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~ Abstract— " In this paper, we propose a new code-aided (CA) more researches have focused on CA synchronization algo-
timing recovery algorithm for various linear constant modulus  rithms [8] which consist in taking advantage of the decoding
constellations based on the Maximum Likelihood (ML) estimaor. gain to improve the estimation performance of the desired

The first contribution is the derivation of a soft estimator t The f f iterati . helo th
expression of the transmitted symbol instead of its true or brd ~ Parameters. e frame of iteralive receivers can nheip the

estimated value which is fed into the timing error detector TED) ~ Synchronizer to better estimate the time delay by explgitin
equation. The proposed expression includes the Log-Likelbod the soft information about the received symbols. This tech-

Ratios (LLRs) obtained from aturboldecoder. Our results shov nique has already been used for phase estimation in turbo
that the proposed CA approach achieves aimost as good ressit yqcqding receivers [9]. It was also exploited in [10] with an

as the data-aided (DA) approach over a large interval of SNR tati imizai lgorithm in the Maxi Likeli
values while achieving a higher spectral efficiency. We alsterive expectation maximization aigorithm in the Maximum LIKell-

the corresponding CA Cramer Rao Bounds (CRB) for various hood (ML) synchronization framework. Moreover, the timing
modulation orders. Contrarily to former work, we develop here  synchronizer and the channel decoder can improve each other

the CRB analytical expression for different //-PSK modulation  progressively by exchanging information using iteratieeht
orders and validate them through comparison to empirical CRB niques. Reference [11] presents a maximum likelihood tmin

obtained by Monte Carlo iterations. The proposed CA estimabr . . L .
realizes an important gain over the non data-aided approach estimator which uses the extrinsic information generatemf

(NDA) and achieves a smaller gap when compared to its relatey  the decoder to perform time synchronization for BPSK signal
CA CRB, especially at moderate SNR values where modern In [12] the authors have proposed to introduce the timing

systems are constrained to work. recovery inside the turbo equalizer to jointly perform thes
tasks. Unfortunately, this technique requires a large rarmb

of turbo iterations, especially when the timing jitter isge.
|. INTRODUCTION In [13], an iterative timing recovery technique where thé so

Synchronization is among the most important tasks pafformation from the decoder is fed into the Mueller and
formed in a communication system receiver prior to detectiduller (M&M) Timing Error Detector (TED) [1] is jointly
and decoding. The main issue in a synchronization schemdfformed with turbo equalization for BPSK signals. We have
to work properly even at very low SNR and this is a hard tagiréady proposed a soft maximum likelihood timing recovery
as it is processed at the front end. In this paper, we foctShnique for BPSK signals in [14] and for square QAM
on time delay synchronization for linear constant modul@gnals in [15] and this soft estimation is valid for any kind
modulation systems. of timing detector. _ .

Timing recovery is required to ensure that the sampling '€ first contribution of this paper is to propose a new
instants coincide with the maximum opening of the signgPt time delay estimation far/-PSK modulated signals. This
eye-diagram thus maximizing the robustness to noise aydPressionis derived from the Ilkellhoqd _functlon corwiged _
interference. Some DA and non-data-aided (NDA) time deld§) the time delay and used by the ML timing error detector in-
estimation techniques have been employed in real systems$ad Of the effective or hard estimated symbol. The prapose
decades such as those reported in [1] and [2]. However, iff¥Pression includes the LLRs obtained from a soft decoder
DA mode, we need to insert some pilot signals which leads $§CI @s @ turbo decoder.
the loss of throughput and the decrease of spectrum effigcienc Although many estimators have been proposed so far,
In the NDA mode, no reference signals are needed and tiffgoretically assessing their relevance compared to tise be
synchronization is performed using only the received ﬂigngchlevable performance is also of a great interest. Thus, we

As a result, the system performance can be deterioratecbdudqVve to resort to compare the proximity of both analytical
the loss of some statistical information about the trartemit 2"d Simulation results to some lower bounds corresponding

signal especially in harsh channel conditions. Nevertgele!© the optimum performance. For instance, lower bounds on

with the development of channel coding techniques [3]_[7tf’1e MSE give an indigation of the performance Iimitatior_m;la
consequently determine whether the performance requiresme

“This work has been supported by the Greencocom project oftie 1N terms of MSE are realistic or not and if enhancements are
program still possible. Although there exists many families of lawe



bounds, the Cramer-Rao bound (CRB) family is the most Il. DECISIONDIRECTED TIME DELAY ESTIMATION
commonly used and th? easiest to determine [16]._There ar§ et us consider the linearly modulated transmitted signal
several works concerning the CA CRBs for carrier pha%?t) written as:

and frequency estimation. In [17]—-[19], the authors dethe

Bayesian and hybrid Cramer-Rao bounds (BCRB and HCRB) s(t) = Zaih(t —iT), (1)

for the CA, the DA, and the NDA dynamical phase estimation f

of linearly modulated signals and theoretically show thespo where a; denotes the zero mean iid. transmitted symbols
3 .U,

ble improvement brought by a soft CA technigue. In referen_c fawn from a given finite size constellatidr(¢) is the impulse

[20], a forward-backwar_d aIgonthm was proposed tc? copé W'response of the transmission filter &fids the symbol period.
the performance deterioration in the NDA mode; although . : -
The received signal is:

this technique has sometimes shown better performance than
the CA approach, it can only be implemented by an off-line r(t) = s(t — 1) + n(t), 2)
manner. A comparison between different timing techniques i

terms of BER has been proposed in [21] using the extringiere the channel introduces an unknown defayo the
information transfer chart (EXIT chart) [22]. Neverthedes transmitted signak(t). In (2) the received signal is disturbed
some statistical properties of the estimators such as te )y an additive white Gaussian noise (AWGNJ¢) of zero
and the mean square error (MSE) cannot be provided by théan and of variance”.

EXIT chart analysis. The authors of [23] have derived semi- The time delay is estimated in the maximum likelihood
analytical expressions of the estimator mean and variangense by maximizing the likelihood function according te th
as function of the timing offset, for a CA decision-directedollowing equation [27]:

(DD) timing synchronizer based on M&M Detector (MMD).
However, the performance evaluation has been made only for
BPSK signals at l(.)W SNR regime, based on the assgmptl\smerea is the vector of the transmitted symbols,

that inter-symbol interference (ISI) could be approxindate

by an additive Gaussian noise as in [24]. For time recovery, B 1 2

only closed forms of the DA CRB [25] and the NDA CRB Alu,8) = exp (_F/TO Ir(®) = s(t — )] dt) @
for BPSK, MSK and Square-QAM Transmissions [26] have

been derived. Differently from [25] and [26], our goal an the likelihood function andy is the observation interval.
contribution through this work is also to gi\}e closed forn. quivalently, the log-likelihood function . (u, a) can be used

expressions of the CRB for CA timing recovery for BPSKInStead oft\(u, a). Acgordingto [2.8]’ wherT is. large enou.gh,

