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Abstract

A cavity at the base of the squareback Ahmed model at Re ' 4× 105 is
able to reduce the base suction by 18% and the drag coefficient by 9%, while
the geometry at the separation remains unaffected. Instantaneous pressure
measurements at the body base, fluid force measurements and wake velocity
measurements are investigated varying the cavity depth from 0 to 35% of the
base height. Due to the reflectional symmetry of the rectangular base, there
are two Reflectional Symmetry Breaking (RSB) mirror modes present in the
natural wake that switch from one to the other randomly in accordance with
the recent findings of Grandemange et al. (2013b). It is shown that these
modes exhibit an energetic 3D static vortex system close to the base of the
body. A sufficiently deep cavity is able to stabilize the wake toward a sym-
metry preserved wake, thus suppressing the RSB modes and leading to a
weaker elliptical toric recirculation. The stabilization can be modelled with
a Langevin equation. The plausible mechanism for drag reduction with the
base cavity is based on the interaction of the static 3D vortex system of the
RSB modes with the base and their suppression by stabilization. There are
some strong evidences that this mechanism may be generalized to axisym-
metric bodies with base cavity.

Keywords: Turbulent wake, Symmetry breaking, Stabilization, Drag
reduction.
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1. Introduction

Bluff bodies in uniform streams are known to experience substantial form
drag due to the full flow separation at their base (Schlichting and Gersten,
2000). Since they are very common in our surrounding industrial environ-
ment, such as transportation industries (ground vehicles, submerged part
of ships), civil engineering (buildings, bridges) or offshore industries (risers,
platforms) it is of a major interest to investigate the possible fluid force reduc-
tion that can be achieved under the constraint of conserving their functional
shapes. In that context, it is useful to address the issue of reducing drag with-
out changing the location of separation (separation control is then out of the
focus of this work). Bodies with blunt trailing edge have the advantage to
fix the separation and one may wonder what is possible to realize within this
constraint. The response lies in the dynamics of the separated area and the
low pressure therein, called the base pressure. Drag reduction mechanisms
are always intimately associated with the increase of base pressure (Roshko,
1993) and their physical comprehension often points on the identification of
the different contributions of the base pressure. A relevant quantity that
quantifies the base pressure effect in the drag is the base suction coefficient
defined as Cb = −Cpb, where the pressure coefficient Cpb = 1

Σ

∫∫
Σ
pb−p0
1
2
ρU2

0
dS is

averaged over the surface Σ of the blunt base. Here, U0 and p0 are respec-
tively the velocity and the pressure of the uniform upstream flow.

There are several drag reduction techniques (see for instance reviews by
Viswanath (1996); Choi et al. (2008)), and not all of them are yet elucidated.
The passive technique that consists in producing a body cavity at the base
is particularly interesting because, in addition to the fact that it leads to a
substantial base drag reduction (Morel, 1979; Viswanath, 1996) in the range
10 − 20% for both the 2D and 3D generic axisymetric bluff bodies, it keeps
unchanged the location of the separation. The effect is found to saturate for
cavity depth larger than about 25% the body height. The mechanism was
revealed by Kruiswyk and Dutton (1990) and Molezzi and Dutton (1995)
for 2D bluff bodies. The drag reduction is related to the global Bénard
von Kármán instability leading to the periodic vortex shedding. The reason
for drag reduction is not an alteration of this global dynamics, but simply
because of the increased distance between the body base and the zone of
vortex formation. However, this explanation is not completely satisfactory,
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and the mechanism is more subtle. Actually, the pressure increase on the
base reduces the drag force and then the external force necessary to hold
the body. Hence the flow has to be modified. Indeed, when the drag is
reduced, the vortices are found to be weakened (Molezzi and Dutton, 1995),
and their pressure higher as can be clearly seen in the numerical simulation of
Martin-Alcantara et al. (2014). In addition, it has to be acknowledged that
at large Reynolds number flows (modeled as inviscid flow), the interaction of
a flat wall with a vortex source produces an increased velocity on the wall
associated with a low pressure.

Cavity effects on axisymmetric bodies are reported to give similar amounts
of base drag reduction to those obtain with two dimensional bodies. On the
contrary to two dimensional bodies, the reduction is observed even in the ab-
sence of wake periodicity (Viswanath, 1996). The periodic vortex shedding is
then not the cause for the cavity effect. Instead, mean flow modifications are
generally evoked (Viswanath, 1996) but they might be a simple consequence
of the external force reduction as discussed just above. So, there is no clear
interpretation of the cavity effect in this case.

The wake dynamics and topology of axisymmetric bodies are drastically
different from cylinders. For instance, the first bifurcation at low Reynolds
number is a steady breaking of the axial symmetry (Fabre et al., 2008; Pier,
2008; Bohorquez et al., 2011) leading to a static mode having a planar sym-
metry (Mittal et al., 2002), that we will refer for the remainder of the paper as
Symmetry Breaking (SB) mode. As the Reynolds number increases, Berger
et al. (1990) showed that the wake recovers the axisymmetry in average but
presents instantaneously a large scale spatial structure that does not preserve
the axisymmetry. Recent studies of Rigas et al. (2014) and Grandemange
et al. (2014a) demonstrate that the planar symmetry is persistent at least
for Reynolds numbers up to 2× 105, but that the azimuthal position of the
symmetry plane undergoes a fully random long time dynamics. The static
SB modes are then present in the turbulent axisymmetric wake.

