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Abstract— ∗ In this paper, we propose a new code-aided (CA)
timing recovery algorithm for various linear constant modulus
constellations based on the Maximum Likelihood (ML) estimator.
The first contribution is the derivation of a soft estimator
expression of the transmitted symbol instead of its true or hard
estimated value which is fed into the timing error detector (TED)
equation. The proposed expression includes the Log-Likelihood
Ratios (LLRs) obtained from a turbo decoder. Our results show
that the proposed CA approach achieves almost as good results
as the data-aided (DA) approach over a large interval of SNR
values while achieving a higher spectral efficiency. We alsoderive
the corresponding CA Cramer Rao Bounds (CRB) for various
modulation orders. Contrarily to former work, we develop here
the CRB analytical expression for different M -PSK modulation
orders and validate them through comparison to empirical CRB
obtained by Monte Carlo iterations. The proposed CA estimator
realizes an important gain over the non data-aided approach
(NDA) and achieves a smaller gap when compared to its relative
CA CRB, especially at moderate SNR values where modern
systems are constrained to work.

I. I NTRODUCTION

Synchronization is among the most important tasks per-
formed in a communication system receiver prior to detection
and decoding. The main issue in a synchronization scheme is
to work properly even at very low SNR and this is a hard task
as it is processed at the front end. In this paper, we focus
on time delay synchronization for linear constant modulus
modulation systems.

Timing recovery is required to ensure that the sampling
instants coincide with the maximum opening of the signal
eye-diagram thus maximizing the robustness to noise and
interference. Some DA and non-data-aided (NDA) time delay
estimation techniques have been employed in real systems for
decades such as those reported in [1] and [2]. However, in a
DA mode, we need to insert some pilot signals which leads to
the loss of throughput and the decrease of spectrum efficiency.
In the NDA mode, no reference signals are needed and time
synchronization is performed using only the received signal.
As a result, the system performance can be deteriorated due to
the loss of some statistical information about the transmitted
signal especially in harsh channel conditions. Nevertheless,
with the development of channel coding techniques [3]–[7],
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more researches have focused on CA synchronization algo-
rithms [8] which consist in taking advantage of the decoding
gain to improve the estimation performance of the desired
parameters. The frame of iterative receivers can help the
synchronizer to better estimate the time delay by exploiting
the soft information about the received symbols. This tech-
nique has already been used for phase estimation in turbo
decoding receivers [9]. It was also exploited in [10] with an
expectation maximization algorithm in the Maximum Likeli-
hood (ML) synchronization framework. Moreover, the timing
synchronizer and the channel decoder can improve each other
progressively by exchanging information using iterative tech-
niques. Reference [11] presents a maximum likelihood timing
estimator which uses the extrinsic information generated from
the decoder to perform time synchronization for BPSK signals.
In [12] the authors have proposed to introduce the timing
recovery inside the turbo equalizer to jointly perform these
tasks. Unfortunately, this technique requires a large number
of turbo iterations, especially when the timing jitter is large.
In [13], an iterative timing recovery technique where the soft
information from the decoder is fed into the Mueller and
Muller (M&M) Timing Error Detector (TED) [1] is jointly
performed with turbo equalization for BPSK signals. We have
already proposed a soft maximum likelihood timing recovery
technique for BPSK signals in [14] and for square QAM
signals in [15] and this soft estimation is valid for any kind
of timing detector.

The first contribution of this paper is to propose a new
soft time delay estimation forM -PSK modulated signals. This
expression is derived from the likelihood function conditioned
to the time delay and used by the ML timing error detector in-
stead of the effective or hard estimated symbol. The proposed
expression includes the LLRs obtained from a soft decoder
such as a turbo decoder.

Although many estimators have been proposed so far,
theoretically assessing their relevance compared to the best
achievable performance is also of a great interest. Thus, we
have to resort to compare the proximity of both analytical
and simulation results to some lower bounds corresponding
to the optimum performance. For instance, lower bounds on
the MSE give an indication of the performance limitations, and
consequently determine whether the performance requirements
in terms of MSE are realistic or not and if enhancements are
still possible. Although there exists many families of lower



bounds, the Cramer-Rao bound (CRB) family is the most
commonly used and the easiest to determine [16]. There are
several works concerning the CA CRBs for carrier phase
and frequency estimation. In [17]–[19], the authors derivethe
Bayesian and hybrid Cramer-Rao bounds (BCRB and HCRB)
for the CA, the DA, and the NDA dynamical phase estimation
of linearly modulated signals and theoretically show the possi-
ble improvement brought by a soft CA technique. In reference
[20], a forward-backward algorithm was proposed to cope with
the performance deterioration in the NDA mode; although
this technique has sometimes shown better performance than
the CA approach, it can only be implemented by an off-line
manner. A comparison between different timing techniques in
terms of BER has been proposed in [21] using the extrinsic
information transfer chart (EXIT chart) [22]. Nevertheless,
some statistical properties of the estimators such as the bias
and the mean square error (MSE) cannot be provided by the
EXIT chart analysis. The authors of [23] have derived semi-
analytical expressions of the estimator mean and variance,
as function of the timing offset, for a CA decision-directed
(DD) timing synchronizer based on M&M Detector (MMD).
However, the performance evaluation has been made only for
BPSK signals at low SNR regime, based on the assumption
that inter-symbol interference (ISI) could be approximated
by an additive Gaussian noise as in [24]. For time recovery,
only closed forms of the DA CRB [25] and the NDA CRB
for BPSK, MSK and Square-QAM Transmissions [26] have
been derived. Differently from [25] and [26], our goal and
contribution through this work is also to give closed form
expressions of the CRB for CA timing recovery for BPSK,
QPSK and in generalM -PSK modulated signals and to
compare the performance of the proposed CA estimator to
this bound.

This paper is organized as follows. In section II, the system
model and the Decision Directed (DD) time delay estimation
based on the ML approach are recalled. In section III, the
derivation of various CA time delay recovery techniques is
proposed. Then, in section IV closed form expressions of some
CRBs for different types of linear modulations are derived.
Simulation results are provided in section V and validate our
analysis. The last section concludes our work.

