛ

∫ t

0

|Λ(s, y′s, z′s)− Λ(s, ys, zs)| ds

≤ etMΛLΛ

∫ t

0

(|y′s − ys|+ |z′s − zs|) ds . (2.7)

In Section 4, Assumption 1. will be replaced by what follows.

Assumption 2. All items of Assumption 1. are in force excepted 1. and 2. which are replaced by the following.

1. There exist positive reals LΦ, Lg such that, for any (t, t′, y, y′, z, z′) ∈ [0, T ]2 × (Rd)2 × R
2,

|Φ(t, y, z)− Φ(t′, y′, z′)| ≤ LΦ (|t− t′| 12 + |y − y′|+ |z − z′|),

|g(t, y, z)− g(t′, y′, z′)| ≤ Lg (|t− t′| 12 + |y − y′|+ |z − z′|).

2. There exists a positive real LΛ such that, for any (t, t′, y, y′, z, z′) ∈ [0, T ]2 × (Rd)2 × R
2,

|Λ(t, y, z)− Λ(t′, y′, z′)| ≤ LΛ (|t− t′| 12 + |y − y′|+ |z − z′|).

We end this section by recalling important results established in our companion paper [20], for which

Assumption 1. is supposed to be satisfied. Let us first remark that the second equation of (1.4) can be

rewritten as

um(t, y) =

∫

Cd

K(y − ωt) exp
{∫ t

0

Λ(s, ωs, u
m(s, ωs))

}
dm(ω), (t, x) ∈ [0, T ]× R

d, (2.8)
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with m = mY being the law of the process Y on the canonical space Cd.

Indeed for every m ∈ P(Cd), Theorem 3.1 of [20] shows that equation (2.8) is well-posed and so it properly

defines a function um. The lemma below, established in Proposition 3.3 of [20], states stability results on the

function (m, t, y) 7→ um(t, y).

Proposition 2.5. We assume the validity of items 2., 3 and 4. of Assumption 1.

The following assertions hold.

1. For any couple of probabilities (m,m′) ∈ P2(Cd)× P2(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y

)
− um′(

t, y′
)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |Wt(m,m′)|2

]
, (2.9)

where CK,Λ(t) := 2C′
K,Λ(t)(t + 2)(1 + e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K + 2M2

KL2
Λt). In particular

the functions CK,Λ only depend on MK , LK ,MΛ, LΛ and t and is increasing with t.

2. For any (m,m′) ∈ P(Cd)× P(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y

)
− um′(

t, y′
)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |W̃t(m,m′)|2

]
, (2.10)

where CK,Λ(t) := 2e2tMΛ(max(LK , 2MK)2 + 2M2
K max(LΛ, 2MΛ)

2t).

3. The function (m, t, x) 7→ um(t, x) is continuous on P(Cd) × [0, T ] × R
d, where P(Cd) is endowed with the

topology of weak convergence.

4. Suppose that K ∈ W 1,2(Rd). Then for any (m,m′) ∈ P2(Cd)× P2(Cd), t ∈ [0, T ]

‖um(t, ·)− um′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + 2tCK,Λ(t))|Wt(m,m′)|2 , (2.11)

where CK,Λ(t) := 2C′
K,Λ(t)(t+2)(1+ e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K +2M2

KL2
Λt) and C̃K,Λ(t) :=

2e2tMΛ(2MKL2
Λt(t+ 1) + ‖∇K‖22), ‖ · ‖2 being the standard L2(Rd) or L2(Rd,Rd)-norms.

In particular the functions t 7→ C′
K,Λ(t) and t 7→ CK,Λ(t) only depend on MK , LK ,MΛ, LΛ and are increasing

with respect to t.

5. Suppose thatF(K) ∈ L1(Rd). Then there exists a constant C̄K,Λ(t) > 0 (depending only on t,MΛ, LΛ, ‖F(K)‖1)

such that for any random probability η : (Ω,F) −→ (P2(Cd),B(P(Cd))), for all (t,m) ∈ [0, T ]× P(Cd)

E[‖uη(t, ·)− um(t, ·)‖2∞] ≤ C̄K,Λ(t) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] , (2.12)

where we recall that P(Cd) is endowed with the topology of weak convergence. We remark that the expectation

in both sides of (2.12) is taken w.r.t. the randomness of the random probability η.

Remark 2.6. The map dΩ2 : (ν, µ) 7→
√

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈ν − µ, ϕ〉|2] defines a (homogeneous) distance on PΩ(Cd).

The lemma below was proved in Lemma 7.1 in [20].

Lemma 2.7. Let r : [0, T ] 7→ [0, T ] be a non-decreasing function such that r(s) ≤ s for any s ∈ [0, T ] and Y0 be a

random variable admitting ζ0 as law.

Let U : (t, y) ∈ [0, T ]× Cd → R (respectively U ′ : (t, y) ∈ [0, T ]× Cd → R), be a given Borel function such that

for all t ∈ [0, T ], there is a Borel map Ut : C([0, t],Rd) → R (resp. U ′

t : C([0, t],Rd) → R) such that U(t, ·) = Ut(·)
(resp. U ′(t, ·) = U ′

t(·)).
Then the following two assertions hold.
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1. Consider Y (resp. Y ′) a solution of the following SDE for v = U (resp. v = U ′):

Yt = Y0 +
∫ t

0 Φ(r(s), Yr(s), v(r(s), Y·∧r(s)))dWs +
∫ t

0 g(r(s), Yr(s), v(r(s), Y·∧r(s)))ds , for any t ∈ [0, T ] ,

(2.13)

where, we emphasize that for all θ ∈ [0, T ], Z·∧θ := {Zu, 0 ≤ u ≤ θ} ∈ C([0, θ],Rd) for any continuous

process Z . For any a ∈ [0, T ], we have

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )E

[∫ a

0

|U(r(t), Y·∧r(t))− U ′(r(t), Y ′
·∧r(t))|2dt

]
, (2.14)

where CΦ,g(T ) = 12(4L2
Φ + TL2

g)e
12T (4L2

Φ+TL2
g).

2. Suppose moreover that Φ and g are 1
2 -Hölder w.r.t. the time and Lipschitz w.r.t. the space variables i.e. there

exist some positive constants LΦ and Lg such that for any (t, t′, y,′ y′, z, z′) ∈ [0, T ]2 × R
2d × R

2

{
|Φ(t, y, z)− Φ(t′, y′, z′)| ≤ LΦ(|t− t′| 12 + |y − y′|+ |z − z′|)
|g(t, y, z)− g(t′, y′, z′)| ≤ Lg(|t− t′| 12 + |y − y′|+ |z − z′|) .

(2.15)

Let r1, r2 : [0, T ] 7→ [0, T ] being two non-decreasing functions verifying r1(s) ≤ s and r2(s) ≤ s for any

s ∈ [0, T ]. Let Y (resp. Y ′) be a solution of (2.13) for v = U and r = r1 (resp. v = U ′ and r = r2). Then for

any a ∈ [0, T ], the following inequality holds:

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )

(
‖r1 − r2‖L1([0,T ]) +

∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E

[∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt
])

, (2.16)

The theorem below was the object of Theorem 3.9 in [20].

Theorem 2.8. Under Assumption 1, the McKean type SDE (1.4) admits strong existence and pathwise uniqueness.

For a precise formulation of the notion of existence and uniqueness for the McKean type equation (1.4)

we refer to Definition 2.6 of [20].

We finally recall an important non-anticipating property of the map (m, t, x) 7→ um(t, x), stated in [20].