In cases of bodies with rectangular blunt base, such as the squareback
Ahmed body (Ahmed et al., 1984) a similar wake dynamics has been re-
cently evidenced. The work of Grandemange et al. (2013b) shows the per-
manent existence of Reflectional Symmetry Breaking (RSB) modes at least
for Reynolds number up to 2.5×106. The main difference with axisymmetric
bodies is that the basic symmetry of the rectangular base allows only two
opposite azimuthal positions for the RSB modes. Consequently the wake
dynamics is governed by a random switching between these two RSB modes
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leading to a bistable behavior. As for the SB modes of the axisymmetric
bodies, the characteristic time associated with the RSB mode switching is 2
to 3 orders of magnitude larger than the time for periodic shedding with a
Strouhal number St = 0.2 (Rigas et al., 2014; Grandemange et al., 2013b).
The study of the squareback Ahmed body at low Reynolds numbers (Grande-
mange et al., 2012) indicates that the RSB modes are reminiscent of the two
stable solutions obtained after a pitchfork bifurcation in the laminar regime.
However, the closer the Ahmed body to the wall (to simulate a road effect),
the larger the critical Reynolds number of the bifurcation threshold which
eventually occurs in the turbulent regime (Cadot et al., 2015).

One may wonder whether the presence of the symmetry breaking modes
is related to the cavity effect of 3D bodies, such as the periodic Kármán shed-
ding is for cavity effect of 2D bodies. Sanmiguel-Rojas et al. (2011) studied
the cavity effect on the stability properties of the SB modes in the laminar
regime of a blunt based axisymmetric body. They found a stabilization effect,
the threshold for the symmetry breaking which is obtained for Re=400 with
no cavity is postpone to an asymptotic value of about 600 for body cavities
deeper than 60% of the body diameter. So, a question is how does the cavity
interact with the SB modes in the turbulent regime ?

The aim of the paper is to address this fundamental issue in the geometry
of the squareback Ahmed body. We are aware of two studies in an industrial
context from Irving Brown et al. (2010) and Grandemange et al. (2015)
showing that a body cavity at the rectangular base reduces significantly the
drag.

The paper is organized as follow. Section 2 describes the geometry and
the measurements. The sensitivity of the wake dynamics to the body align-
ment in the wind tunnel is presented in Sec. 3. Results in Sec. 4 are presented
in four parts. Section 4.1 characterizes the reference case (no cavity). Cavity
effects are first studied on fluid forces and base pressure in Sec. 4.2 and then
on the wake in Sec. 4.3. In Sec. 4.4, the cavity effect is investigated again but
when a vertical control cylinder is placed in the near wake, known as a tech-
nique to stabilize the bistable behavior of the reference case (Grandemange
et al., 2014b; Cadot et al., 2015). Discussions in Sec. 5 are separated in two
parts. A first discussion in Sec. 5.1 aims at describing the observed stabiliza-
tion within the framework of the bifurcation theory and a second discussion
in Sec.5.2 interprets the physical mechanism of drag reduction using a body
cavity. Section 6 concludes the paper.
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2. Experimental set-up

Figure 1 illustrates the set-up for the experiment. The 3D bluff body is a
simplified ground vehicle similar to the squareback geometry used in Ahmed
et al. (1984), but with a different aspect ratio of the rectangular base W/H =
1.18 instead of 1.34. Its dimensions W×H×L are 350×297×1124 mm. The
ground clearance is set to C = 33 mm. Also, the original cylindrical support
are replaced by NACA 0025 profiles having a chord of 80 mm. The rear
of the body is equipped with a sliding base displayed as the gray board in
Fig. 1(a). The sliding board dimensions are (W − 20 mm)× (L− 20 mm). A
cavity of depth d is then produced by pushing the board toward the interior
of the body.

The bluff body is placed in the 2/5 scale wind-tunnel of GIE S2A at
Montigny-le-Bretonneux especially designed for automotive aerodynamics.
The facility is a closed loop circuit that is the copy at scale 2/5 of the full
scale facility whose detailed description may be found in Waudby-Smith et al.
(2004). The plenum of the facility is sketched in Fig. 1(b), The incoming
flow enters the plenum from an area contraction ratio of 6 with a 3/4 open
jet having a cross-section of 3.84 m2 (2, 6 × 1, 47 m). The jet is then only
guided by the floor. A boundary layer suction is applied in the gray area in
Fig. 1(b) in order to obtain a 3 mm boundary layer displacement thickness
1.4 m upstream the centre of the body. The bluff body is placed on a large
turntable having 2.8 m in diameter to reproduce sideslip situations with a
yaw angle β. The flow inhomogeneity is less than 0.5% with an angular
deviation smaller than 0.25◦ in both the y = 0 and z = 0 planes. The
free stream turbulent level is lower than 0.4%. The maximum wind speed is
75 m.s−1 but for the present study, only the results for U0 = 20 m.s−1 are
shown since investigations at larger velocities was giving comparable results.
Thus, the Reynolds number of the flow is Re=U0H

ν
' 4× 105.