GLOSSARY OF PRINCIPAL NOTATIONS

• ℜ{z} andℑ{z}: the real and imaginary parts ofz
• z∗: the conjugate ofz
• yk,1: the real part of any variableyk
• yk,2: the imaginary part of any variableyk
• ⊗: the convolution operation
• f ′ (resp.f ′′): the first (resp. the second) derivative off ,

for any functionf
• fX(x): the probability density function (pdf) of the

random variableX
• P (X): the probability of the random variableX
• E(X): the mean value of the random variableX

II. D ECISION DIRECTED TIME DELAY ESTIMATION

Let us consider the linearly modulated transmitted signal
s(t) written as:

s(t) =
∑

i

aih(t− iT ), (1)

where ai denotes the zero mean i.i.d. transmitted symbols
drawn from a given finite size constellation,h(t) is the impulse
response of the transmission filter andT is the symbol period.

The received signal is:

r(t) = s(t− τ) + n(t), (2)

where the channel introduces an unknown delayτ to the
transmitted signals(t). In (2) the received signal is disturbed
by an additive white Gaussian noise (AWGN)n(t) of zero
mean and of varianceσ2.

The time delay is estimated in the maximum likelihood
sense by maximizing the likelihood function according to the
following equation [27]:

τ̂ = argmax
u

Λ(u, a), (3)

wherea is the vector of the transmitted symbols,

Λ(u, a) = exp

(

− 1

2σ2

∫

T0

|r(t) − s(t− u)|2 dt
)

, (4)

is the likelihood function andT0 is the observation interval.
Equivalently, the log-likelihood functionΛL(u, a) can be used
instead ofΛ(u, a). According to [28], whenT0 is large enough,
from (1)-(4) we estimate the time delay in the maximum
likelihood sense according to:

τ̂ = argmax
u

ΛL(u, a), (5)

where:

Λ(u, a) =
∏

j

exp

(ℜ{a∗jxj(u)}
σ2

)

, (6)

or equivalently:

ΛL(u, a) = log (Λ(u, a)) =
∑

j

ℜ
{
a∗jxj(u)

}

σ2
, (7)

and:

xj(u) = yj(u) + vj(u), (8)

yj(u) =
∑

i

aig ((j − i)T − (τ − u)) , (9)

vj(u) =

∫

T0

h∗(t− jT − u)n(t)dt, (10)

g(t) = h⊗ h∗
−(t), (11)

whereh−(t) = h(−t), for any functionh. xj(u) is seen as
the matched filter output of the received signal,yj(u) is the
useful part,vj(u) is a colored gaussian noise of zero mean
and varianceσ2 andg is a Nyquist pulse.

Since it is difficult in practice to maximize analytically (7)
with respect tou, adaptive algorithms are implemented whose



objective is to minimize the instantaneous error at each time
instantk using the following equation:

τk = τk−1 + µek(ak, τk−1), (12)

whereτk is the estimate ofτ at time indexk, µ is the step
size andek(ak, τ̂k−1) is the updating error term expressed as:

ek(ak, τk−1) = ℜ
{

a∗k
∂xk(τ)

∂τ
|τ=τk−1

}

. (13)

Such approach is called the ML-based Detector (MLD) by
the authors of [29]. The term∂xk(τ)

∂τ
|τ=τk−1

can be obtained
by first interpolating the sampled version of the received
signal using a polynomial interpolator, then differentiating the
interpolated polynomial function with respect toτ and finally
evaluating the derivative atτk−1. However, the proposed com-
putation method ofek(ak, τk−1) leads to high implementation
complexity because of the presence of the derivative of the
matched filter denotedh′

−(t).
Other expressions of the updating term in the adaptive

estimation of τ have been proposed in the literature by
approximating the derivative ofxk(τ) using a finite difference
method. Table I summarizes the updating term expression of
the most known Timing Error Detectors (TED) which are the
M&M Detector (MMD) [1], the Zero Crossing Detector (ZCD)
[30] and the Early Late Detector (ELD) [31].

TABLE I: Timing Detectors

TED updating term:ek(ak , τk−1)
MMD akxk−1(τk−1)− ak−1xk(τk−1)
ZCD x

k− 1

2

(τk−1) [ak − ak−1]

ELD ak

[

x
k+ 1

2

(τk−1)− x
k− 1

2

(τk−1)
]

The symbolsak which appear in the updating term can be
known if some pilot symbols are sent within the data frame.
In this case, the TED is operating in a DA mode. In order
to enhance the spectral efficiency, these pilot symbols can be
omitted andak are estimated at the receiver. The TED is then
operating in a DD mode. To do so, we usually implement a
NDA mode in which a hard estimation of the symbolsak
is used. Nevertheless, this technique performance degrades
rapidly at low SNR, where modern systems are constrained
to work. Departing from the classical ML approach and the
previous simplified proposed versions, we hereafter propose a
new timing detector using soft estimated symbols instead of
knownak or DD hard estimation ofak, in the updating term.
The new time delay estimation technique takes advantage of
the soft information from the decoder block to ameliorate the
timing recovery results. The proposed algorithm derivation and
performance evaluation are going to be presented in the next
sections.

III. PROPOSEDCODE A IDED TIMING DETECTOR

Instead of making possibly unreliable hard decisions on the
received data (NDA approach) or reducing spectral efficiency
by sending preamble sequences (DA Approach), we propose
to take advantage of the system decoder output, in order
to enhance the time recovery performance. In the following

paragraphs, we derive a code aided adaptive algorithm based
on the maximum likelihood approach forM -PSK signals.

We assume the constellation to be Gray-coded taking values
in the alphabet setV = {v0, v1, ..., vM−1} where M is
the constellation size. We suggest the following notation for
the ith Gray-coded constellation elementvi and the kth

transmitted symbolak:

vi ⇔ ci1c
i
2...c

i
log

2
(M), (14)

ak ⇔ bk1b
k
2 ...b

k
log

2
(M), (15)

wherecij (resp.bkj ) corresponds to theith binary information
of vi (resp.ak).