QPSK and in generalM/-PSK modulated signals and tof.rom (1)-(4) we es'uma_te the time delay in the maximum

compare the performance of the proposed CA estimatorlklé)el'hooOI sense according to:

this bound. 7 = argmax Ay (u,a), (5)
This paper is organized as follows. In section I, the system “

model and the Decision Directed (DD) time delay estimatioffhere:

7 = arg max A(u, a), 3)

based on the ML approach are recalled. In section lll, the R{atz;(u)}
derivation of various CA time delay recovery techniques is Alu,@) = HGXP 2 ) (6)
proposed. Then, in section IV closed form expressions ofesom J
CRBs for different types of linear modulations are derivegy equivalently:
Simulation results are provided in section V and validate ou -
analysis. The last section concludes our work. A (1, 8) = log (A(u, 8)) = Z {ajij (U)}7 )

X (o

J

and:
GLOSSARY OF PRINCIPAL NOTATIONS
zj(u) = y;(u)+v;(u), ®)

yj(u) = Zaig((j_i)T_(T_u))v 9)

o R{z} and<{z}: the real and imaginary parts of
o z*: the conjugate o

« yr.1: the real part of any variablg vj(u) = / h*(t — T — u)n(t)dt, (10)
o Yo the imaginary part of any variablg, To

o ®: the convolution operation g9(t) = h®hZ(t), (11)

o [’ (resp.f"): the first (resp. the second) derivative bf whereh (t) = h(—t), for any functionh. z;(u) is seen as
for any function f the matched filter output of the received signgl(u) is the

e fx(z): the probability density function (pdf) of theyseful part,v;(u) is a colored gaussian noise of zero mean
random variableX and variancer? andg is a Nyquist pulse.

+ P(X): the probability of the random variabl& Since it is difficult in practice to maximize analytically)(7

+ E(X): the mean value of the random variabte with respect tau, adaptive algorithms are implemented whose



objective is to minimize the instantaneous error at eacle tirparagraphs, we derive a code aided adaptive algorithm based

instantk using the following equation: on the maximum likelihood approach far-PSK signals.
B 12 We assume the constellation to be Gray-coded taking values
T = Th—1 + pex(an, T-1), 12) in the alphabet seV = {vg,v1,...,va—1} where M is

where;, is the estimate of at time indexk, x is the step the constellation size. We suggest the following notation f

size andey (ax, 7x_1) is the updating error term expressed aghe i Gray-coded constellation element and the k'
transmitted symbod,:

_ o) Omk(T)
vl =0 {20 L b Al . (14)
Such approach is called the ML-based Detector (MLD) by ar & Wb b s (15)

the authors of [29]. The ternfi’””gT(T)|T:T,H can be obtained , . o , ,
by first interpolating the sampled version of the receivefinerec; (resp.bf) corresponds to thé" binary information
signal using a polynomial interpolator, then differeritigtthe of v; (resp.a_k). o
interpolated polynomial function with respecttcand finally ~ BY €hoosing a large-size interleaver, we can assume that
evaluating the derivative af,_;. However, the proposed Cc)m_coded bits in a _sy_mbol are _statlsncally mdependent [4T1132
putation method oéy (ax, 71 ) leads to high implementation so that the a priori pr_obablllty of the transmitted _symla@l
complexity because of the presence of the derivative of tffz P& €qual to a possible symbal of the alphabet is:
matched filter denotedl’ (t). — 1 — k_ i pk _ i k _ i

Other expressions of the updating term in the adapti\i[ak vl PO = ¢4, 05 = s Blogy a1y = Clogy ()]
estimation of - have been proposed in the literature by B foga(M) ko
approximating the derivative afy () using a finite difference - H Plby, = cm]. (16)
method. Table | summarizes the updating term expression of m=l
the most known Timing Error Detectors (TED) which are theet ys consider\®, = log Plbn=1Y the soft output of

. E —
M&M Detector (MMD) [1], the Zero Crossing Detector (ZCD)the decoder at any time indg;mAg]suming that the sym-

[30] and the Early Late Detector (ELD) [31]. bol v; is transmitted at time instart, a general formula
of the a priori probability of the coded bitb*,, using
P[bF, = 0] + Pbk, = 1] =1, is given by:

TABLE I: Timing Detectors

TED updating termeg (ag, Tk —1) k

MMD | apzp_1(Tk—1) — ap_ 1%k (1) _ exp ((20% - I)AT’")

ZCD | @1 (me—1) la, — ax—1] Pk =¢i ] = - : (17)
2 cosh (Aén )

Th bol hich in th dating t bThe soft information\*, can either be obtained simply from
€ Symbolsu; Which appear in the updating term can be, ¢ g demapper or, after several decoding iterations, by a

known if some pilot symbols are sent within the data framgoﬂ decoder. In practice, it is easier to process soft deerap

ln th'ﬁ caseihthe TE? IIS ]E)fpgratlngtrl]n a Df?‘ tmodet.) Iln orde ata rather than soft decoder values. At low SNR however,
0 ennance the spectral efliciency, these priot Symbols ean g, coding gain is advantageous especially for high order

omltte(_j an_dak are estimated at the receiver. The_TED IS thegonstellations leading the soft decoding a more intergstin
operating in a DD mode. To do so, we usually implement

. . S ﬁbproach.
NDA mode in which a hard estimation of the symbals : . -
is used. Nevertheless, this technique performance degrad Unlike (3) and (5) and in the absence of training sequences,

. .We consider the ML estimator averaged over all possible
rapidly at low SNR, where modern systems are constralnF§ g P

to work. Departing from the classical ML approach and theeallzatlons.

previous simplified proposed versions, we hereafter p@pos # = argmax Az (u) = argmaxlog (A(u)), (18)
new timing detector using soft estimated symbols instead of " v

knowna; or DD hard estimation ofi, in the updating term. where A(u) is obtained by averaging the likelihood function
The new time delay estimation technique takes advantage/dfu, a) over the possible set of transmitted symbaejis

the soft information from the decoder block to ameliorate thThus, averaging (6) over the set of possible transmitted- sym
timing recovery results. The proposed algorithm derivatind bols and using their independence property, we obtain:

performance evaluation are going to be presented in the next

ELD | ak [SL‘H% (Th—1) — Ty 1 (Tk—l)]

sections. Aw) = J[ D Plax =viexp <§R{L§(u)}) /(19)
k v, €V 7
[1l. PROPOSEDCODE AIDED TIMING DETECTOR where Pla;, = v;] is given by (16)-(17).

Instead of making possibly unreliable hard decisions on theln the following, we derive separately the CA TED for
received data (NDA approach) or reducing spectral effigienBPSK, QPSK and\/-PSK modulated signals. Even if BPSK
by sending preamble sequences (DA Approach), we prop@sel QPSK can be considered as 2-PSK and 4-PSK respec-
to take advantage of the system decoder output, in ordiely, for CA TED we use a recursive technique that works
to enhance the time recovery performance. In the followiranly for larger M-PSK, with constellation sizé/ > 8.