Definition 2.9. Let us fix t ∈ [0, T ]. Given a non-negative Borel measure m on (Cd,B(Cd)). From now on, mt will

denote the (unique) induced measure on (Cd
t ,B(Cd

t )) (with Cd
t := C([0, t],Rd)) defined by

∫

Cd
t

F (φ)mt(dφ) =

∫

Cd

F (φ|[0,t])m(dφ),

where F : Cd
t −→ R is bounded and continuous.

Remark 2.10. Let t ∈ [0, T ],m = δξ , ξ ∈ Cd. The induced measure mt, on Cd
t , is δ(ξr|0≤r≤t).

For each t ∈ [0, T ], the same construction as the one carried on in Theorem 3.1 in [20] allows us to define

the unique solution to

umt(s, y) =
∫
Cd
t
K(y −Xs(ω)) exp

(∫ s

0 Λ(r,Xr(ω), u
mt(r,Xr(ω)))dr

)
mt(dω) ∀s ∈ [0, t] . (2.17)

The proposition and corollary below were the object of Proposition 3.7 and Corollary 3.8 in [20].
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Proposition 2.11. Under Assumption 1, we have

∀(s, y) ∈ [0, t]× R
d, um(s, y) = umt(s, y).

Corollary 2.12. Let N ∈ N, ξ1, · · · , ξi, · · · , ξN be (Gt)-adapted continuous processes, where G is a filtration (defined

on some probability space) fulfilling the usual conditions. Let m(dω) = 1
N

∑N
i=1 δξi(dω). Then, (um(t, y)) is a (Gt)-

adapted random field, i.e. for any (t, y) ∈ [0, T ]× R
d, the process is (Gt)-adapted.

3 Particle systems approximation and propagation of chaos

In this section, we introduce an interacting particle system ξ = (ξi,N )i=1,··· ,N whose empirical law will be

shown to converge to the law of the solution Y of the McKean type equation (1.4). A consequence of the

so called propagation of chaos which describes the asymptotic independence of the components of ξ when

the size N of the particle system goes to ∞. That property was introduced in [21] and further developed

and popularized by [27]. The convergence of (ξi,N )i=1,··· ,N induces a natural approximation of u, solution

of (1.4).

We suppose here the validity of Assumption 1. Let (Ω,F ,P) be a fixed probability space, and (W i)i=1,··· ,N

be a sequence of independent Rp-valued Brownian motions. Let (Y i
0 )i=1,··· ,N be i.i.d. r.v. according to ζ0.

We consider Y := (Y i)i=1,··· ,N the sequence of processes such that (Y i, umi

) are solutions to

{
Y i
t = Y i

0 +
∫ t

0 Φ(s, Y
i
s , u

mi

s (Y i
s ))dW

i
s +

∫ t

0 g(s, Y
i
s , u

mi

s (Y i
s ))ds

umi

t (y) = E

[
K(y − Y i

t )Vt

(
Y i, umi

(Y i)
)]

, with mi := L(Y i) ,
(3.1)

recalling that Vt

(
Y i, umi

(Y i)
)
= exp

( ∫ t

0
Λs(Y

i
s , u

mi

s (Y i
s ))ds

)
. The existence and uniqueness of the solution

of each equation is ensured by Theorem 2.8. We recall that the map (m, t, y) 7→ um(t, y) fulfills the regularity

properties given at the second and third item of Proposition 2.5 .

Obviously the processes (Y i)i=1,··· ,N are independent. They are also identically distributed since Theo-

rem 2.8 also states uniqueness in law.

So we can define m0 := mi the common distribution of the processes Y i, i = 1, · · · , N , which is of course

the law of the process Y , such that (Y, u) is a solution of (1.4).

From now on, CdN will denote (Cd)N , which is obviously isomorphic to C([0, T ],RdN). For every ξ̄ ∈ CdN

we will denote

SN (ξ̄) :=
1

N

N∑

i=1

δξ̄i,N . (3.2)

The function (t, x) 7→ u
SN (ξ̄)
t (x) is obtained by composition of m 7→ um

t (x) (defined in (2.8)) with m = SN(ξ̄).

Now let us introduce the system of equations





ξi,Nt = ξi,N0 +
∫ t

0
Φ(s, ξi,Ns , u

SN(ξ)
s (ξi,Ns ))dW i

s +
∫ t

0
g(s, ξi,Ns , u

SN (ξ)
s (ξi,Ns ))ds

ξi,N0 = Y i
0

u
SN (ξ)
t (y) =

1

N

N∑

j=1

K(y − ξj,Nt )Vt

(
ξj,N , uSN (ξ)(ξj,N )

)
.

(3.3)

Conformally with (3.2), we consider the empirical (random) measure SN(Y) =
1

N

N∑

i=1

δY i related to Y :=

(Y i)i=1,··· ,N , where we recall that for each i ∈ {1, · · · , N}, Y i is solution of (3.1). We observe that by Remark
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2.3, SN (ξ) and SN (Y) are measurable maps from (Ω,F) to (P(Cd),B(P(Cd))); moreover SN(ξ), SN (Y) ∈
P2(Cd) P-a.s. A solution ξ := (ξi,N )i=1,··· ,N of (3.3) is called interacting particle system.

The first line of (3.3) is in fact a path-dependent stochastic differential equation. We claim that its coeffi-

cients are measurable. Indeed, the map (t, ξ̄) 7→ (SN (ξ̄), t, ξ̄it, ) being continuous from ([0, T ]×CdN ,B([0, T ])⊗
B(CdN)) to (P(Cd) × [0, T ]× R

d,B(P(Cd)) ⊗ B([0, T ])⊗ B(Rd)) for all i ∈ {1, · · · , N}, by composition with

the continuous map (m, t, y) 7→ um(t, y) (see Proposition 2.5 3.) we deduce the continuity of (t, ξ̄) 7→
(u

SN (ξ̄)
t (ξ̄it))i=1,··· ,N , and so the measurability from ([0, T ]× CdN ,B([0, T ])⊗ B(CdN)) to (R,B(R)).

In the sequel, for simplicity we set ξ̄r≤s := (ξ̄ir≤s)1≤i≤N . We remark that, by Proposition 2.11 and Remark

2.10, we have

(
uSN(ξ̄)
s (ξ̄is)

)
i=1,···N

=
(
u
SN (ξ̄

r≤s
)

s (ξ̄is)
)
i=1,···N

, (3.4)

for any s ∈ [0, T ], ξ̄ ∈ CdN and so stochastic integrands of (3.3) are adapted (so progressively measurable

being continuous in time) and so the corresponding Itô integral makes sense. We discuss below the well-

posedness of (3.3).

The fact that (3.3) has a unique (strong) solution (ξi,N )i=1,···N holds true because of the following arguments.

1. Φ and g are Lipschitz. Moreover the map ξ̄r≤s 7→
(
u
SN (ξ̄

r≤s
)

s (ξ̄is)
)
i=1,··· ,N

is Lipschitz.

Indeed, for given (ξr≤s, ηr≤s) ∈ CdN × CdN , s ∈ [0, T ], by using successively inequality (2.9) of Propo-

sition 2.5 and Remark 2.1, for all i ∈ {1, · · · , N} we have

|uSN (ξr≤s)
s (ξit)− u

SN(ηr≤s)
s (ηit)| ≤

√
CK,Λ(T )


|ξis − ηis|+

1

N

N∑

j=1

sup
0≤r≤s

|ξjr − ηjr |




≤ 2
√
CK,Λ(T ) max

j=1,··· ,N
sup

0≤r≤s

|ξjr − ηjr | . (3.5)

Finally the functions

ξ̄r≤s 7→
(
Φ(s, ξ̄is, u

SN (ξ̄r,r≤s)
s (ξ̄is))

)
i=1,···N

ξ̄r≤s 7→
(
g(s, ξ̄is, u

SN(ξ̄r,r≤s)
s (ξ̄is))

)
i=1,···N

are uniformly Lipschitz and bounded.