By choosing a large-size interleaver, we can assume that
coded bits in a symbol are statistically independent [4] [32]
so that the a priori probability of the transmitted symbolak
to be equal to a possible symbolvi of the alphabet is:

P [ak = vi] = P [bk1 = ci1, b
k
2 = ci2, ..., b

k
log

2
(M) = cilog

2
(M)]

=

log2(M)
∏

m=1

P [bkm = cim]. (16)

Let us consider,λk
m = log

(
P [bkm=1]
P [bkm=0]

)

the soft output of
the decoder at any time indexk. Assuming that the sym-
bol vi is transmitted at time instantk, a general formula
of the a priori probability of the coded bitbkm, using
P [bkm = 0] + P [bkm = 1] = 1 , is given by:

P [bkm = cim] =
exp

(

(2cim − 1)
λk
m

2

)

2 cosh
(

λk
m

2

) . (17)

The soft informationλk
m can either be obtained simply from

a soft demapper or, after several decoding iterations, by a
soft decoder. In practice, it is easier to process soft demapper
data rather than soft decoder values. At low SNR however,
the coding gain is advantageous especially for high order
constellations leading the soft decoding a more interesting
approach.

Unlike (3) and (5) and in the absence of training sequences,
we consider the ML estimator averaged over all possible
realizations:

τ̂ = argmax
u

ΛL(u) = argmax
u

log (Λ(u)) , (18)

whereΛ(u) is obtained by averaging the likelihood function
Λ(u, a) over the possible set of transmitted symbolsak.
Thus, averaging (6) over the set of possible transmitted sym-
bols and using their independence property, we obtain:

Λ(u) =
∏

k

∑

vi∈V

P [ak = vi] exp

(ℜ{v∗i xk(u)}
σ2

)

,(19)

whereP [ak = vi] is given by (16)-(17).
In the following, we derive separately the CA TED for

BPSK, QPSK andM -PSK modulated signals. Even if BPSK
and QPSK can be considered as 2-PSK and 4-PSK respec-
tively, for CA TED we use a recursive technique that works
only for largerM -PSK, with constellation sizeM ≥ 8.



A. BPSK modulation

In this section, we present the code aided adaptive time
recovery algorithm with a BPSK modulation which is a
subcase ofM -PSK with M = 2 and m = 1. In this case,
vi ∈ {−1, 1} and bk ∈ {0, 1}. Using (16) and (17), the
Likelihood function in (19) for a BPSK signal becomes:

Λ(u) =
∏

k

cosh
(

λk

2 +
xk,1(u)

σ2

)

cosh(λk

2 )
, (20)

where, for simplification,λk denotesλk
1 and the index1 in

xk,1(u) refers to the use of the real part ofxk(u).
The received signal is corrupted by a real-valued AWGN

with power spectral density equal toN0

2 = σ2 so that going
back to the log-likelihood function from (20), we obtain the
following expression:

ΛL(u) =
∑

k

ln




cosh

(
λk

2 +
2xk,1(u)

N0

)

cosh(λk

2 )



 . (21)

By differentiatingΛL(u) with respect tou we obtain:

∂ΛL(u)

∂u
=
∑

k

2

N0

∂xk,1(u)

∂u
tanh

(
λk

2
+

2xk,1(u)

N0

)

. (22)

Then in order to estimateτ , we propose in practice to im-
plement the ML adaptive equation (12) or the approximations
presented in Table I by substitutingak with the soft symbol:

ãk(u) = tanh

(
λk

2
+

2xk,1(u)

N0

)

. (23)

The updating equation then becomes:

τk = τk−1 + µek(ãk(τk−1), τk−1), (24)

where the soft symbol is given by (23).

B. QPSK modulation

With a QPSK modulation, for whichM = 4 and m ∈
{1, 2}, the constellation set isV = {v0, v1, v2, v3} where:

v1 = −v0, v2 = v∗0 , v3 = −v∗0 , (25)

and we choose the corresponding Gray-coded bits:

v0 ⇔ 11, v1 ⇔ 00, v2 ⇔ 01 andv3 ⇔ 10. (26)

The likelihood function is then given by:

Λ(u) =
∏

k

3∑

i=0

P [ak = vi] exp

(ℜ{v∗i xk(u)}
σ2

)

. (27)

The expression ofP [ak = vi] can be obtained using (16), (17)
and (26) as:

P [ak = vi] = βk exp

(
(2ci1 − 1)λk

1 + (2ci2 − 1)λk
2

2

)

, (28)

whereβk =
1

4 cosh(λk
1/2) cosh(λ

k
2/2)

.

By replacingP [ak = vi] in (27) by its expression (28) and
using (25), we get:

Λ(u) =
∏

k

2βk

[

cosh

(
λk
1 + λk

2

2
+

ℜ{v∗0xk(u)}
σ2

)

+ cosh

(
λk
2 − λk

1

2
+

ℜ{v∗0xk(u)}
σ2

)]

. (29)

Given thatcosh(a) + cosh(b) = 2 cosh
(
a+b
2

)
cosh

(
a−b
2

)
and

that the received signal is corrupted by a complex−valued
AWGN with power spectral density equal toN0 = σ2, we
obtain:

Λ(u) =
∏

k

4βk cosh

(
λk
2

2
+

2v0,1xk,1(u)

N0

)

× cosh

(
λk
1

2
+

2v0,2xk,2(u)

N0

)

. (30)

Evaluating and differentiating the log-likelihood function
ΛL(u) with respect tou leads to:

∂ΛL(u)

∂u
=

2

N0

∑

k

ℜ
{

ã∗k(u)
∂xk(u)

∂u

}

, (31)

where:

ãk,1(u) = v0,1 tanh

(
λk
2

2
+

2v0,1xk,1(u)

N0

)

, (32)

ãk,2(u) = v0,2 tanh

(
λk
1

2
+

2v0,2xk,2(u)

N0

)

. (33)

In practice, like for the BPSK case, we propose to estimate
τ , using the updating equation (24) where the real and imag-
inary parts ofãk are respectively given by (32) and (33) for
u = τk−1.

C. M -PSK modulation

In this paragraph, we derive an adaptive TED algorithm
equation in the case ofM -PSK modulated signals. These
derivations are indeed built based on the Gray coding prop-
erties and exploit the relationship between constellations of
order p and p − 2 which makes the analysis valid only for
p ≥ 3. All the analytical expressions are valid for signals that
are mapped from3-bits and more. Stated differently, the above
results related to BPSK and QPSK signals cannot be derived
as particular cases.