A. BPSK modulation

1

where ), = 4 cosh(A}/2) cosh(\5 /2)

In this section, we present the code aided adaptive tirBy replacing P[a;, = v;] in (27) by its expression (28) and
recovery algorithm with a BPSK modulation which is aysing (25), we get:

subcase ofM-PSK with M = 2 andm = 1. In this case,
v; € {—1,1} and b, € {0,1}. Using (16) and (17), the
Likelihood function in (19) for a BPSK signal becomes:
cosh ()‘Q—k + )
cosh(2k) ’

where, for simplification,\;, denotes)\¥ and the indexl in
xr,1(u) refers to the use of the real part of (u).

Tp,1(u)
o2

Alu) =
k

(20)

The received signal is corrupted by a real-valued AWGN

with power spectral density equal @ = ¢ so that going

back to the log-likelihood function from (20), we obtain the

following expression:

() o

By differentiating A, (u) with respect tou we obtain:

OALw) _ g~ 2 Dria (1) tanh( +M) (22)
k

ou No ou Ny
Then in order to estimate, we propose in practice to im-

cosh (A—Q’“ + —21%0@)

Ar(u
L(w) cosh()‘z—k)

M
2

plement the ML adaptive equation (12) or the approximations

presented in Table | by substituting with the soft symbol:

d()-tah(A;—i—%leo(u)). (23)
The updating equation then becomes:
Tk = Th—1 + per (@ (Th—1), Th—1), (24)
where the soft symbol is given by (23).
B. QPSK modulation
With a QPSK modulation, for which/ = 4 andm €

{1, 2}, the constellation set i¥ = {vg, v, v2,v3} Where:

v = —vp, V2 =15, U3 = —U3, (25)
and we choose the corresponding Gray-coded bits:
Vo & 11, v1 & 00, vy & 01 andv3 < 10. (26)
The likelihood function is then given by:
H Z Pla ;] exp (7%{% x;(u)}) .20
g

k i=0

The expression oP[a), = v;] can be obtained using (16), (17) Au

and (26) as:

(2¢h — 1)AF + (2¢h, —
2

k
Play = v;] = Br exp ( 1)/\2> , (28)

k k *
H 28k {cosh (/\ T3 + %{onf @)
g

o (M Rpvpm ()
2 o? '
Given thatcosh(a) 4 cosh(b) = 2 cosh (2£2) cosh (%4;2) and

that the received signal is corrupted by a complealued
AWGN with power spectral density equal ¥, = o2, we
No

obtain:
)\k
H 43y, cosh <72 + >
k

2v072xk12(u)
No

Evaluating and differentiating the log-likelihood furmmi

A (u) with respect tou leads to:

A(u)

_ })

+ (29)

A(u) 21)071171671(’&)

/\k
X cosh (71 + (30)

OAL(u ( )
Bu o NO Z §R { } ’ (31)
where:
_ N2
ar1(u) = o, tanh (72 + %W) , (32)
k
de(u) = Vo2 tanh (ﬁ + M) . (33)
’ ’ 2 No

In practice, like for the BPSK case, we propose to estimate
7, using the updating equation (24) where the real and imag-
inary parts ofa; are respectively given by (32) and (33) for
U= Tk—1-

C. M-PSK modulation

In this paragraph, we derive an adaptive TED algorithm
equation in the case ol -PSK modulated signals. These
derivations are indeed built based on the Gray coding prop-
erties and exploit the relationship between constellatiof
orderp and p — 2 which makes the analysis valid only for
p > 3. All the analytical expressions are valid for signals that
are mapped fror-bits and more. Stated differently, the above
results related to BPSK and QPSK signals cannot be derived
as particular cases.

In fact, anA/-PSK modulated signal takes values from the
setVor = {v,, = e%, m = 1,..,M}, whereM = 2P..

We note that:

U4 4 U« (34)

j2mm

If we considerVyy = {G,, = e" 3, m = 1,.., 4]}, then
Vor = Vor U (—Vap). From (19) and given thats» =V, the
likelihood function can be written as:

> Pt =5
) e

R{og,w(w)}

o2

1 € Vap
+ Plar = —0p,)exp (—W



In order to compute R, = v,,), we use a Gray-mapping Here, we are actually dealing with the first— 1 most
technique forA/-PSK modulated signals. According to (16)ignificant bits (MSB) oft,, < ci"cy'...cpt ;' We define

and (17), the symbol probability is given by: ¥, the 2P~1—PSK symbol assomated to the Gray-mapping
» A Up & cf'cl..cpty, wheren is in {1,...,2771}. We evoke
Play = Om) = H H exp < -1z > . the same decompositiovhy—1 = Vyp—1 U (=Vap-1) for the
- 2cosh( ) 2 —PSK constellation mapping. The symbals are ob-
Pt € () tained from the previous Gray-codet'—PSK constellation

k by applying the same construction procedure. Thiysand

. . . . (36) —7, have the samep(— 2) MSBs. This analysis then requires
For notation convenience, we briefly describe the recuse %atp > 3 which justifies the separate treatmentjof= 1
based construction of &-PSK Gray coded constellatlon(BPSK) andp = 2 (QPSK).

starting from a2P—!—PSK Gray coded constellation.
TABLE. Il illustrates the step by step construction of thelep
where for a giverp, each column corresponds to a symbol.

Accordingly:

p—2 k
= H exp ((26;” - 1))\7[) , (43)
=1

which yields the following expression:

TABLE II: Gray Code For Various Constellation Lengths

p =1 0 1
=2 0 1] 1 0 /\k
9 9 1 1 -1/~ —2/~ —1
S S L] ARt S
0 0 1 1 1 1 0 0
0 0 0 0 i 1 1 1 . . .
eh 0 1 1 e e 1 o 1 1 0 o 11 o Now,_ we are going to derive the expression gf ; as a
A T % o ot 110 o) fynction of m. We actually know that:
Y 9 0 9 9O 0 o 9 1 1 i+ 1 1 1 1
. 2r—1
m 0if 1<n< =2r2
In this section, we are interestedrvalues greater than or Cp—1 = NP 2 1 (45)
1if 2P72 <n <2P7°,
equal to3.
In general, and based on the previous example, Given that:
Vom € Var ¢ =0, (37) L <n<o? o {LJ —0 (46)
- == -2 ’
Vim € (Vo) ¢ =1, (38) 2l
~ ~ p—2 p—1 n —
Thep — 1 MSB of V,» elements are those 0f,,-: elements 2 <nz2 < {2102 4 1J =1 (47)

and thep — 1 MSB of (—Vs,) elements are those 0%,

elements but in the reverse order where |z | is the integer part of, we can write that:

The symbol probability (36) becomes: m n
Cp71 = T . (48)
p—1 Ak Ak 2p + 1
P(ay = b)) = 8L [ [ exp <(20}n - 1)7l> exp <(202n - 1)719) - It is also straightforward to show that:
2 () ) n = remm, =), (49)
2m N e where M = 2P and renfz,y) is the remainder of the
where (o) = 1. As a result, for any,, in Vz: Euclidean division of: by y. As a result:
/\k
Plar = 0) = ﬂz'yg*l(f)m) exp <—_p> ,  (40) m rem(m, 21’*1) (50)
2 e =l
)\k
Play = —0m) = BiAL ' (—om)exp 71” . (41) Consequently, we obtain that:

1~ —9, . rerT(m,Qp 1)
Replacing the symbol probability (39) into (35) we obtain: Y& (0m) = 7 ~(0n)exp ( (2 { w211 | 1

p2P G /\]; 1
- X [renen(-3) - <2

= af_ m), 51
. (i, m DY 1) x () o1
P g m wherea® | (m) is calculated recursively for any> 3 from:

) exp %{v g (u )}) ], (42) ok (m)=ak_, (rem(m,27"1)) x

o2

rem(m, 2°~1) Ar
form=1,..,M/2 =201, exP((% 202 1 1 J_1> > )62

exp

k
p
2
):

whered,,, = exp %



Due to the construction symmetry of the Gray mapping, we Let us define:

can note that for any integen in {1,...,2P=1}: w2 Rionay AL b
Hy(x)= Z ozp,Q(m) cosh —N. g "o
V2 (—m) =8~ 1(62P*17m+1) m=1 ¢ . .
_o/; 1(21’*1 m+ 1) +a§72(2p72 —m+ 1) cosh <_w + £ — )\_p>(59)
—ak_, (rem2P " —m+ 1,2071)) x (53) L 22
-1 _ -1 k _ . R{v5x}y  Ap_1 Ay
oxp ( (2 {rem(%’ 2p7:1++11721’ )J - 1) AP;) gm(z)=0ak_,(m)sinh <To - ”T - é’) and (60)
_ _ : S{opat | M1 A
On one hand we have that: () =0y (2" =+ Dsinh <_ No p2 B 7p (61)
a’;,Q(rem@p‘l Cm41,2071)) = a§,2(2”‘1—m+1). (54) From (58)-(61), we find that:
DAL (u) 1 ZMW( )axk(u)} (62)
= —_— A (U 5
On the other hand we have: ou No 4 g ou
. . . p—2 where the real and the imaginary paits; and ay o of the
rem2'~! —m+1,2071) | JLifme L., 2777, soft symbol are given by:
20241 0if me {2772 41,...,207 1),
(55) (g (u))
Thus: a iU = 177 ’LG 172 ) 63
wile) = oo ie il 69
% Aoy with:

if 1<m<2r 2,

k
ap (277" —m + 1) exp p2

2
’7571(_577» = Ak = Z 9m (.CC) Ki+ hm (.CC) i, (64)
b (2P —m41)exp Lo m=1

1) if 2772 < m < 2P
(56) {f;m,l ifi=1
K; =

~ . . )
V2 if =2

As a result, the likelihood function (42) becomes: (65)

p 2P72 - k k and:
R{vmzr(u)}  Ap A - e
H ZO‘PQ eXp( R ) €i={vm’2lf1_1 (66)

gy i i =2

~ % k k .. . .
ok (2 —m+ 1) exp _%{vmﬂék(u)} A R For M-PSK, the timing offset estimate is also updated
o 2 2 according to (24) where the real and imaginary parts:of
gp—1 B i & are given by (63) fon = 7,_1.
R{Omaer(w)}t | Ap1  Ap
+ af _,(m)exp + (57)
m:;p;zﬂ o2 ( o 2 2 IV. CRAMER-RAO BOUND

o2 T b} a code-aided delay estimation in the case of BPSK, QPSK and
M-PSK (M > 8) modulated signals. In this paper derivation
Due to the construction Symmetry of the Gray mappin@,f the CRB is conditioned to the LLRs values. It is worth
the first p — 2-bits of any symbols,, are identical to that to note that the herein derived CRB is conditioned to the
of 52p717m+1, for any integerm in {1,2r~!}, so that, LLR values. A further averaging over the possible soft outpu

e k k In this section, we derive the Cramer-Rao Bound (CRB) for
+a§72(2p71 —m + 1) exp <— ROnoe() Ao AP)

L(2P L —m 1) = ok, (m). values should be then carried to evaluate the CRB. This & her
Based on the fact thai},  ,,—» = j&,, and from (57), the processed by averaging over Monte Carlo trials. Furthekwor
log-likelihood function can be written as: could be carried to develop a semi analytical CRB expression

by analytically accounting for the LLRs variation as done in
23 2P 2 [23] and [33] for the problem of MSE computation.
Zl og < k) + Zlog < Z apa( Suppose that we are able to produce an unbiased estimate
7 of the delayr from the received signal. The CRB which
cosh <3?{vm:ck(u)} R A_’;) verifies E [( — 7)2] > CRB(r) for any estimator? of 7 is
No 2 2 defined as [16]:

op—2 CRB(7) = 171(7), (67)
—|—Z ar 52777 —m+1)x

cosh <—J{U;ka(u)} + /\271 - )\—I;> ), (58)

wherel(7) is the Fisher information matrix (FIM) [16] given

by:
<8A6LT(T) > 2] : (68)

where Ny = o is the power spectral density of the complexin the next paragraph we first evaluate the expression (68) in
valued AWGN noise. the case of a BPSK modulated signal.

No 2 2

I(r)=F




A. BPSK modulation From (32) and (33), we know thai ;(7) is function of
For convenience, we recall that the log-likelihood funetioz; ;(7). From Appendix A, we know that;(7) and azak—T(T)

is given by (21). By differentiating\ () with respect tor  are uncorrelated; considering the real and the imaginang pa

and then squaring the result we have that: of the QPSK symbols as binary modulated signalg;(7)

OAL(T 2 dxj1(7) dwi (1) and ‘%’g;’(” are similarly uncorrelated. Thus:
(%) Ty g e © -
8AL T
Xtanh (% + 223%10(7')) tanh (% + 7223;’\;0(7)) . E[ ( 5)7- ) } (74)

2
Taking the average of equation (69) over the observauosenm_ Z Z Ela2 Oy,i(7)
and the detected symbols, we then obtain: - i or

1
E{(%ﬁ”)?ﬁzE[(axg—f”)Q © ¥y ZZ%E[%E(T) e oo

k n,n#ki=1 =1
2 (A 2562 1(
xtanh® [ — .
Consequently from (32) and (33):

i=

AEEE (252

Ji#£d or
ﬁ 21’3',1(7') ﬁ 21‘7;71(7') 2
xtanh < 5 T No tanh 5 T )| _ ZZ %E{tanh2 (A_f n 2vo,ixk,i(7)>} %
In order to compute the first term of (70), we show in k i=1 No 2 No
Appendlx,)A as the demonstration is also useful in the sequel Opa(7) 2 9 2. 2
that ‘%J 17) andz; 1(7) are uncorrelated. Consequently, (70) E{ (L> ] + —
becomes: , or ; ; Ng ;l—lz,l;&i
8AL(T))2 Ox,i (T) Oy 1 (T) N 2w . (T)
E||——= 71 E : 2 tanh ( =+ + ————=
[( or (71) or or an 2 + Ny x
S5 A [y (X 22D Oria(r) \* tanh <A_z + M) ] 75
Z:N(?E{anh (2 + No )}E[( o B No ( )
+ZZ {ax] 1(7) Oxs,1(T) o In order to evaluate (75), according to equations (8)-(11)
Py N2 or or and given thay is a Nyquist filter, we have:
A 2x "1(7') Ai 2:62‘,1(7') .
tanh (% + 22200 ) can (3 2220 | sa(r) =ans+ [ =T DRl (6)