2. A classical argument of well-posedness for systems of path-dependent stochastic differential equa-

tions with Lipschitz dependence on the sup-norm of the path, see Chapter V, Section 2.11, Theo-

rem 11.2 page 128 in [25].

After the preceding introductory considerations, we can state and prove the main theorem of the section.

Theorem 3.1. Let us suppose the validity of Assumption 1. Let N be a fixed positive integer. Let (Y i)i=1,··· ,N (resp.

((ξi,N )i=1,··· ,N ) be the solution of (3.1) (resp. (3.3)), let m0 as defined after (3.1). The following assertions hold.

1. If F(K) ∈ L1(Rd), there is a positive constant C only depending on LΦ, Lg,MK ,MΛ, LK , LΛ, T, ‖F(K)‖1,

such that, for all i = 1, · · · , N and t ∈ [0, T ],

E[‖uSN (ξ)
t − um0

t ‖2∞] ≤ C

N
(3.6)

E[ sup
0≤s≤t

|ξi,Ns − Y i
s |2] ≤ C

N
. (3.7)
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2. If K belongs to W 1,2(Rd), there is a positive constant C only depending on LΦ, Lg,MK ,MΛ, LK , LΛ, T and

‖∇K‖2, such that, for all t ∈ [0, T ],

E[‖uSN (ξ)
t − um0

t ‖22] ≤ C

N
. (3.8)

Before proving Theorem 3.1, we remark that the propagation of chaos follows easily.

Corollary 3.2. Under Assumption 1, the propagation of chaos holds for the interacting particle system (ξi,N )i∈N.

Proof. We prove here that Theorem 3.1 implies the propagation of chaos.

Indeed, for all k ∈ N
⋆, (3.7) implies

(ξ1,N − Y 1, ξ2,N − Y 2, · · · , ξk,N − Y k)
L2(Ω,F , P)−−−−−−−→
N −→ +∞

0 ,

which implies in particular the convergence in law of the vector (ξ1,N , ξ2,N , · · · , ξk,N ) to (Y 1, Y 2, · · · , Y k).

Consequently, since (Y i)i=1,··· ,k are i.i.d. according to m0

(ξ1,N , ξ2,N , · · · , ξk,N ) converges in law to (m0)⊗k when N → +∞ . (3.9)

The validity of (3.6) and (3.7) will be the consequence of the significant more general proposition below.

Proposition 3.3. Let us suppose the validity of Assumption 1. Let N be a fixed positive integer. Let (W i,N )i=1,··· ,N

be a family of p-dimensional standard Brownian motions (not necessarily independent). Let (Y i
0 )i=1,··· ,N be the family

of i.i.d. r.v. initializing the system (3.1). We consider the processes (Ȳ i,N )i=1,··· ,N , such that for each i ∈ {1, · · · , N},

Ȳ i,N is the unique strong solution of
{

Ȳ i,N
t = Y i

0 +
∫ t

0 Φ(s, Ȳ
i,N
s , umi,N

s (Ȳ i,N
s ))dW i,N

s +
∫ t

0 g(s, Ȳ i,N
s , umi,N

s (Ȳ i,N
s ))ds, for all t ∈ [0, T ]

umi,N

t (y) = E

[
K(y − Ȳ i,N

t )Vt

(
Ȳ i,N , umi,N

(Ȳ i,N )
)]

, with mi,N := L(Ȳ i,N ) ,

(3.10)

recalling that Vt

(
Y i,N , umi,N

(Y i,N )
)
= exp

( ∫ t

0 Λ(s, Y
i,N
s , umi,N

s (Y i,N
s ))ds

)
.

Let us consider now the system of equations (3.3), where the processes W i are replaced by W i,N , i.e.




ξi,Nt = ξi,N0 +
∫ t

0 Φ(s, ξ
i,N
s , u

SN (ξ)
s (ξi,Ns ))dW i,N

s +
∫ t

0 g(s, ξi,Ns , u
SN(ξ)
s (ξi,Ns ))ds

ξi,N0 = Y i
0

u
SN(ξ)
t (y) =

1

N

N∑

j=1

K(y − ξj,Nt )Vt

(
ξj,N , uSN (ξ)(ξj,N )

)
.

(3.11)

Then the following assertions hold.

1. For any i = 1, · · ·N , (Ȳ i,N
t )t∈[0,T ] have the same law mi,N = m0, where m0 is the common law of processes

(Y i)i=1,··· ,N defined by the system (3.1).

2. Equation (3.11) admits a unique strong solution.

3. Suppose moreover thatF(K) is in L1(Rd). Then there is a positive constantC only depending on LΦ, Lg,MK ,MΛ, LK , LΛ, T

and ‖F(K)‖1 such that, for all t ∈ [0, T ],

sup
i=1,...,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + E[‖uSN (ξ)

t − um0

t ‖2∞] ≤ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2], (3.12)

with again SN(Ȳ) :=
1

N

N∑

j=1

δȲ j,N .
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Remark 3.4. The convergence of the numerical approximation u
SN (ξ)
t to um0

t only requires the convergence of

dΩ2 (S
N (Ȳ),m0) to 0, where the distance dΩ2 has been defined at Remark 2.6. This holds if, for each N , Ȳ i,N , i =

1, · · ·N are independent; however, this is only a sufficient condition.

This gives the opportunity to define new numerical schemes for which the convergence of the empirical measure

SN (Ȳ) is verified without i.i.d. particles. Let us consider (Ȳ i,N )i=1,···N (resp. (ξi,N )i=1,···N ) solutions of (3.10)

(resp. (3.11)). Observe that for any real valued test function in Cb(Cd)

E[〈SN (Ȳ)−m0, ϕ〉2] =
σ2
ϕ

N
(1 +

2

N

∑

i<j

ρi,jϕ ) ,

where σϕ :=
√
V ar(ϕ(Ȳ 1,N)) and ρi,jϕ := E[ϕ(Y i,N )ϕ(Y j,N )]−E[ϕ(Y i,N )]E[ϕ(Y j,N )]

σ2
ϕ

.

In the specific case where (W i,N )i=1,···N are independent Brownian motions then ρi,jϕ = 0 for any bounded ϕ ∈
Cb(Cd) and

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] ≤ 1

N
. (3.13)

With our error bound one can naturally investigate antithetic variables approaches to improve the interacting particle

system convergence. Let us consider N = 2N ′ and take (W i,N )i=1,···N ′ as N ′ iid Brownian motions, then for the

rest of the particles, for any j = N ′ + 1, N ′ + 2, · · · 2N ′, set W j,N = −W j−N ′,N . In this situation, we obtain

E[〈SN (Ȳ)−m0, ϕ〉2] =
σ2
ϕ

N
(1 + ρ1,1+N ′

ϕ ).

So, even in this case, the rate of convergence of u
SN (ξ)
t to um0

t is still of order 1/
√
N .

If moreover one has sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

ρ1,1+N ′

ϕ ≤ 0, the variance will also be reduced with respect to the case of independent

Brownian motions, see (3.13).

Proof of Proposition 3.3. Let us fix t ∈ [0, T ]. In this proof, C := C(Φ, g,Λ,K, T ) is a real positive constant,

which may change from line to line.

Equation (3.10) has N blocks, numbered by 1 ≤ i ≤ N . Theorem 2.8 gives uniqueness in law for each block

equation, which implies that for any i = 1, · · ·N , mi,N = m0 and proves the first item.