In fact, anM -PSK modulated signal takes values from the
set V2p = {vm = e

j2πm

M , m = 1, ...,M}, whereM = 2p..
We note that:

vm+M
2

= −vm. (34)

If we considerṼ2p = {ṽm = e
j2πm

M , m = 1, ..., M2 }, then
V2p = Ṽ2p ∪ (−Ṽ2p). From (19) and given thatV2p = V , the
likelihood function can be written as:

Λ(u) =
∏

k

∑

ṽm∈Ṽ2p

[

P(ak = ṽm) exp

(ℜ{ṽ∗mxk(u)}
σ2

)

+ P(ak = −ṽm) exp

(

−ℜ{ṽ∗mxk(u)}
σ2

)]

. (35)



In order to compute P(ak = ṽm), we use a Gray-mapping
technique forM -PSK modulated signals. According to (16)
and (17), the symbol probability is given by:

P(ak = ṽm) =

p
∏

l=1

1

2 cosh
(

λk
l

2

)

︸ ︷︷ ︸

β
p

k

p
∏

n=1

exp

(

(2cmn − 1)
λk
n

2

)

︸ ︷︷ ︸

ξ
p

k
(ṽm)

.

(36)
For notation convenience, we briefly describe the recurrence

based construction of a2p-PSK Gray coded constellation
starting from a2p−1−PSK Gray coded constellation.
TABLE. II illustrates the step by step construction of the code,
where for a givenp, each column corresponds to a symbol.

TABLE II: Gray Code For Various Constellation Lengths

p = 1 0 1

p = 2 0 1 1 0
0 0 1 1

p = 3 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

p = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

In this section, we are interested inp values greater than or
equal to3.

In general, and based on the previous example,

∀ṽm ∈ Ṽ2p cmp = 0, (37)

∀ṽm ∈ (−Ṽ2p) cmp = 1, (38)

The p− 1 MSB of Ṽ2p elements are those of̃V2p−1 elements
and thep − 1 MSB of (−Ṽ2p) elements are those of̃V2p−1

elements but in the reverse order.
The symbol probability (36) becomes:

P(ak = ṽm) = βp
k

p−1
∏

l=1

exp

(

(2cml − 1)
λk
l

2

)

︸ ︷︷ ︸

γ
p−1

k
(ṽm)

exp

(

(2cmp − 1)
λk
p

2

)

.

(39)
whereγ2

k(ṽm) = 1. As a result, for anỹvm in Ṽ2p :

P(ak = ṽm) = βp
kγ

p−1
k (ṽm) exp

(

−
λk
p

2

)

, (40)

P(ak = −ṽm) = βp
kγ

p−1
k (−ṽm) exp

(

λk
p

2

)

. (41)

Replacing the symbol probability (39) into (35) we obtain:

Λ(u) =
∏

k

βp
k

σ2

2p−1

∑

m=1

[

γp−1
k (ṽm) exp

(

−
λk
p

2

)

×

exp

(ℜ{ṽ∗mxk(u)}
σ2

)

+ γp−1
k (−ṽm)×

exp

(

λk
p

2

)

exp

(

−ℜ{ṽ∗mxk(u)}
σ2

)]

, (42)

whereṽm = exp
(
j 2πm

M

)
, for m = 1, ..,M/2 = 2p−1.

Here, we are actually dealing with the firstp − 1 most
significant bits (MSB) ofṽm ⇔ cm1 cm2 ...cmp−1c

m
p . We define

ṽn the 2p−1−PSK symbol associated to the Gray-mapping
ṽn ⇔ cm1 cm2 ...cmp−1, wheren is in {1, ..., 2p−1}. We evoke
the same decompositionV2p−1 = Ṽ2p−1 ∪ (−Ṽ2p−1) for the
2p−1−PSK constellation mapping. The symbolsṽn are ob-
tained from the previous Gray-coded2p−1−PSK constellation
by applying the same construction procedure. Thus,ṽn and
−ṽn have the same (p− 2) MSBs. This analysis then requires
that p ≥ 3 which justifies the separate treatment ofp = 1
(BPSK) andp = 2 (QPSK).

Accordingly:

γp−2
k (ṽn) =

p−2
∏

l=1

exp

(

(2cml − 1)
λk
l

2

)

, (43)

which yields the following expression:

γp−1
k (ṽm) = γp−2

k (ṽn) exp

(

(2cmp−1 − 1)
λk
p−1

2

)

. (44)

Now, we are going to derive the expression ofcmp−1 as a
function ofm. We actually know that:

cmp−1 =







0 if 1 ≤ n ≤ 2p−1

2
= 2p−2,

1 if 2p−2 < n ≤ 2p−1.
(45)

Given that:

1 ≤ n ≤ 2p−2 ⇔
⌊

n

2p−2 + 1

⌋

= 0, (46)

2p−2 < n ≤ 2p−1 ⇔
⌊

n

2p−2 + 1

⌋

= 1, (47)

where⌊x⌋ is the integer part ofx, we can write that:

cmp−1 =

⌊
n

2p−2 + 1

⌋

. (48)

It is also straightforward to show that:

n = rem(m,
M

2
), (49)

where M = 2p and rem(x, y) is the remainder of the
Euclidean division ofx by y. As a result:

cmp−1 =

⌊

rem
(
m, 2p−1

)

2p−2 + 1

⌋

. (50)

Consequently, we obtain that:

γp−1
k (ṽm) = γp−2

k (ṽn) exp

((

2

⌊
rem(m, 2p−1)

2p−2 + 1

⌋

− 1

)

×
λk
p−1

2

)

= αk
p−1(m), (51)

whereαk
p−1(m) is calculated recursively for anyp ≥ 3 from:

αk
p−1(m)=αk

p−2

(
rem(m, 2p−1)

)
×

exp

((

2

⌊
rem(m, 2p−1)

2p−2 + 1

⌋

− 1

)
λk
p−1

2

)

. (52)



Due to the construction symmetry of the Gray-mapping, we
can note that for any integerm in {1, ..., 2p−1}:

γ
p−1
k (−ṽm)=γ

p−1
k (ṽ2p−1−m+1)

=α
k
p−1(2

p−1 −m+ 1)

=α
k
p−2

(

rem(2p−1 −m+ 1, 2p−1)
)

× (53)

exp

((

2

⌊

rem(2p−1 −m+ 1, 2p−1)

2p−2 + 1

⌋

− 1

)

λk
p−1

2

)

.