The derivation of the various expectations in (71) is given i
Appendix B. We finally obtain that:

E [(Ma;um)j :zi: Nig {1 - \/%NO jj Gi(l,:mNo)d:c]

[NO " +Zg nT) ]

and:
Tp2(T) = ag2 + / h(t — 3T — 7)R{n(t)}dt. (77)
To

Thus,z,1(7) andzy 2(7) are normally distributed and simi-
larly, we obtain the following pdf:

exp( T +Uo,1)
- k
—ZZ 29 )T)?, (72) for 1 (m(x) = No cosh <2m}0’1 —|—ﬁ), (78)
A o ) = o (3) No 2
where: s _
exp (_IJOV ) and:
Gi(v,z,No) = W (73) exp [ F_ V0.2
cos (N_o + 7) ; () = p No cosh (21)072‘% N A_‘f) (79)
Equation (72) implicitly depends on the SNR and the inverse’ " V7No cosh (%’f) No 2 )"
of (72) gives the CRB in the case of a BPSK modulation
scheme. Using the factas,; anday 2 are considered as binary modu-
lated signals and by analogy to the results found in the case
B. QPSK modulation of a BPSK modulation, we obtain the following expressions:
According to (31), squaring the derivative of the log- o (AF 2ug ki (T)
likelihood functionAf,(7) with respect tor, leads to: E{tanh (é T) }
oA > 2 G~ Oap(7) Oz,
(BD) 55 255 it 2D 2ea0) = 12 [ Gt N, @0
Eon 0 4=11=1 v



whereG; (v, z, Ny) is given by (73) and foi € {1,2}: and:

. 2 O0zp,i(7) OTnp(T) .\~
E|: (afEk,z (T)) :| _ &g//(o) + E[Giz] Z g/(nT)2 (81) E|: or or aka(T)an,l(T)} (87)
or 2 ) L) )
n _ B i(x , 3 5
Finally, whenn # k andl # 4, in Appendix C, we show that: - ( Hr (2) fwk“)(x)dw) g (k =n)T)
O1i(7) Dna(7) A g i (r) Py’ ((k —n)T) e +1y .\
X tanh (’\2—? + QUO+“(T)) ] = —QU(),ig/((k —n)T)% (82) We then obtain the expression of the CRB by introducing (85),
0

. : (86) and (87) in the inverse of (84).
Feeding (80), (81) and (82) into (75):

2 2 too V. SIMULATION RESULTS
OAL(T) 2 1 ) . . : .

E U :ZZN_Oz L~ G (vo,i, x, No)dz In this section, we display the simulation results of the

’“N'Lzl proposed CA time delay estimation algorithms in terms of

X {709”(0) + Elaj ;] Zg'(nT)ﬂ MSE and compare them first to the DA (ML TED) and the

n NDA (ML TED) modes, then to the above derived Cramer-

4\ 2 Rao bounds.
_zk:zn: (E) g ((k=m)T)". @3 "We consider the case of BPSK, QPSK and 8-PSK signals

Taking the inverse of (83) leads to the CRB of the QPSW'.th an up-sampling factor equal 6, passed through a

. ; T L raised cosine filter, with a roll-off factot. The turbo-code
modulated signal code-aided timing delay estimation. . ) . ) X
is composed of two identical Recursive Systematic Coders

: (RSC) concatenated in parallel with systematic rate 1/2
C. M-PX modt;lanon h hat: and generator polynomiald,0,1,1) and(1,1,0,1). A large
From (62) and (v4) we have that: interleaver is placed between the two RSCs. Results are
E{ (aAL(T))Q] 84) averaged on blocks o500 symbols each, ovet000 Monte
Carlo iterations. The values of;(;—1) are obtained via
2 _ 2 a classical quadratic interpolation [34]. The LLR values ar
1 2 Ozy,i(7) o
- N ZZE a ()| B | =5 initialized by the soft demapper outputs. The turbo-decsde
K Zjl ) outputs are reinjected only once to the synchronizer'stinpu
Oxp,i(T) Oxp (1) - . D 7, is initialized to 0 and its estimated value is depicted at
+ E| —F——=——F—"0k,i(T)an, )

IIPIPMHS { or oy Chi(Tna(r) the end of the block (afte500 samples) when the steady
state is achieved. Simulation results are evaluated fotirtie
delayr = 0.27". The step-size: is chosen so as to minimize
) the MSE; in theory, an adaptive step-size [35], [36] can be

- I;i(z obtained to benefit both from fast convergence and low MSE
pli] = [ fn @5 amedlof om fast convergence and lo

& () steady-state; however for simplicity reasons, in pradiipeal

Similarly to Appendix B, the probability density functiorf o fixed values foru span betwee.15 and 0.45 according to

k n,n#ki=1 [=1

where the soft estimatet -PSK symbol is given by (63). The
first term of (84) can be evaluated from (63):

ax(7) is: the po;sible scgnarios. . .
The involved integrand functions in (72), (83), (85) and)(87
for(n) (@) decrease rapidly as x increases. Therefore, the integvals o
1 2p—1 & — |2 ] — 00, +o0[ can be accurately approximated by a finite inte-
= [Z P(ay = 0 ) exp (— n ) gral over an interva[—A, +A] and the Riemann integration
2mNo m=1 2No method can be adequately used. For the following simulation

is equal tol /2000. The evaluation of the CRB is thus possible
as all implied expressions are derived.
exp (-'IfT“) 2P ! R{55,0) Figures 1 and 2 show the evolution of the MSE at each time
0 ~ 'm . . .. .
= T onN, Z Plar = Om) exp < No ) mdex, for various CA t|m|ng detectors and different modula
m=1 tions. The first statement is that all the detectors converge
+ Plag = —) exp <§R{ﬁfn:1?}> } rapidly to the steady state (between 15 and 25 samples). We
" Ny also see that the MLD offers the best performance; however
e/ |22 + 1 it is the most complex detector to implement. We further note
- TN €xp <— 2N, > Hy, (). that the MSE at the steady state depends on the roll-offifacto
. . S value for the same estimator. This is due to the fact that
ﬁgﬁgﬂ;{t‘gd tgyrﬁgg?st'g?es n(]%)tu(;@ igggpgr?gzlannv:eg hg]vae;[: ﬂ}ﬁe effect of the transmission and the matched filters differ
, from a detector updating term to an_other (see_TABLE_ ). It
B [(amk,z(r)) ] _ &gn(o) i ZE[aifn,i]g’(nT)?(B(S) is also shown that, the MSE is deteriorated by increasing the

|z + 5m|2> ] results we have choseh= 100 and an integration step which

or 2 modulation order.