Concerning item 2., i.e. the strong existence and pathwise uniqueness of (3.11), the same argument as for

the well-statement of (3.3) operates. The only difference consists in the fact that the Brownian motions may

be correlated. A very close proof to the one of Theorem 11.2 page 128 in [25] works: the main argument is

the multidimensional BDG inequality, see e.g. Problem 3.29 of [18].

We discuss now item 3. proving inequality (3.12). On the one hand, since the map (t, ξ̄) ∈ [0, T ] ×
CdN 7→ (u

SN (ξ̄)
t (ξ̄it))i=1,··· ,N is measurable and satisfies the non-anticipative property (3.4), the first as-

sertion of Lemma 2.7 gives for all i ∈ {1, · · · , N}

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ CE[

∫ t

0

|uSN (ξ)
s (ξi,Ns )− um0

s (Ȳ i,N
s )|2ds]

≤ C

∫ t

0

E[|uSN (ξ)
s (ξi,Ns )− um0

s (ξi,Ns )|2]ds+
∫ t

0

E[|um0

s (ξi,Ns )− um0

s (Ȳ i,N
s )|2]ds

≤ C

∫ t

0

(
E[‖uSN (ξ)

s − um0

s ‖2∞] + E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds, by (2.9) ,

(3.14)
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which implies

sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ C

∫ t

0

(
E[‖uSN(ξ)

s − um0

s ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds. (3.15)

We use inequalities (2.9) for m = SN(ξ)(ω̄) and m′ = SN (Ȳ)(ω̄)), where ω̄ is a random realization in Ω and

(2.12) (with the random probability η = SN (Ȳ) and m = m0) in item 5. of Proposition 2.5. This yields

E[‖uSN (ξ)
t − um0

t ‖2∞] ≤ 2E
[
‖uSN (ξ)

t − u
SN (Ȳ)
t ‖2∞

]
+ 2E[‖uSN(Ȳ)

t − um0

t ‖2∞]

≤ 2CE[|Wt(S
N (ξ), SN (Ȳ))|2] + 2C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ 2C

N

N∑

i=1

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ 2C sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2]

+ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2], (3.16)

where the third inequality follows from Remark 2.1.

Let us introduce the non-negative function G defined on [0, T ] by

G(t) := E[‖uSN(ξ)
t − um0

t ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] .

From inequalities (3.15) and (3.16) that are valid for all t ∈ [0, T ], we obtain

G(t) ≤ (2C + 1) sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ C

∫ t

0

(
E[‖uSN (ξ)

s − um0

s ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds

+ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ C

∫ t

0

G(s)ds + C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] . (3.17)

By Gronwall’s lemma, for all t ∈ [0, T ], we obtain

E[‖uSN (ξ)
t − um0

t ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ CeCt sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] . (3.18)

This concludes the proof of Proposition 3.3.

From now on, we prove Theorem 3.1,

Proof of Theorem 3.1. As we have mentioned above we will apply Proposition 3.3 setting for all i ∈ {1, · · · , N},

W i,N := W i. Pathwise uniqueness of systems (3.1) and (3.10) implies Ȳ i,N = Y i for all i ∈ {1, · · · , N}. Tak-

ing into account (3.12) in Proposition 3.3, in order to establish inequalities (3.6) and (3.7), we need to bound

the quantity sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Y) −m0, ϕ〉|2] . This is possible via (3.13) in Remark 3.4, since (Y i)i=1,··· ,N are
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i.i.d. according to m0. This concludes the proof of item 1.

It remains now to prove (3.8) in item 2. First, the inequality

E[‖uSN (ξ)
t − um0

t ‖22] ≤ 2E[‖uSN(ξ)
t − u

SN (Y)
t ‖22] + 2E[‖uSN(Y)

t − um0

t ‖22], (3.19)

holds for all t ∈ [0, T ]. Using inequality (2.11) of Proposition 2.5, for all t ∈ [0, T ], for m = SN (ξ),m′ =

SN (Y), we get

E[‖uSN (ξ)
t − u

SN (Y)
t ‖22] ≤ CE[Wt(S

N (ξ), SN (Y))2]

≤ C
1

N

N∑

j=1

E[ sup
0≤r≤t

|ξj,Nr − Y j
r |2]

≤ C

N
, (3.20)

where the latter inequality is obtained through (3.7). The second term of the r.h.s. in (3.19) needs more

computations. Let us fix i ∈ {1, · · · , N}. First,

E[‖uSN (Y)
t − um0

t ‖22] ≤ 2
(
E[‖At‖22] + E[‖Bt‖22]

)
, (3.21)

where, for all t ∈ [0, T ]





At(x) :=
1

N

N∑

j=1

K(x− Y j
t )

[
Vt

(
Y j , uSN(Y)(Y j)

)
− Vt

(
Y j , um0

(Y j)
)]

Bt(x) :=
1

N

N∑

j=1

K(x− Y j
t )Vt

(
Y j , um0

(Y j)
)
− E

[
K(x− Y 1

t )Vt

(
Y 1, um0

(Y 1)
)]

,

(3.22)

where we recall that m0 is the common law of all the processes Y i, 1 ≤ i ≤ N .

To simplify notations, we set Pj(t, x) := K(x− Y j
t )Vt

(
Y j , um0

(Y j)
)
−E

[
K(x− Y 1

t )Vt

(
Y 1, um0

(Y 1)
)]

for all

j ∈ {1, · · · , N}, x ∈ R
d and t ∈ [0, T ].

We observe that for all x ∈ R
d, t ∈ [0, T ], (Pj(t, x))j=1,··· ,N are i.i.d. centered r.v. Hence,

E[Bt(x)
2] =

1

N
E[P 2

1 (t, x)] =
1

N
V ar

(
P1(t, x)

)
≤ 1

N
E[K2(x− Y 1

t )V
2
t

(
Y 1, um0

(Y 1)
)
] ≤ MKe2tMΛ

N
E[K(x− Y 1

t )].

By integrating each side of the inequality above w.r.t. x ∈ R
d, we obtain

E

[∫

Rd

|Bt(x)|2dx
]
=

∫

Rd

E[|Bt(x)|2]dx ≤ MKe2tMΛ

N
, (3.23)

where we have used that ‖K‖1 = 1.

Concerning At(x), we write

|At(x)|2 ≤ 1

N

N∑

j=1

K(x− Y j
t )

2
[
Vt

(
Y j , uSN (Y)(Y j)

)
− Vt

(
Y j , um0

(Y j)
)]2

=
1

N

N∑

j=1

K(x− Y j
t )K(x− Y j

t )
[
Vt

(
Y j , uSN (Y)(Y j)

)
− Vt

(
Y j , um0

(Y j)
)]2

≤ MKT

N
e2tMΛL2

Λ

N∑

j=1

K(x− Y j
t )

∫ t

0

|uSN (Y)
r (Y j

r )− um0

r (Y j
r )|2dr

≤ MKT

N
e2tMΛL2

Λ

N∑

j=1

K(x− Y j
t )

∫ t

0

‖uSN (Y)
r − um0

r ‖2∞dr,

(3.24)
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where the third inequality comes from (2.7). Integrating w.r.t. x ∈ R
d and taking expectation on each side

of the above inequality gives us, for all t ∈ [0, T ],

E[

∫

Rd

|At(x)|2dx] ≤ MKTe2tMΛL2
Λ

∫ t

0

E[‖uSN (Y)
r − um0

r ‖2∞]dr

≤ MKT 2e2tMΛL2
ΛC sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Y) −m0, ϕ〉|2]

≤ MKT 2e2tMΛL2
ΛC

N
, (3.25)

where we have used (2.12) of Proposition 2.5 for the second inequality above and (3.13) for the latter one.

To conclude, it is enough to replace (3.23), (3.25) in (3.21), and inject (3.20), (3.21) into (3.19).