On one hand we have that:

αk
p−2(rem(2p−1−m+1, 2p−1)) = αk

p−2(2
p−1−m+1). (54)

On the other hand we have:

⌊
rem(2p−1 −m+ 1, 2p−1)

2p−2 + 1

⌋

=

{

1 if m ∈ {1, ..., 2p−2},
0 if m ∈ {2p−2 + 1, ..., 2p−1}.

(55)
Thus:

γ
p−1
k (−ṽm) =























α
k
p−2(2

p−1 −m+ 1) exp

(

λk
p−1

2

)

if 1 ≤ m ≤ 2p−2
,

α
k
p−2(2

p−1 −m+ 1) exp

(

−λk
p−1

2

)

if 2p−2
< m ≤ 2p−1

.

(56)
As a result, the likelihood function (42) becomes:

Λ(u)=
∏

k

β
p
k

σ2

2p−2

∑

m=1

α
k
p−2(m) exp

(

ℜ{ṽ∗mxk(u)}
σ2

− λk
p−1

2
− λk

p

2

)

+α
k
p−2(2

p−1 −m+ 1) exp

(

−ℜ{ṽ∗mxk(u)}
σ2

+
λk
p−1

2
+

λk
p

2

)

+
2p−1

∑

m=2p−2+1

α
k
p−2(m) exp

(

ℜ{ṽ∗mxk(u)}
σ2

+
λk
p−1

2
− λk

p

2

)

(57)

+α
k
p−2(2

p−1 −m+ 1) exp

(

−ℜ{ṽ∗mxk(u)}
σ2

− λk
p−1

2
+

λk
p

2

)

.

Due to the construction symmetry of the Gray mapping,
the first p − 2-bits of any symbolṽm are identical to that
of ṽ2p−1−m+1, for any integerm in {1, 2p−1}, so that,
αk
p−2(2

p−1 −m+ 1) = αk
p−2(m).

Based on the fact that,̃v∗
m+2p−2 = jṽ∗m, and from (57), the

log-likelihood function can be written as:

ΛL(u)=
∑

k

log

(

2βp
k

N0

)

+
∑

k

log

( 2p−2

∑

m=1

α
k
p−2(m)×

cosh

(

ℜ{ṽ∗mxk(u)}
N0

− λk
p−1

2
− λk

p

2

)

+
2p−2

∑

m=1

α
k
p−2(2

p−2 −m+ 1)×

cosh

(

−ℑ{ṽ∗mxk(u)}
N0

+
λk
p−1

2
− λk

p

2

)

)

, (58)

whereN0 = σ2 is the power spectral density of the complex-
valued AWGN noise.

Let us define:

Hk(x)=
2p−2

∑

m=1

αk
p−2(m) cosh

(

ℜ{ṽ∗mx}

N0
−

λk
p−1

2
−

λk
p

2

)

+αk
p−2(2

p−2 −m+ 1) cosh

(

−
ℑ{ṽ∗mx}

N0
+

λk
p−1

2
−

λk
p

2

)

,(59)

gm(x)=αk
p−2(m) sinh

(

ℜ{ṽ∗mx}

N0
−

λk
p−1

2
−

λk
p

2

)

and (60)

hm(x)=αk
p−2(2

p−2 −m+ 1) sinh

(

−
ℑ{ṽ∗mx}

N0
+

λk
p−1

2
−

λk
p

2

)

.(61)

From (58)-(61), we find that:

∂ΛL(u)

∂u
=

1

N0

∑

k

ℜ
{

ã∗k(u)
∂xk(u)

∂u

}

, (62)

where the real and the imaginary partsãk,1 and ãk,2 of the
soft symbol are given by:

ãk,i(u) =
Ii(xk(u))

Hk (xk(u))
, i ∈ {1, 2}, (63)

with:

Ii(x) =

2
p−1

∑

m=1

gm (x) κi + hm (x) εi, (64)

κi =

{

ṽm,1 if i = 1

−ṽm,2 if i = 2
, (65)

and:

εi =

{
ṽm,2 if i = 1
−ṽm,1 if i = 2

(66)

For M -PSK, the timing offset estimate is also updated
according to (24) where the real and imaginary parts ofãk
are given by (63) foru = τk−1.

IV. CRAMER-RAO BOUND

In this section, we derive the Cramer-Rao Bound (CRB) for
a code-aided delay estimation in the case of BPSK, QPSK and
M -PSK (M ≥ 8) modulated signals. In this paper derivation
of the CRB is conditioned to the LLRs values. It is worth
to note that the herein derived CRB is conditioned to the
LLR values. A further averaging over the possible soft output
values should be then carried to evaluate the CRB. This is here
processed by averaging over Monte Carlo trials. Further work
could be carried to develop a semi analytical CRB expression
by analytically accounting for the LLRs variation as done in
[23] and [33] for the problem of MSE computation.

Suppose that we are able to produce an unbiased estimate
τ̂ of the delayτ from the received signal. The CRB which
verifiesE

[
(τ̂ − τ)2

]
≥ CRB(τ) for any estimator̂τ of τ is

defined as [16]:
CRB(τ) = I−1(τ), (67)

whereI(τ) is the Fisher information matrix (FIM) [16] given
by:

I(τ) = E

[(
∂ΛL(τ)

∂τ

)2
]

. (68)

In the next paragraph we first evaluate the expression (68) in
the case of a BPSK modulated signal.



A. BPSK modulation
For convenience, we recall that the log-likelihood function

is given by (21). By differentiatingΛL(τ) with respect toτ
and then squaring the result we have that:
(

∂ΛL(τ )

∂τ

)2

=
∑

j

∑

i

2

N2
0

∂xj,1(τ )

∂τ

∂xi,1(τ )

∂τ
(69)

×tanh

(

λj

2
+

2xj,1(τ )

N0

)

tanh

(

λi

2
+

2xi,1(τ )

N0

)

.