10t i . | ——MLD, a=03 | 10 T T T
o MLD, a=0.7 —8-PSK Theo
h : —— QPSK Theo
i ——7CD, a=0.3 EI]DDSSI}(( 'ﬁhco
D g o 8- mp
3 O 7CD,a=0.7 ¢$ QPSK Emp
ok ——BLD,a =03 o BPSK Emp
0 ELD,a=07
—%— MMD, a =03 107k
% MMD, a=0.7
#
*
@15, ?oofkkk****#k** i 3 g
= 35834, KA AKAKKK @)

-------------------

"R
0388088008080 ,
YYVYVVVYY

uuuuu

5 10 15 20 25 30 35 40 0 2 4 6 12 14 16 18 20

8 10
time index SNR [dB]

Fig. 1: MSE vs time index for various CA detectors and rollFig. 3: Comparison between the empirical CRB and the
off factors for BPSK signals (SNR 10 dB) analytical expression for different modulations

MSE / CRB
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Fig. 2. MSE vs time index for various modulations (MLFig. 4: MSE and CRB vs SNR for a BPSK modulated signal,
detector, SNR 10 dB, oo = 0.3) a=0.3

Fig. 3 depicts the evaluated theoretical expression of tBA mode still achieves the best performance, however, itdea
CRB presented in section IV and their empirical CRB coung a higher loss of spectral efficiency. Besides, over a wide
terparts obtained by an averaging over constellation sysnbgange of SNRs, the CA mode performance is almost equivalent
through a Monte Carlo simulation for BPSK, QPSK angy that of the DA mode with no need for pilot symbols. At
8-PSK signals. We can confirm that the analytical valugfgh SNR the curves related to the 3 synchronization modes
perfectly match the simulated values of the CRB thus assgssinerge. The saturation of the MSE at the right side of Fig. 4,
the validity of the derived CRB. 5 and 6 is due to the self noise of the updating error (13).

In Fig. 4, 5 and 6, we display results of the CRB an@imilar results are obtained for other roll-off factors ather

MSE on (7/T) as function of the SNR for BPSK, QPSKdetectors. Some numerical results are summarized in TABLE
and 8-PSK modulated signals respectively using a ML basgfand IV.

detector. The MSE value is evaluated at the steady state, at
the end of the observation block containii0 symbols.
We note that before saturation at high SNRs, the MSE is

TABLE IIl: MSE values for SNR20 dB

. . X Modulation DA Soft NDA

inversely proportional to the SNR. For each figure, one can BPSK 063x10 % | 07x10 % | 1.7x10 %

compare the estimation performance of the DA, CA and NDA QPSK 12x10°" 1.6x10°7 | 25x10 7
8-PSK 1.8 x 107 2.8 x 107 8§ x 107

mode. Compared to the NDA mode, the MSE is decreased
by exploiting the soft-information from the turbo-decadene




by simulations. The derived CA CRB provides an absolute

— MDA benchmark to appreciate the proposed CA estimator relevanc
APPENDIXA
PROOF THAT 8””1 L AND ;1 ARE NOT CORRELATED

From equation (8), we have that:

MSE / CRB

zji(r) = Zaj,ig(iT)+/T R*(t — T — 7)R{n(t)}dt

= aj +/ K (t — 3T — 7)R{n(t) }dt, (88)

aSg(t) is a Nyquist filter andy(0) = 1. Also:

10750 2 . 6 8 0 v " % " 20 Ox; ! .
SNR [dB] J i Zaj i (iT) / h (t —jT — 7)R{n(t)}dt.
(89)
Fig. 5: MSE and CRB vs SNR for a QPSK modulated :slgnq_et us adopt the following notations:
a=0.3
o = / h(t — jT — 7)R{n(t)}dt (90)
To
q; = / W (t — 5T — 7)R{n(t)}dt. (91)
To
We have that:
3 E x-l()a%’ = a; Za —ig(iT)| — E a5
6 Js 87’ J J— 1=
= (92)
2 On one hand:
=
Elaja,] = EU h(t — T — 7Y R{n(t)}dt
To
x / W (t— T — T)?R{n(t)}dt]
To
10° L L L L L L L L L NO !
0 2 4 6 8 10 12 14 16 18 20 == _g (O)
SNR [dB] _ 02 (93)

Fig. 6: MSE and CRB vs SNR for a 8-PSK modulated sign

o=03 a(')n the other hand sincg (0) = 0 (g(z) is maximum

in 0) then 3", a;_;9'(4T) and a; are uncorrelated so that
Ela; Y, a;_ig(iT)] = 0. Then, 2% 17( and z;,(7) are
uncorrelated.

VI. CONCLUSION

In this paper, we studied a new code-aided estimation
algorithm for time delay recovery of PSK, QPSK ard-
PSK modulated signals. The proposed CA algorithm performs
better than the NDA algorithm and is near the DA performance perivation of E (+tanh?2 1 4+ 2z 1(7)
over a large interval of SNR values with no need for ref-
erence signals. We also established the analytical expres

APPENDIX B
EVALUATION OF THE VARIOUS EXPECTATIONS IN(71)

From (88), the probabillty denS|ty function (pdf) of 1 (1)

s given b
of the CRB for code aided time delay estimation for PS 9 y:
QPSK andM-PSK signals. The derived expressions vaI|d|ty 1 exp(3) (z — 1)
is corroborated by the empirical CRB counterparts obtainedx, 1(7)(50) = \/—[ exXp| ————
’ No [ 2 cosh( 1) No
exp(—% z+1
TABLE IV: SNR values for MSEZ0~* +L§_) exp | ) ]
2 cosh(%) No
Modulation DA Soft NDA 2,
BPSK 8.5 dB 9 dB 12 dB _Z
QPSK | 11ds | 12dB | 13dB _ 1 =P ( No ) w2 + Ai
8-PSK 12 dB 14d8 | 1950dB o 7Ny cosh (%) Ny 2



We then obtain: then we average the resulting expression with respect sethe

tanh? (X 4 22 two random variables.
2 (N 2mia(T) Foo tan 7T N_o) . , S ..
E |tanh’ [ &t 4+ 22 7 )| = - 7 We have for any index andj with i # j:
2 No —oo  cosh %) 7Ny
2 ) i1 (T = a; + o, 100
X exp (—x]\;‘_l)cosh (jQ\]_x+%> dx. 1(7) ( )
’ 0 wherecq; is given by (90) and:
Given thattanh?(z) = 1 — ey then:
81’3 1 .
; ; n —n)T) + é; 101
B {tanhQ (ﬁ n 2&%1(7))} (94) or Za g ((F —n)T) + & (101)
2 NO ’ ’
B 1 (/*“’exp<_w2+1) y =aig (F=OT)+ Y ang (G —n)T) +dy
cosh (%L) T™No oo No n,n#i,j

:[:ci,l(r)—ozz] (G—0)T)+ Z ang (G—n)T)+ q;.