4 Particle algorithm

4.1 Time discretization of the particle system

In this section Assumption 2. is in force. Let (Y i
0 )i=1,··· ,N be i.i.d. r.v. distributed according to ζ0. In the

sequel, we are interested in discretizing the interacting particle system (3.3). (ξi,N , 1 ≤ i ≤ N ) will denote

again the corresponding solution. Let us consider a regular time grid 0 = t0 ≤ · · · ≤ tk = kδt ≤ · · · ≤
tn = T , with δt = T/n. We introduce the continuous R

dN -valued process (ξ̃t)t∈[0,T ] and the family of

nonnegative functions (ũt)t∈[0,T ] defined on R
d constructively such that





ξ̃i,Nt = ξ̃i,N0 +
∫ t

0
Φ(r(s), ξ̃i,N

r(s), ũr(s)(ξ̃
i,N

r(s)))dW
i
s +

∫ t

0
g(r(s), ξ̃i,N

r(s), ũr(s)(ξ̃
i,N

r(s)))ds

ξ̃i,N0 = Y i
0

ũt(y) =
1
N

∑N
j=1 K(y − ξ̃j,Nt ) exp

{ ∫ t

0
Λ(r(s), ξ̃j,N

r(s), ũr(s)(ξ̃
j,N

r(s))) ds
}
, for any t ∈]0, T ],

ũ0 = K ∗ ζ0,

(4.1)

where r : s ∈ [0, T ] 7→ r(s) ∈ {t0, · · · tn} is the piecewise constant function such that r(s) = tk when s ∈
[tk, tk+1[. We can observe that (ξ̃i,N )i=1,··· ,N is an adapted and continuous process. The interacting particle

system (ξ̃i,N )i=1,···N can be simulated perfectly at the discrete instants (tk)k=0,··· ,n via independent standard

and centered Gaussian random variables. We will show that this interacting particle system provides an

approximation to the solution (ξi,N )i=1,···N , of system (3.3), which converges at a rate bounded by
√
δt, up

to a multiplicative constant.

Proposition 4.1. Let us suppose the validity of Assumption 2. The time discretized particle system (4.1) converges

to the original particle system (3.3). More precisely, for all t ∈ [0, T ], the following estimates hold:

E[‖ũt − u
SN (ξ)
t ‖2∞] + sup

i=1,··· ,N
E

[
sup
s≤t

|ξ̃i,Ns − ξi,Ns |2
]
≤ Cδt , (4.2)

where C is a finite positive constant only depending on MK ,MΛ, LK , LΛ,mΦ,mg, T .

If we assume moreover that K ∈ W 1,2(Rd), then

E[‖ũt − u
SN(ξ)
t ‖22] ≤ Cδt , t ∈ [0, T ], (4.3)

where C is a finite positive constant only depending on MK ,MΛ,mΦ,mg, LK , LΛ, T and ‖∇K‖2.

The left-hand side of (4.3) is generally known, as Mean Integrated Squared Error (MISE).
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The result below states the convergence of ũt to um0

t when δt → 0 and N → +∞, with an explicit rate of

convergence.

Theorem 4.2. We suppose Assumption 2. We indicate by m0 the law of Y , where (Y, u) is the solution of (1.4). The

time discretized particle system (4.1) converges to the solution of (1.4). More precisely, we have the following. We

suppose F(K) ∈ L1 (resp. K ∈ W 1,2(Rd)). There exists a real constant C > 0 such that for all t ∈ [0, T ],

E[‖um0

t − ũt‖2∞] ≤ C(δt+
1

N
), (4.4)

(respectively

E[‖um0

t − ũt‖22] ≤ C(δt+
1

N
) ). (4.5)

Remark 4.3. When Λ = 0 and Φ and g are infinitely differentiable with all derivatives being bounded, Corollary 1.1

of [19] states that, for fixed smooth test function with polynomial growth ϕ, one has

E(|〈SN (ξ̃t)−m0
t , ϕ〉|) ≤ Cϕ(

1√
N

+ δt), where again SN (ξ̃t) :=
1

N

N∑

i=1

δ
ξ̃
i,N
t

. (4.6)

This leads reasonnably to the conjecture that the rate in (4.4) is not optimal and it could be replaced by (δt)2 + 1
N

.

This intuition will be confirmed by numerical simulations in Section 5.

Proof. We first observe that for all t ∈ [0, T ], for p = ∞, 2

E[‖um0

t − ũt‖2p] ≤ 2E[‖um0

t − u
SN (ξ)
t ‖2p] + 2E[‖uSN(ξ)

t − ũt‖2p] . (4.7)

The first term in the r.h.s. of (4.7) is bounded by C
N

using Theorem 3.1, inequality (3.6) (respectively (3.8)).

The second term of the same inequality is controlled by Cδt, through Proposition 4.1, inequality (4.2) (resp.

(4.3)).

The proof of Proposition 4.1 relies on similar techniques used to prove Theorem 3.1. The idea is first to

estimate through Lemma 4.4 the perturbation error due to the time discretization scheme of the SDE and of

the integral appearing in the exponential weight in system (4.1). Later the propagation of this error through

the dynamical system (3.3) will be controlled via Gronwall’s lemma. Lemma 4.4 below will be proved in

the Appendix.

Lemma 4.4. Let us suppose the validity of Assumption 2. There exists a finite constant C > 0 only depending on

T,MK ,mΦ,mg, LK , LΦ, Lg and MΛ, LΛ such that for any t ∈ [0, T ],

E[|ξ̃i,N
r(t) − ξ̃i,Nt |2] ≤ Cδt (4.8)

E[‖ũr(t) − ũt‖2∞] ≤ Cδt (4.9)

E[‖ũr(t) − u
SN (ξ̃)
t ‖2∞] ≤ Cδt . (4.10)

Proof of Proposition 4.1. All along this proof, C will denote a positive constant that only depends on

T,MK ,mΦ,mg, LK , LΦ, Lg and MΛ,LΛ and that can change from line to line. Let us fix t ∈ [0, T ].

• We begin by considering inequality (4.2). We first fix 1 ≤ i ≤ N . By (4.9) and (4.10) in Lemma 4.4 and

(2.9) in Proposition 2.5, we obtain

E[‖ũt − u
SN (ξ)
t ‖2∞] ≤ E

[(
‖ũt − ũr(t)‖∞ + ‖ũr(t) − u

SN(ξ̃)
t ‖∞ + ‖uSN(ξ̃)

t − u
SN (ξ)
t ‖∞

)2]

≤ 3(E[‖ũt − ũr(t)‖2∞] + E[‖ũr(t) − u
SN (ξ̃)
t ‖2∞] + E[‖uSN(ξ̃)

t − u
SN (ξ)
t ‖2∞])

≤ Cδt+ CE[|Wt

(
SN (ξ̃), SN (ξ)

)
|2]

≤ Cδt+ C sup
i=1,··· ,N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] , (4.11)
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where the function uSN(ξ̃) makes sense since ξ̃ has almost surely continuous trajectories and so SN(ξ̃)

is a random probability in P(Cd).

Besides, by the second assertion of Lemma 2.7, setting Y ′ := ξ̃i,N , r1(s) = r(s) and Y := ξi,N ,

r2(s) = s, we get

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ CE

[∫ t

0

|ũr(s)(ξ̃
i,N

r(s))− uSN (ξ)
s (ξi,Ns )|2 ds

]
+ C

∫ t

0

E

[
|ξ̃i,N

r(s) − ξ̃i,Ns |2
]
ds+ Cδt .