Taking the average of equation (69) over the observation noise
and the detected symbols, we then obtain:

E

[(

∂ΛL(τ )

∂τ

)2 ]

=
4

N2
0

∑

i

E

[(

∂xi,1(τ )

∂τ

)2

(70)

×tanh2

(

λi

2
+

2xi,1(τ )

N0

)]

+
4

N2
0

∑

j

∑

i6=j

E

[

∂xj,1(τ )

∂τ

∂xi,1(τ )

∂τ

×tanh

(

λj

2
+

2xj,1(τ )

N0

)

tanh

(

λi

2
+

2xi,1(τ )

N0

)]

.

In order to compute the first term of (70), we show in
Appendix A, as the demonstration is also useful in the sequel,
that ∂xj,1(τ)

∂τ
andxj,1(τ) are uncorrelated. Consequently, (70)

becomes:

E

[

(

∂ΛL(τ )

∂τ

)2
]

(71)

=
∑

i

4

N2
0

E

[

tanh2

(

λi

2
+

2xi,1(τ )

N0

)]

E

[

(

∂xi,1(τ )

∂τ

)2
]

+
∑

j

∑

i6=j

4

N2
0

E

[

∂xj,1(τ )

∂τ

∂xi,1(τ )

∂τ
×

tanh

(

λj

2
+

2xj,1(τ )

N0

)

tanh

(

λi

2
+

2xi,1(τ )

N0

)]

.

The derivation of the various expectations in (71) is given in
Appendix B. We finally obtain that:

E

[

(

∂ΛL(τ )

∂u

)2
]

=
∑

i

4

N2
0

[

1− 1√
πN0

∫ +∞

−∞

Gi(1, x,N0)dx

]

×
[

N0

2
g
′′(0) +

∑

n

g
′(nT )2

]

−
∑

i

∑

j 6=i

4

N2
0

g
′

((j − i)T )2, (72)

where:

Gi(ν, x,N0) =
exp

(

−x2+ν2

N0

)

cosh
(

2νx
N0

+ λi

2

) . (73)

Equation (72) implicitly depends on the SNR and the inverse
of (72) gives the CRB in the case of a BPSK modulation
scheme.

B. QPSK modulation
According to (31), squaring the derivative of the log-

likelihood functionΛL(τ) with respect toτ , leads to:
(

∂ΛL(τ )

∂τ

)2

=
∑

k

∑

n

2

N2
0

2
∑

i=1

2
∑

l=1

ãk,i(τ )ãn,l(τ )
∂xk,i(τ )

∂τ

∂xn,l(τ )

∂τ
.

From (32) and (33), we know that̃ak,i(τ) is function of
xk,i(τ). From Appendix A, we know thatxk(τ) and ∂xk(τ)

∂τ

are uncorrelated; considering the real and the imaginary parts
of the QPSK symbols as binary modulated signals,xk,i(τ)

and ∂xk,i(τ)
∂τ

are similarly uncorrelated. Thus:

E

[(
∂ΛL(τ)

∂τ

)2 ]

(74)

=
2

N2
0

∑

k

2∑

i=1

E

[

ã2k,i(τ)

]

E

[(
∂xk,i(τ)

∂τ

)2 ]

+
∑

k

∑

n,n6=k

2∑

i=1

2∑

l=1

2

N2
0

E

[
∂xk,i(τ)

∂τ

∂xn,l(τ)

∂τ
ãk,i(τ)ãn,l(τ)

]

.

Consequently from (32) and (33):

E

[(
∂ΛL(τ)

∂τ

)2 ]

=
∑

k

2∑

i=1

2

N2
0

E

[

tanh2
(
λk
i

2
+

2v0,ixk,i(τ)

N0

)]

×

E

[(
∂xk,i(τ)

∂τ

)2 ]

+
∑

k

∑

n

2

N2
0

2∑

i=1

2∑

l=1,l 6=i

E

[
∂xk,i(τ)

∂τ

∂xn,l(τ)

∂τ
tanh

(
λk
i

2
+

2v0,ixk,i(τ)

N0

)

×

tanh

(
λn
l

2
+

2v0,lxn,l(τ)

N0

)]

. (75)

In order to evaluate (75), according to equations (8)-(11)
and given thatg is a Nyquist filter, we have:

xk,1(τ) = ak,1 +

∫

T0

h(t− jT − τ)ℑ{n(t)}dt, (76)

and:

xk,2(τ) = ak,2 +

∫

T0

h(t− jT − τ)ℜ{n(t)}dt. (77)

Thus,xk,1(τ) andxk,2(τ) are normally distributed and simi-
larly, we obtain the following pdf:

fxk,1(τ)(x) =

exp

(

−x2 + v20,1

N0

)

√
πN0 cosh

(

λk
1

2

) cosh

(

2xv0,1
N0

+
λk
1

2

)

, (78)

and:

fxk,2(τ)(x) =

exp

(

−x2 + v20,2

N0

)

√
πN0 cosh

(

λk
1

2

) cosh

(

2v0,2x

N0
+

λk
1

2

)

. (79)

Using the factak,1 andak,2 are considered as binary modu-
lated signals and by analogy to the results found in the case
of a BPSK modulation, we obtain the following expressions:

E

[

tanh2
(
λk
i

2
+

2v0,ixk,i(τ)

N0

)]

= 1− 1√
πN0

∫ +∞

−∞

Gi(v0,i, x,N0)dx, (80)



whereGi(ν, x,N0) is given by (73) and fori ∈ {1, 2}:

E

[(
∂xk,i(τ)

∂τ

)2 ]

=
N0

2
g′′(0) + E[a2k,i]

∑

n

g′(nT )2. (81)

Finally, whenn 6= k andl 6= i, in Appendix C, we show that:

E

[

∂xk,i(τ )

∂τ

∂xn,l(τ )

∂τ
tanh

(

λk
i

2
+

2v0,ixk,i(τ )

N0

)

× tanh

(

λn
l

2
+

2v0,lxn,l(τ )

N0

)]

= −2v0,ig
′

((k − n)T )2. (82)

Feeding (80), (81) and (82) into (75):

E

[

(

∂ΛL(τ )

∂u

)2
]

=
∑

k

2
∑

i=1

2

N2
0

[

1− 1√
πN0

∫ +∞

−∞

Gk(v0,i, x,N0)dx

]

×
[

N0

2
g
′′(0) + E[a2

k,i]
∑

n

g
′(nT )2

]

−
∑

k

∑

n

(

4

N0

)2

g
′

((k − n)T )2. (83)

Taking the inverse of (83) leads to the CRB of the QPSK
modulated signal code-aided timing delay estimation.