)\ +oo  €xp (— ZNng) n,n#i,j
0

—oo cosh (12\,—”[”) + 71') We then find that:

Using the following relatiorosh(z +y) = cosh(z) cosh(y) + dx;1 (1) D1 (T)
sinh(x) sinh(y), the first integral in (94) is such that: E [T?Wu(ﬂwm(ﬂ]

+OO 2 ; / . . ! . .
/ exp (—th 1) cosh (No )\Z) dx = z1(1)g (G — ) T)zja(m)g ((i — 5)T)
IV to0 2 o = —zia(r)zja(n)g (i - §)T)% (102)
= exp <_Fo> {[m exp( No)COSh<N0)
so that:
cosh (A ) dx + sinh (A ) /+°° ex (_x_2)
2 2) /) . PN E{axiyl(f) duja(r) o (ﬁ N 2;03,1(7))
X sinh (2_23) dm} . (95) or or 2 No
No ot (N4 2Eia (D) _
The second term of the last summation is the integral of an X tanh | 5+ No |23,1(7), 251(7)
odd f.unction and it is thus equal t According to [37], we i A 2xu(7) ik X | 2wia(7)
have;rOO , 2 No 2 No
/ exp (—B2”) cosh (az) do = \/;exp <Zﬁ) , (96) xxi1(T)zj(T)g (i — §)T)>. (103)
so that the first term of (95) is: Finally, we obtain:
Ly [ z? 2z B15.1(r) B (7) N | 2w, (r)
exp <_Fo> /_OO exp <_Fo) cosh (F() dr = 7T.7(Vgo7.) E{i&_ 7357_ tanh (7 + 7];]0 )
Thus equation (94) becomes: X tanh (% + Q%Tl(ﬂ) }
0
2 (N wia(m)\] _ +°° v v 2
E {tanh (7 ¢ 2ol )} —1- / (1, No>(dm7) _ g [:m(f) tanh (% + L;;O(T))} g (i - HTY,
98
whereGi(1,z, No) is given by (73) forv = 1. where the first term is such that:
Derivation of E{(aza—;(”)
v 2l o eann (o 28317
Based on the expression g?fa;—(” in (89) and by averaging @j1(7) tanh { 2 + No
over the observations and the symbols we directly obtain: +oo N 2
= / mtanh(z +—) f‘LJI(T)( )d
E (85”2 ! ) Zg 1?2 + X0 0).  (99) o )
exp (——0) +o0 N 9 22
L. = —/ x sinh (—J + —) exp <——) dx
Derivation of /7Ny cosh (7]) oo 2 No No
8Ij_]1(7’) 811-71(7’) Aj 2Ij_]1(7’) — 1.
E[T or b\ TN
/\i 217@1(7’) . SO:
tanh (? i ) ] .

2y
Given that2241() and 2217) are statistically dependent or or 2 No

on;,1(r) andx;,(7), in order to derive the desired expecta- «  tanh (ﬁ n 2%‘,1(7))] — g (- T (108)
tion, we first average by conditioning an (7) andz; () , 2 No

5| 2 9800 gy (5 4+ 2200



APPENDIXC
DERIVATION OF EQUATION (82)

We have:

E 8x;w(7) 8:1:”’1(7)
or or
)\ZL 21}071%”71(7')
X tanh( 5 + No
)\5 21}0’7;1’)@,2'(7')
—-F |:xk,’b(7-) tanh <7 + T
2
v0,i
o) s
el —— rsinh [ = + —Z)
v/ mNp cosh (%) —oo 2 No
x? ’ 2
exp | —— ) dz k—n)T)| .
o (-5 ) oo (6= )1

k . .
tanh (% + 721)0,#1@,2(7))

Ny

)r;w—MﬂQ

(105)

Given that:

+oo k ) i 2
/OO x sinh (% + 1;}):6) exp <_~7:if_0) dx

2k v3,
= \/wNocosh< : ) exp 0

- 1
5 Ny (106)

2v9,4,

and using the fact thaty ; = 1/4/2, we find:

(1]

(2]

(31
(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

2”0,i$k,i (T)
Ny

E axlm'(T) axn,l(T)
or or

2\E
tanh [ =
an (2+ )

n 2 " ,
« tanh <% + T“)] — —2g/((k — n)T)".
REFERENCES

K. Mueller and M. Muller, “Timing recovery in digital syshronous data
receivers,”|EEE Trans. on Communications, vol. 24, no. 5, pp. 516-531,
1976.

F. M. Gardner, “A BPSK/QPSK timing-error detector for nspled
receivers,”|EEE Trans. on Communications, vol. 34, no. 5, pp. 423—
429, 1986.

R. Gallager, “Low-density parity-check codedEEE Trans. on Infor-
mation Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

C. Berrou and A. Glavieux, “Near optimum error corregticoding
and decoding: turbo-codes,EEE Trans. on Communications, vol. 44,
no. 10, pp. 1261-1271, Oct. 1996.

C. Vanstraceele, B. Geller, J. P. Barbot, and J. M. BegssA low
complexity block turbo decoder architecturéZEE Trans. on Commu-
nications, vol. 56, no. 12, pp. 1985-1989, Dec. 2008.

B. Geller, I. Diatta, J. P. Barbot, C. Vanstraceele, andRBmbeau,
“Block turbo codes: From architecture to application,”Rroc. of IEEE
International Symposium on Information Theory, IS T 2006, Seattle, Jul.
2006, pp. 1813-1816.

S. Lin and D. J. CostelloError Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

C. Berrou, J. Hagenauer, M. Luise, L. Vandendorpe, andS¢hegel,
“Turbo-Information processing: algorithms, implemeitas & applica-
tions,” Proc. of the IEEE, vol. 95, no. 6, pp. 1146 — 1149, Jun. 2007.
V. Lottici and M. Luise, “Carrier phase recovery for tadzoded linear
modulations,”| EEE International Conference on Communications, ICC,
vol. 3, pp. 1541-1545, 2002.

N. Noels, C. Herzet, A. Dejonghe, V. Lottici, H. Steenua
M. Moeneclaey, M. Luise, and L. Vandendorpe, “Turbo synalwration:
an EM algorithm interpretation,1EEE International Conference on
Communications, ICC, vol. 4, pp. 2933-2937, 2003.

L. Zhang and A. Burr, “APPA symbol timing recovery scheiior turbo
codes,”"PIMRC, vol. 1, pp. 44-48 vol.1, Sep. 2002.

A. Nayak, J. Barry, and S. McLaughlin, “Joint timing mery and
turbo equalization for coded partial response channHEEE Trans. on
Magnetics, vol. 38, no. 5, pp. 2295-2297, Sep. 2002.

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

R. Barry, A. Kavcic, S. McLaughlin, A. Nayak, and W. Zeritterative
timing recovery,”|EEE Sgnal Processing Magazine, vol. 21, no. 1, pp.
89-102, Jan. 2004.

I. Nasr, L. Atallah, S. Cherif, B. Geller, and J. Yang, $®ft maximum
likelihood technique for time delay recovery,” 2014 International
Conference on Communications and Networking (ComNet), Mar. 2014,
pp. 1-5.