(4.12)

Concerning the first term in the r.h.s. of (4.12), we have for all s ∈ [0, T ]

|ũr(s)(ξ̃
i,N

r(s))− uSN(ξ)
s (ξi,Ns )|2 ≤ 2|ũr(s)(ξ̃

i,N

r(s))− uSN (ξ)
s (ξ̃i,N

r(s))|2 + 2|uSN(ξ)
s (ξ̃i,N

r(s))− uSN (ξ)
s (ξi,Ns )|2

≤ 2‖ũr(s) − uSN (ξ)
s ‖2∞ + 2C|ξ̃i,N

r(s) − ξi,Ns |2 , (4.13)

where the second inequality above follows by (2.9) in Proposition 2.5, setting m = m′ = SN(ξ).

Consequently, by (4.12)

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ C

{
E

[∫ t

0

‖ũr(s) − uSN (ξ)
s ‖2∞ ds

]
+

∫ t

0

E

[
|ξ̃i,N

r(s) − ξi,Ns |2
]
ds+ δt

}

≤ C

{
E

[∫ t

0

‖ũr(s) − ũs‖2∞ ds

]
+ E

[∫ t

0

‖ũs − uSN (ξ)
s ‖2∞ ds

]

+E

[∫ t

0

|ξ̃i,N
r(s) − ξ̃i,Ns |2 ds

]
+ E

[∫ t

0

|ξ̃i,Ns − ξi,Ns |2 ds
]
+ δt

}
. (4.14)

Using inequalities (4.8) and (4.9) in Lemma 4.4, for all t ∈ [0, T ], we obtain

sup
i=1,··· ,N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ Cδt+ C

∫ t

0

[
E[‖ũs − uSN (ξ)

s ‖2∞] + sup
i=1,··· ,N

E[sup
θ≤s

|ξ̃i,Nθ − ξi,Nθ |2]
]
ds.

(4.15)

Gathering the latter inequality together with (4.11) yields

E[‖ũt − u
SN (ξ)
t ‖2∞] + sup

i=1,··· ,N
E[sup

s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ Cδt+ 2C sup
i=1,··· ,N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2]

≤ Cδt

+ C

∫ t

0

[
E[‖ũs − uSN(ξ)

s ‖2∞]

+ sup
i=1,··· ,N

E[sup
θ≤s

|ξ̃i,Nθ − ξi,Nθ |2]
]
ds . (4.16)

Applying Gronwall’s lemma to the function

t 7→ sup
i=1,··· ,N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] + E[‖ũt − u
SN (ξ)
t ‖2∞]

ends the proof of (4.2).

• We focus now on (4.3). First we observe that

E[‖ũt − u
SN(ξ)
t ‖22] ≤ 2E[‖ũt − u

SN (ξ̃)
t ‖22] + 2E[‖uSN(ξ̃)

t − u
SN (ξ)
t ‖22] . (4.17)

Using successively item 4. of Proposition 2.5, Remark 2.1 and inequality (4.2), we can bound the

second term on the r.h.s. of (4.17) as follows:

E[‖uSN (ξ̃)
t − u

SN(ξ)
t ‖22] ≤ CE[|Wt

(
SN(ξ̃), SN(ξ)

)
|2]

≤ C sup
i=1,··· ,N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2]

≤ Cδt . (4.18)
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To simplify the notations, we introduce the real valued random variables

V i
t := e

∫
t

0
Λ
(
s,ξ̃i,Ns ,uSN (ξ̃)

s (ξ̃i,Ns )
)
ds and Ṽ i

t := e
∫

t

0
Λ
(
r(s),ξ̃i,N

r(s)
,ũr(s)(ξ̃

i,N

r(s)
)
)
ds

, (4.19)

defined for any i = 1, · · ·N and t ∈ [0, T ].

Concerning the first term on the r.h.s. of (4.17), inequality (6.2) of Lemma 6.1 in the Appendix gives

for all y ∈ R
d

|ũt(y)− u
SN (ξ̃)
t (y)|2 ≤ MK

N

N∑

i=1

K(y − ξ̃i,Nt )|Ṽ i
t − V i

t |2 . (4.20)

Integrating the inequality (4.20) with respect to y, yields

‖ũt − u
SN(ξ̃)
t ‖22 =

∫

Rd

|ũt(y)− u
SN(ξ̃)
t (y)|2 dy ≤ MK

N

N∑

i=1

|Ṽ i
t − V i

t |2 ,

which, in turn, implies

E

[
‖ũt − u

SN (ξ̃)
t ‖22

]
≤ MK

N

N∑

i=1

E

[
|Ṽ i

t − V i
t |2

]
. (4.21)

Using successively item 1. of Lemma 6.1 and inequality (4.8) of Lemma 4.4, for all i ∈ {1, · · · , N}, we

obtain

E[|Ṽ i
t − V i

t |2] ≤ Cδt+ CE

[∫ t

0

|ξ̃i,N
r(s) − ξ̃i,Ns |2 ds

]
+ CE

[∫ t

0

|ũr(s)(ξ̃
i,N

r(s))− uSN(ξ̃)
s (ξ̃i,Ns )|2ds

]

≤ Cδt+ CE

[∫ t

0

|ũr(s)(ξ̃
i,N

r(s))− uSN(ξ̃)
s (ξ̃i,Ns )|2ds

]

≤ Cδt+ CE

[∫ t

0

|ũr(s)(ξ̃
i,N

r(s))− uSN(ξ̃)
s (ξ̃i,N

r(s))|
2ds

]

+ CE

[∫ t

0

|uSN(ξ̃)
s (ξ̃i,N

r(s))− uSN (ξ̃)
s (ξ̃i,Ns )|2ds

]

≤ Cδt+ C

∫ t

0

[
E[‖ũr(s) − uSN(ξ̃)

s ‖2∞] + E[|ξ̃i,N
r(s) − ξ̃i,Ns |2]

]
ds

≤ Cδt+ C

∫ t

0

E[‖ũr(s) − uSN (ξ̃)
s ‖2∞] ds , (4.22)

where the fourth inequality above follows from Proposition 2.5, see (2.9). Consequently using (4.22)

and inequality (4.10) of Lemma 4.4, (4.21) becomes

E[‖ũt − u
SN (ξ̃)
t ‖22] ≤

C

N

N∑

i=1

E[|Ṽ i
t − V i

t |2] ≤︸︷︷︸
(4.22)

Cδt+ C

∫ t

0

E[‖ũr(s) − uSN (ξ̃)
s ‖2∞] ≤︸︷︷︸

(4.10)

Cδt. (4.23)

Finally, injecting (4.23) and (4.18) in (4.17) yields

E[‖ũt − u
SN (ξ)
t ‖22] ≤ Cδt ,

which ends the proof of Proposition 4.1.
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4.2 Algorithm description

In this section, we describe precisely the algorithm relying on the time-discretization (4.1) of the interacting

particle system (3.3). Let v0 be the law density of Y0 where Y is the solution of (1.4). In the sequel, we will

make use of the same notations as in previous section. In particular, 0 = t0 ≤ · · · ≤ tk = kδt ≤ · · · ≤ tn = T

is a regular time grid with δt = T/n. We consider a real-valued function K : Rd → R being a mollifier

depending on some bandwith parameter ε.

Initialization for k = 0.

1. Generate (ξ̃i,Nt0
)i=1,..,N i.i.d.∼ v0(x)dx;

2. set Gi
0 := 1, i = 1, · · · , N ;

3. set ũt0(·) := (K ∗ v0)(·);

Iterations for k = 0, ..., n-1.