C. M -PSK modulation
From (62) and (74) we have that:

E

[(

∂ΛL(τ )

∂τ

)2 ]

(84)

=
1

N2
0

(

∑

k

2
∑

i=1

E

[

ã
2
k,i(τ )

]

E

[(

∂xk,i(τ )

∂τ

)2 ]

+
∑

k

∑

n,n6=k

2
∑

i=1

2
∑

l=1

E

[

∂xk,i(τ )

∂τ

∂xn,l(τ )

∂τ
ãk,i(τ )ãn,l(τ )

])

,

where the soft estimatedM -PSK symbol is given by (63). The
first term of (84) can be evaluated from (63):

E

[

ã2k,i(τ)

]

=

∫
(Ii(x))

2

H2
k (x)

fxk(τ)(x)dx. (85)

Similarly to Appendix B, the probability density function of
xk(τ) is:

fxk(τ)(x)

=
1

2πN0

[ 2p−1

∑

m=1

P(ak = ṽm) exp

(

−|x− ṽm|2
2N0

)

+ P(ak = −ṽm) exp

(

−|x+ ṽm|2
2N0

)]

=
exp

(

− |x|2+1
2N0

)

2πN0

[ 2p−1

∑

m=1

P(ak = ṽm) exp

(ℜ{ṽ∗mx}
N0

)

+ P(ak = −ṽm) exp

(ℜ{ṽ∗mx}
N0

)]

=
βp
k

πN0
exp

(

−|x|2 + 1

2N0

)

Hk (x) .

According to equations (8)-(11) and considering that the
transmitted symbols are mutually independent, we have:

E

[

(

∂xk,i(τ )

∂τ

)2
]

=
N0

2
g
′′(0) +

∑

n

E[a2
k−n,i]g

′(nT )2,(86)

and:

E

[

∂xk,i(τ )

∂τ

∂xn,l(τ )

∂τ
ãk,i(τ )ãn,l(τ )

]

(87)

= −
(
∫

Ii(x)

Hk (x)
fxk(τ)(x)dx

)2

g
′

((k − n)T )2

= −
(

β
p
kg

′

((k − n)T )

πσ2

∫

Ii(x) exp

(

−|x|2 + 1

2σ2

)

dx

)2

.

We then obtain the expression of the CRB by introducing (85),
(86) and (87) in the inverse of (84).

V. SIMULATION RESULTS

In this section, we display the simulation results of the
proposed CA time delay estimation algorithms in terms of
MSE and compare them first to the DA (ML TED) and the
NDA (ML TED) modes, then to the above derived Cramer-
Rao bounds.

We consider the case of BPSK, QPSK and 8-PSK signals
with an up-sampling factor equal to8, passed through a
raised cosine filter, with a roll-off factorα. The turbo-code
is composed of two identical Recursive Systematic Coders
(RSC) concatenated in parallel with systematic rater = 1/2
and generator polynomials(1, 0, 1, 1) and(1, 1, 0, 1). A large
interleaver is placed between the two RSCs. Results are
averaged on blocks of500 symbols each, over1000 Monte
Carlo iterations. The values ofxk(τk−1) are obtained via
a classical quadratic interpolation [34]. The LLR values are
initialized by the soft demapper outputs. The turbo-decoder’s
outputs are reinjected only once to the synchronizer’s input.
τ̂k is initialized to 0 and its estimated value is depicted at
the end of the block (after500 samples) when the steady
state is achieved. Simulation results are evaluated for thetime
delayτ = 0.2T . The step-sizeµ is chosen so as to minimize
the MSE; in theory, an adaptive step-size [35], [36] can be
obtained to benefit both from fast convergence and low MSE
steady-state; however for simplicity reasons, in practicetypical
fixed values forµ span between0.15 and 0.45 according to
the possible scenarios.

The involved integrand functions in (72), (83), (85) and (87)
decrease rapidly as x increases. Therefore, the integrals over
]−∞,+∞[ can be accurately approximated by a finite inte-
gral over an interval[−A,+A] and the Riemann integration
method can be adequately used. For the following simulation
results we have chosenA = 100 and an integration step which
is equal to1/2000. The evaluation of the CRB is thus possible
as all implied expressions are derived.

Figures 1 and 2 show the evolution of the MSE at each time
index, for various CA timing detectors and different modula-
tions. The first statement is that all the detectors converge
rapidly to the steady state (between 15 and 25 samples). We
also see that the MLD offers the best performance; however
it is the most complex detector to implement. We further note
that the MSE at the steady state depends on the roll-off factor
value for the same estimator. This is due to the fact that
the effect of the transmission and the matched filters differs
from a detector updating term to another (see TABLE I). It
is also shown that, the MSE is deteriorated by increasing the
modulation order.
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Fig. 1: MSE vs time index for various CA detectors and roll-
off factors for BPSK signals (SNR= 10 dB)
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Fig. 2: MSE vs time index for various modulations (ML
detector, SNR= 10 dB, α = 0.3)

Fig. 3 depicts the evaluated theoretical expression of the
CRB presented in section IV and their empirical CRB coun-
terparts obtained by an averaging over constellation symbols
through a Monte Carlo simulation for BPSK, QPSK and
8-PSK signals. We can confirm that the analytical values
perfectly match the simulated values of the CRB thus assessing
the validity of the derived CRB.