I. Nasr, L. Atallah, B. Geller, and S. Cherif, “CRB deaton and new
code-aided timing recovery technique for QAM modulatechalg,” in
2015 |EEE International Conference on Communications (ICC), Jun.
2015, pp. 4901-4906.

S. M. Kay, Fundamentals of Satistical Sgnal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
J. Yang, B. Geller, and S. Bay, “Bayesian and hybrid GzafRao bounds
for the carrier recovery under dynamic phase uncertainretlafi |EEE
Trans. on Sgnal Processing, vol. 59, no. 2, pp. 667-680, Feb 2011.
S. Bay, B. Geller, A. Renaux, J. P. Barbot, and J. M. Bss'On
the hybrid Cramer-Rao bound and its application to dynanptase
estimation,”|EEE Sgnal Processing letters, vol. 15, pp. 453-456, 2008.
S. Bay, C. Herzet, J. M. Brossier, J. P. Barbot, and BldggelAnalytic
and asymptotic analysis of bayesian Cramer-Rao bound foardical
phase offset estimation/EEE Trans. on Sgnal Processing, vol. 56,
no. 1, pp. 61-70, Jan. 2008.

J. Yang and B. Geller, “Near-optimum low-complexity @athing loops
for dynamical phase estimation - Application to BPSK motada
signals,” |[EEE Trans. on Sgnal Processing, vol. 57, no. 9, pp. 3704—
3711, Sep 2009.

P. Kovintavewat and J. Barry, “Exit chart analysis fterative timing
recovery,” vol. 4, pp. 2435-2439 Vol.4, Nov. 2004.

S. Ten Brink, “Convergence behavior of iteratively dded parallel
concatenated codedEEE Trans. on Communications, vol. 49, no. 10,
pp. 1727-1737, Oct. 2001.

N. Wu, H. Wang, J. Kuang, and C. Yan, “Performance anslg§code-
aided symbol timing recovery on AWGN channel$EEE Trans. on
Communications, vol. 59, no. 7, pp. 1975-1984, July 2011.

B. Mielczarek and A. Svensson, “Timing error recovenytirbo-coded
systems on AWGN channeldEEE Trans. on Communications, vol. 50,
no. 10, pp. 1584-1592, Oct. 2002.

H. Meyr, M. Moeneclaey, and S. A. Fechtdjgital Communication
Receivers, J. G. Proakis Series, Ed. Wiley Series in Telecommunicatio
and Signal Processing, 1998.

A. Masmoudi, F. Bellili, S. Affes, and A. Stephenne, t8ed-form ex-
pressions for the exact Cramer-Rao bounds of timing rega&imators
from BPSK, MSK and square-QAM transmission$ZEE Trans. on
Sgnal Processing, vol. 59, no. 6, pp. 2474-2484, Jun. 2011.

M. Oerder, “Derivation of Gardner's timing-error deter from the max-
imum likelihood principle,”|[EEE Trans. on Communications, vol. 35,
no. 6, pp. 684—685, 1987.

J. G. ProakisDigital Communications. McGraw-Hill, 1995.

U. Mengali and A. N. D’AndreaSynchronization Techniques for Digital
Receivers. Plenum Press, New York and London, 1997.

F. Gardner,Demodulator Reference Recovery Techniques Suited for
Digital Implementation. Gardner Research Comp., 1988. [Online].
Available: http://books.google.fr/books?id=BqQ_NQAAL&J

W. C. Lindsey and M. K. Simorifelecommunication Systems Engineer-
ing. Dover Publications, Incorporated, 1991.

B. Vucetic and J. YuanjJurbo Codes: Principles and Applications.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

N. Wu, “Performance analysis of code-aided iterativarrier phase
recovery in turbo receivers/ET Communications, vol. 6, pp. 2980—
2988(8), November 2012.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolatidn digital
modems - part Il: Implementation and performand&EE Trans. on
Communications, vol. 41, no. 6, Jun. 1993.

B. Geller, V. Capellano, J. M. Brossier, A. Essebbar] & Jourdain,
“Equalizer for video rate transmission in multipath undetev commu-
nications,” IEEE Journal of Oceanic Engineering, vol. 21, no. 2, pp.
150-156, Apr. 1996.

J. M. Brossier, P. O. Amblard, and B. Geller, “Self adeptPLL
for general QAM constellations,” irProc. of 11t" European Signal
Processing Conference EUSIPCO, Toulouse, Sept. 2002, pp. 631-635.
I. Gradshteyn and |. RyzhiKTable of Integrals, Series and Products,
A. Jeffrey and D. Zwillinger, Eds. Elsevier Academic Prez3Q7.



Imen Nasr is currently working toward the Ph.D.

degree in Information and Communications Tech:
nologies in both the Ecole Nationale Supérieure di
Techniques Avancées (ENSTA) ParisTech - UPSA
France and the Ecole Supérieure des Communici
tions de Tunis - Sup’Com (Higher School of Com-
munication of Tunis), Tunisia. She received an Engi:
neering and a Master Degree in Telecommunicatio
from Sup’Com, University of Carthage, Tunisia, in
2011. Her research activities include synchronizatio
and localization for Wireless Body Area Networks

(WBAN).

Leila Najjar Atallah received the engineering de-
gree from Polytechnic School of Tunisia in 1997, a
Master Degree in Automatic and Signal Processing
from Ecole Supérieure d’Electricité Supélec, France
in 1998, and a PhD in Sciences from University
Paris Xl in 2002. she joined the Higher School of
Communications of Tunis (Sup’Com) as an Assis-
tant Professor in 2006, where she is currently an
Associate Professor. She carries her research ac-
tivities in the research laboratory Communications,
Signal and Image (COSIM) in Sup’Com. Her current

research interests are in the field of statistical signatgssing and in signal

processing for wireless communications. They include obhrestimation,
synchronization and localization. She is also interegtezsparse regularization
problems with application to energy efficient Wireless Seridetworks.

Benoit Geller (SM) received the Telecommunica-
tions engineering master degree from ENSEIRB an
the PhD in Telecommunications from INP Grenoble
in 1992. He was the head of the Multisensor anc
Information Team (TIM, 17 permanent researchers
at SATIE lab - ENS Cachan until he joined ENSTA
ParisTech - UPSA in 2007 where he is currently ¢
Full Professor. He works on wireless networks anc
the Internet of Things, and especially on iterativ:
methods with application to digital communications.
He has been involved in many European and indu
trial projects and has published about 100 internationaligations.

Sofiane Cherif is professor in telecommunication
engineering at the Higher School of Communica-
tions of Tunis (SUP’COM), University of Carthage.
He received engineering, MS degrees, andPh.D. in
Electrical Engineering from the "National Engineer-
ing School of Tunis (ENIT)", University of Tunis-El
Manar, in 1990 and 1998, respectively and the "Ha-
bilitation Universitaire" in Telecommunication from
SUP’COM, in 2007. From 2011 to 2014, he was
head of the doctoral school in ICT, and presently, he
is the head of COSIM research Lab at SUP’COM.

His current research interests are signal processing fammamications,

resource allocation and interference mitigation in wielaetworks, wireless
sensor networks and cognitive radio.