• Independently for each particle ξ̃j,Ntk
for j = 1, · · ·N ,

ξ̃j,Ntk+1
= ξ̃j,Ntk

+Φ(tk, ξ̃
j,N
tk

, ũtk(ξ̃
j,N
tk

))
√
δtǫjk+1 + g(tk, ξ̃

j,N
tk

, ũtk(ξ̃
j,N
tk

))δt ,

where (ǫjk)j=1,··· ,N,k=1,···n is a sequence of i.i.d centered and standard Gaussian variables;

• set for j = 1, · · ·N ,

Gj
k+1 := Gj

k × exp
(
Λ(tk, ξ̃

j,N
k , ũtk(ξ̃

j,N
tk

))δt
)
;

• set

ũtk+1
(·) = 1

N

N∑

j=1

Gj
k+1 ×K(· − ξ̃j,Ntk+1

).

Remark 4.5. For a fixed k ∈ {0, · · · , n − 1}, we observe that the simulation of the j-th particle ξ̃j,Ntk+1
at time tk+1

involves the whole particle system through the evaluation of ũtk(ξ̃
j,N
tk

), which implies a complexity of the algorithm of

order nN2.

5 Numerical results

5.1 Preliminary considerations

One motivating issue of this section is how the interacting particle system ξ := (ξi,N,ε) defined in (3.3) with

K = Kε, Kε(x) := 1
εd
φd(x

ε
) for some mollifier φd, can be used to approach the solution v of the PDE





∂tv = 1
2

d∑

i,j=1

∂2
ij

(
(ΦΦt)i,j(t, x, v)v

)
− div (g(t, x, v)v) + Λ(t, x, v)v

v(0, x) = v0 ,

(5.24)

to which we can reasonably expect that (1.5) converges when Kε −−−→
ε→0

δ.

Two significant parameters, i.e. ε → 0, N → +∞, intervene. We expect to approximate v by uε,N , which

is the solution of the linking equation (1.6), associated with the empirical measure m = SN (ξ). To this
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purpose, we want to control empirically the Mean Integrated Squared Error (MISE) between the solution v

of (5.24) and the particle approximation uε,N , i.e. for t ∈ [0, T ],

E[‖uε,N
t − vt‖22] ≤ 2E[‖uε,N

t − uε
t‖22] + 2‖uε

t − vt‖22, (5.25)

where uε = um0

with K = Kε, m0 being the common law of processes Y i, 1 ≤ i ≤ N in (3.1). Even though

the second term in the r.h.s. of (5.25) does not explicitely involve the number of particles N , the first term

crucially depends on both parameters ε,N . The behavior of the first term relies on the propagation of chaos.

This phenomenon has been observed in Corollary 3.2, which is a consequence of Theorem 3.1, for a fixed

ε > 0, when N → +∞. According to Theorem 3.1, the first error term on the r.h.s. of the above inequality

can be bounded by C(ε)
N

.

Concerning the second error term, no result is available but we expect that it converges to zero when ε → 0.

To control the MISE, it remains to determine a relation N 7→ ε(N) such that

ε(N) −−−−−→
N→+∞

0 and
C(ε(N))

N
−−−−−→
N→+∞

0 . (5.26)

When the coefficients Φ, g and the initial condition are smooth with Φ non-degenerate and Λ ≡ 0 (i.e. in the

conservative case), Theorem 2.7 of [17] gives a description of such a relation.

In our empirical analysis, we have concentrated on a test case, for which we have an explicit solution.

We first illustrate the chaos propagation for fixed ε > 0, i.e. the result of Theorem 3.1. On the other hand,

we give an empirical insight concerning the following:

• the asymptotic behavior of the second error term in inequality (5.25) for ε → 0;

• the tradeoff N 7→ ε(N) verifying (5.26).

Moreover, the simulations reveal two behaviors regarding the chaos propagation intensity.

5.2 The target PDE

We describe now the test case. For a given triple (m,µ,A) ∈]1,∞[×R
d × R

d×d we consider the following

nonlinear PDE of the form (5.24):





∂tv =
1

2

d∑

i,j=1

∂2
i,j

(
v(ΦΦt)i,j(t, x, v)

)
− div

(
vg(t, x, v)

)
+ vΛ(t, x, v) ,

v(0, x) = Bm(2, x)fµ,A(x) for all x ∈ R
d ,

(5.27)

where the functions Φ , g , Λ defined on [0, T ]× R
d × R are such that

Φ(t, x, z) = f
1−m

2

µ,A (x)z
m−1

2 Id , (5.28)

Id denoting the identity matrix in R
d×d,

g(t, x, z) = f1−m
µ,A (x)zm−1A+At

2
(x− µ) , and Λ(t, x, z) = f1−m

µ,A (x)zm−1Tr

(
A+At

2

)
. (5.29)

Here fµ,A : Rd → R is given by

fµ,A(x) = Ce−
1
2 〈x−µ,A(x−µ)〉 , normalized by C =

[∫

Rd

Bm(2, x)e−
1
2 (x−µ)·A(x−µ)

]−1

(5.30)
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and Bm is the d-dimensional Barenblatt-Pattle density associated to m > 1, i.e.

Bm(t, x) =
1

2
(D − κt−2β|x|)

1
m−1

+ t−α, (5.31)

with α = d
(m−1)d+2 , β = α

d
, κ = m−1

m
β and D = [2κ−d

2
π

d
2 Γ( m

m−1 )

Γ( d
2+

m
m−1 )

]
2(1−m)

2+d(m−1) .

In the specific case where A is the zero matrix of Rd×d, then fµ,A ≡ 1; g ≡ 0 and Λ ≡ 0. Hence, we

recover the conservative porous media equation, whose explicit solution is

v(t, x) = Bm(t+ 2, x) , for all (t, x) ∈ [0, T ]× R
d,

see [1]. For general values of A ∈ R
d×d, extended calculations produce the following explicit solution

v(0, ·) = v0(·) and v(t, x) = Bm(t+ 2, x)fµ,A(x) , for all (t, x) ∈ [0, T ]× R
d , (5.32)

of (5.27), which is non conservative.

5.3 Details of the implementation

Once fixed the number N of particles, we have run M = 100 i.i.d. particle systems producing (uε,N,i)i=1,···M ,

which are M i.i.d. realizations of uε,N introduced just after (5.24). The MISE is then approximated by the

Monte Carlo approximation

E[‖uε,N
t − vt‖22] ≈

1

MQ

M∑

i=1

Q∑

j=1

|uε,N,i
t (Xj)− vt(X

j)|2v−1(0, Xj) , for all t ∈ [0, T ] , (5.33)

where (Xj)j=1,··· ,Q=1000 are i.i.d R
d-valued random variables with common density v(0, ·). In our simula-

tion, we have chosen T = 1, m = 3/2, µ = 0 and A = 2
3Id. Kε = 1

εd
φd( ·

ε
) with φd being the standard and

centered Gaussian density.

In this subsection, we fix the dimension to d = 5. We have run a discretized version of the interacting

particle system with Euler scheme mesh kT/n with n = 10. Notice that this discretization error is neglected

in the present analysis.

Our simulations show that the approximation error presents two types of behavior depending on the

number N of particles with respect to the regularization parameter ε.

1. For large values of N , we visualize a chaos propagation behavior for which the error estimates are similar

to the ones provided by the density estimation theory [26] corresponding to the classical framework

of independent samples.

2. For small values of N appears a transient behavior for which the bias and variance errors cannot be

easily described.