In Fig. 4, 5 and 6, we display results of the CRB and
MSE on (τ/T ) as function of the SNR for BPSK, QPSK
and 8-PSK modulated signals respectively using a ML based
detector. The MSE value is evaluated at the steady state, at
the end of the observation block containing500 symbols.
We note that before saturation at high SNRs, the MSE is
inversely proportional to the SNR. For each figure, one can
compare the estimation performance of the DA, CA and NDA
mode. Compared to the NDA mode, the MSE is decreased
by exploiting the soft-information from the turbo-decoder. The

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

SNR [dB]

C
R

B

 

 
8-PSK Theo
QPSK Theo
BPSK Theo
8-PSK Emp
QPSK Emp
BPSK Emp

Fig. 3: Comparison between the empirical CRB and the
analytical expression for different modulations
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Fig. 4: MSE and CRB vs SNR for a BPSK modulated signal,
α = 0.3

DA mode still achieves the best performance, however, it leads
to a higher loss of spectral efficiency. Besides, over a wide
range of SNRs, the CA mode performance is almost equivalent
to that of the DA mode with no need for pilot symbols. At
high SNR the curves related to the 3 synchronization modes
merge. The saturation of the MSE at the right side of Fig. 4,
5 and 6 is due to the self noise of the updating error (13).
Similar results are obtained for other roll-off factors andother
detectors. Some numerical results are summarized in TABLE
III and IV.

TABLE III: MSE values for SNR=10 dB

Modulation DA Soft NDA
BPSK 0.63 × 10−4 0.7 × 10−4 1.7 × 10−4

QPSK 1.2 × 10−4 1.6 × 10−4 2.5 × 10−4

8-PSK 1.8 × 10−4 2.8 × 10−4 8 × 10−4



0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

SNR [dB]

M
S
E

/
C

R
B

 

 
NDA
CA
DA
CRB - NDA
CRB - CA
CRB - DA

Fig. 5: MSE and CRB vs SNR for a QPSK modulated signal,
α = 0.3

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

SNR [dB]

M
S
E

/
C

R
B

 

 
NDA
CA
DA
CRB - NDA
CRB - CA
CRB - DA

Fig. 6: MSE and CRB vs SNR for a 8-PSK modulated signal,
α = 0.3

VI. CONCLUSION

In this paper, we studied a new code-aided estimation
algorithm for time delay recovery of PSK, QPSK andM -
PSK modulated signals. The proposed CA algorithm performs
better than the NDA algorithm and is near the DA performance
over a large interval of SNR values with no need for ref-
erence signals. We also established the analytical expression
of the CRB for code aided time delay estimation for PSK,
QPSK andM -PSK signals. The derived expressions validity
is corroborated by the empirical CRB counterparts obtained

TABLE IV: SNR values for MSE=10−4

Modulation DA Soft NDA
BPSK 8.5 dB 9 dB 12 dB
QPSK 11 dB 12 dB 13 dB
8-PSK 12 dB 14 dB 19.5 dB

by simulations. The derived CA CRB provides an absolute
benchmark to appreciate the proposed CA estimator relevance.

APPENDIX A
PROOF THAT

∂xj,1

∂τ
AND xj,1 ARE NOT CORRELATED

From equation (8), we have that:

xj,1(τ ) =
∑

i

aj−ig(iT ) +

∫

T0

h
∗(t− jT − τ )ℜ{n(t)}dt

= aj +

∫

T0

h
∗(t− jT − τ )ℜ{n(t)}dt, (88)

asg(t) is a Nyquist filter andg(0) = 1. Also:

∂xj,1(τ)

∂τ
=
∑

i

aj−ig
′

(iT )−
∫

T0

h
′

(t− jT − τ)ℜ{n(t)}dt.

(89)
Let us adopt the following notations:

αj =

∫

T0

h(t− jT − τ)ℜ{n(t)}dt (90)

α̇j =

∫

T0

h
′

(t− jT − τ)ℜ{n(t)}dt. (91)

We have that:

E

[

xj,1(τ)
∂xj,1(τ)

∂τ

]

= E

[

aj
∑

i

aj−ig(iT )

]

− E [αj α̇j ]

(92)
On one hand:

E [αj α̇j ] = E

[
∫

T0

h(t− jT − τ )ℜ{n(t)}dt

×
∫

T0

h
′

(t− jT − τ )ℜ{n(t)}dt
]

=
N0

2
g
′

(0)

= 0. (93)

On the other hand, sinceg
′

(0) = 0 (g(x) is maximum
in 0) then

∑

i aj−ig
′

(iT ) and aj are uncorrelated so that
E [aj

∑

i aj−ig(iT )] = 0. Then, ∂xj,1(τ)
∂τ

and xj,1(τ) are
uncorrelated.

APPENDIX B
EVALUATION OF THE VARIOUS EXPECTATIONS IN (71)

Derivation of E
(

tanh2
(

λi

2 +
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))

:

From (88), the probability density function (pdf) ofxi,1(τ)
is given by:
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We then obtain:
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Given thattanh2(x) = 1− 1
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, then:
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.

Using the following relationcosh(x+y) = cosh(x) cosh(y)+
sinh(x) sinh(y), the first integral in (94) is such that:
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The second term of the last summation is the integral of an
odd function and it is thus equal to0. According to [37], we
have:
∫ +∞

−∞

exp
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, (96)

so that the first term of (95) is:
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Thus equation (94) becomes:

E

[

tanh2

(

λi

2
+

xi,1(τ )

N0

)]

= 1− 1√
πN0
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(98)
whereGi(1, x,N0) is given by (73) forν = 1.

Derivation of E

[

(

∂xi,1(τ)

∂τ

)2
]

:

Based on the expression of∂xi,1(τ)
∂τ

in (89) and by averaging
over the observations and the symbols we directly obtain:

E
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(
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Derivation of
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:

Given that ∂xj,1(τ)
∂τ

and ∂xi,1(τ)
∂τ

are statistically dependent
on xi,1(τ) andxj,1(τ), in order to derive the desired expecta-
tion, we first average by conditioning onxi,1(τ) andxj,1(τ) ,

then we average the resulting expression with respect to these
two random variables.

We have for any indexi andj with i 6= j:

xi,1(τ) = ai + αi, (100)

whereαi is given by (90) and:
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We then find that:
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Finally, we obtain:
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where the first term is such that:
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APPENDIX C
DERIVATION OF EQUATION (82)

We have:
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Given that:
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and using the fact thatv0,i = 1/
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