Observe that the Mean Integrated Squared Error MISEt(ε,N) := E[‖uε,N
t − vt‖22] can be decomposed as

the sum of the variance Vt(ε,N) and squared bias B2
t (ε,N) as follows:

MISEt(ε,N) = Vt(ε,N) +B2
t (ε,N)

= E

[
‖uε,N

t − E[uε,N
t ]‖22

]
+ ‖E[uε,N

t ]− vt‖22 . (5.34)

For N large enough, according to Corollary 3.2, one expects that the propagation of chaos holds. Then the

particle system (ξi,N )i=1,··· ,N (solution of (3.3)) is close to an i.i.d. system with common law m0. We observe
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that, in the specific case where the weighting function Λ does not depend on the density u, for t ∈ [0, T ], we

have

E[uε,N
t ] =

1

N
E




N∑

j=1

Kε(· − ξj,Nt ) exp
{ ∫ t

0

Λ(r(s), ξj,N
r(s)) ds

}

 ,

= E
[
Kε(· − Y 1

t )Vt

(
Y 1

)]

= uε
t . (5.35)

Therefore, under the chaos propagation behavior, the approximations below hold for the variance and the

squared bias:

Vt(ε,N) ≈ E

[
‖uε,N

t − uε
t‖22

]
and B2

t (ε,N) ≈ ‖uε
t − vt‖22 . (5.36)

We recall that the relation uε = Kε ∗ vε comes from Theorem 6.1 of [20], where vε is solution of (1.5) with

K = Kε.

On Figure 1, we have reported the estimated variance error Vt(ε,N) as a function of the particle number

N , (on the left graph) and as a function of the regularization parameter ε, (on the right graph), for t = T = 1

and d = 5. We have used for this a similar Monte Carlo approximation as (5.33).

That figure shows that, when the number of particles is large enough, the variance error behaves precisely

as in the classical case of density estimation encountered in [26], i.e., vanishing at a rate 1
Nεd

, see relation

(4.10), Chapter 4., Section 4.3.1. This is in particular illustrated by the log-log graphs, showing almost linear

curve, when N is sufficiently large. In particular we observe the following.

• On the left graph, log(Vt(ε,N)) ≈ a− α logN with slope α = 1;

• On the right graph, logVt(ε,N) ≈ b − β log ε with slope β = 5 = d.

It seems that the threshold N after which appears the linear behavior (compatible with the propagation of

chaos situation corresponding to asymptotic-i.i.d. particles) decreases when ε grows. In other words, when

ε is large, less particles N are needed to give evidence to the chaotic behavior.

This phenomenon can be probably explained by analyzing the particle system dynamics. Indeed, at

each time step, the interaction between the particles is due to the empirical estimation of uε = Kε ∗vε based

on the particle system. Intuitively, the more accurate the approximation uε,N of uε is, the less strong the

interaction between particles will be. In the limiting case when uε,N = uε, the interaction disappears.

Now observe that at time step 0, the particle system (ξi,N0 ) is i.i.d. according to v0(·), so that the esti-

mation of (Kε ∗ vε)(0, ·) provided by (4.1) reduces to the classical density estimation approach, see [26] as

mentioned above. In that classical framework, we emphasize that, for larger values of ε, the number of

particles, needed to achieve a given density estimation accuracy, is smaller. Hence, one can imagine that for

larger values of ε less particles will be needed to obtain a quasi-i.i.d particle system at time step 1, (ξi,Nt1
).

We can then reasonably presume that this initial error propagates along the time steps.

On Figure 2, we have reported the estimated squared bias error, B2
t (ε,N), as a function of the regular-

ization parameter, ε, for different values of the particle number N , for t = T = 1 and d = 5.

One can observe that, similarly to the classical i.i.d. case, (see relation (4.9) in Chapter 4., Section 4.3.1

in [26]), for N large enough, the bias error does not depend on N and can be approximated by aε4, for

some constant a > 0. This is in fact coherent with the bias approximation (5.36), developed in the specific

case where the weighting function Λ does not depend on the density. Assuming the validity of approxi-

mation (5.36) and of the previous empirical observation implies that one can bound the error between the
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solution, vε, of the regularized PDE of the form (1.5) (with K = Kε) associated to (5.27), and the solution,

v, of the limit (non regularized) PDE (5.27) as follows

‖vεt − vt‖22 ≤ 2‖vεt − uε
t‖22 + 2‖uε

t − vt‖22
≤ 2‖vεt −Kε ∗ vεt ‖22 + 2‖uε

t − vt‖22
≤ 2(a′ + a)ε4. (5.37)

Indeed, at least, the first term in the second line can be easily bounded, supposing that vεt has a bounded

second derivative. This constitutes an empirical proof of the fact that vε converges to v.

As observed in the variance error graphs, the threshold N , above which the propagation of chaos behavior

is observed decreases with ε. Indeed, for ε > 0.6 we observe a chaotic behavior of the bias error, starting

from N ≥ 500, whereas for ε ∈ [0.4, 0.6], this chaotic behavior appears only for N ≥ 5000.

For small values of ε ≤ 0.6, the bias highly depends on N for any N ≤ 104; moreover that dependence

becomes less relevant when N increases. This is probably due to the combination of two effects: the lack

of chaos propagation phenomenon and the fact that the coefficient Λ depends on u, so that (5.35) does not

hold in that context.

Taking into account both the bias and the variance error in the MISE (5.34), the choice of ε has to be

carefully optimized w.r.t. the number of particles: ε going to zero together with N going to infinity at a

judicious relative rate seem to ensure the convergence of the estimated MISE to zero. This kind of tradeoff

is standard in density estimation theory and was already investigated theoretically in the context of forward

interacting particle systems related to conservative regularized nonlinear PDE in [17]. Extending this type

of theoretical analysis to our non conservative framework is beyond the scope of the present paper.
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Figure 1: Variance error as a function of the number of particles, N , and the mollifier window width, ε, for dimension

d = 5 at the final time step T = 1.

5.3.1 Time discretization error

In this subsection, we are interested in analysing via numerical simulations the time discretization error

w.r.t. to δt = T/n. As announced in Remark 4.3, we suspect that the rate in (4.4) is not optimal and that the
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Figure 2: Bias error as a function of the mollifier window width, ε, for dimension d = 5 at the final time step T = 1.

MISE error induced by the time discretization is of order 1/n2 instead of 1/n.

Let ũε,N,n
T denote the particle approximation obtained by scheme (4.1) with a number of particles, N , a

regularization parameter, ε, and a number of time steps, n. In order to focus on the time discretization error

apart from the particle approximation and the regularization error (related to N and ε), we have considered

errors of the type E[‖ũε,N,n
T − ũε,N,n0

T ‖22] for different numbers of time steps n < n0 where n0 is supposed

to be a large number of time steps. More precisely, we have decomposed this error into a variance and a

squared bias term as

E[‖ũε,N,n
T − ũε,N,n0

T ‖22] = E
[
‖ũε,N,n

T − E[ũε,N,n
T ]‖22

]
+ E

[
‖ũε,N,n0

T − E[ũε,N,n0

T ]‖22
]

︸ ︷︷ ︸
Variance

(5.38)

+ ‖E[ũε,N,n
T ]− E[ũε,N,n0

T ]‖22︸ ︷︷ ︸
Bias2

,

if uε,N,n
T and uε,N,n0

T are independent.

On Figure 3, we have reported the Monte Carlo estimation (according to (5.33), with Q = 1000 runs)

of the above variance and squared bias terms in a log-log scale in order to diagnose the expected rate

of convergence 1/n2 via a straight line with slope −2. All the parameters are similar to the simulations

performed in previous subsection excepted for the dimension d = 1, N = 5000 and n0 is set to 1000 time

steps. One can observe that the variance term (in dashed lines) seems not to depend on the number of time

steps n whereas the squared bias term decreases as expected at a rate close to 1/n2.

6 Appendix

In this appendix, we present the proof of Lemma 4.4. We first proceed with the proof of some intermediary

inequalities.

Lemma 6.1. We suppose Assumption 1. Let N ∈ N
⋆. Let (ξi,N )i=1,··· ,N be (a solution of) the interacting particle
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