The measurement systems are provided by the GIE S2A. The four NACA
supports of the model are fixed on a 6 components balance which provides
each component of the force, say fi where i ∈ {x, y, z} denotes respectively,
the drag, side and lift force component. The balance precision is 0.3 N for
both the drag and the side force, and 0.5 N for the lift force. Time series are
obtained from recordings at a sampling frequency of 10 Hz during 300 s when
a statistically steady state is reached; part of the fluctuations are ascribed
to measurement uncertainty but as we will see, they still give quantitative
information on the steadiness of the forces.
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Figure 1: Sketch of the experimental set-up. Model (a) with adjustable cavity depth d,
see text for dimensions. Blue dots represent the distribution of the pressure taps. The
origin of the coordinate system is set at the centre of the body base. Plenum (b) of the
wind tunnel. In (c) a vertical cylinder of diameter 0.067H is fixed at the rear of the body
with two thin rods at a distance l = 0.57H. The length of the cylinder is 1.064H.

The pressure is measured at 20 locations at the body base (indicated
with blue dots in Fig. 1(a). There are 5 columns separated by a distance
∆y = 72 mm of 4 pressure taps separated by a distance ∆z = 80 mm. The
taps are distributed symmetrically referring to the planes y = 0 and z = 0,
corresponding respectively to the mid-width and mid-height of the body. The
pressure is obtained using a ZOC22 pressure scanner and a GLE/SmartZOC-
100 electronic for data acquisition through an ethernet connection to a PC.
It is acquired at a sample rate of 200 Hz per channel, with an accuracy of
±3.75 Pa. The pressure scanner is located inside the model. It is linked to
each tap with less than 300 mm of vinyl tubes to limit the filtering effect of
the tubing. The 20 pressure channels are recorded during 600 s for typical
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experiments. The force and the pressure coefficients are defined as :

ci =
fi

1
2
ρSU2

0

; cp =
p− p0

1
2
ρU2

0

,

with i referring to the force component, ρ is the air density, S = H ×W is
the frontal area of the Ahmed body and p0 is the free stream pressure. The
coefficients are given to be accurate in the absolute range±0.002. Concerning
the pressure distribution at the base of the body, some quantities are of major
interest. The base suction coefficient is defined as :

cb(t) = − 1

20

5∑
i=1

4∑
j=1

cp(yi, zj, t), (1)

where i, j are referring to the pressure taps location at the base. The minus
sign insures cb(t) to evolve in the same manner as the pressure drag. The two
following quantities will give global information about the instantaneous wake
orientation in the y and z direction. They are the vertical pressure coefficient
profile taken at the centre of the base (y = 0) and the horizontal pressure
coefficient profile taken at the second row from the bottom (z = −0.138H):

cp(y, t) = cp(y,−0.138H, t) ; cp(z, t) = cp(0, z, t). (2)

We define the pressure gradient at the centre of each of the profiles in the y
or z directions as :

∂cp(t)

∂y
=
∂cp(y, t)

∂y

∣∣∣
y=0

;
∂cp(t)

∂z
=
∂cp(z, t)

∂z

∣∣∣
z=0

. (3)

The PIV system is a dual pulse laser (Nd:YAG, 2×200 mJ, 4 ns) combined
with a Dantec CCD camera (FlowSense EO, 4 Mpx). The setup acquires im-
age pairs at a rate of 4 Hz. The interrogation window size is 32 × 32 pixels
with an overlap of 50%. Conventional notations for the velocity components
will be used, say (u, v, w) in the coordinate system (~ex, ~ey, ~ez). Two mea-
surement planes are investigated at the rear of the body; the plane y = 0
that gives access to u and w velocity components and the plane z = 0 that
gives access to u and v velocity components. The thickness of the laser light
sheet is about 5 mm. The interrogation window of 32×32 pixels corresponds
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Figure 2: Probability density function (PDF) vs. the yaw angle β normalized by their

maximum value. (a): PDF of the horizontal pressure gradient at the base
∂cp
∂y∗ , the empty

circles displays the corresponding time averaged value
∂Cp

∂y∗ . (b): PDF of the side force fy
for 3 different yaw angles.

to physical sizes of 5 × 5 mm. For each cavity depth d, 400 PIV fields are
acquired in each plane to perform the statistics.

The instantaneous reflectional symmetry of the wake will be characterized
by the spaced averaged v-component of the velocity in the plane z = 0 defined
as :

〈v〉w =
2

H2

∫ H

x=H/2

∫ +H/2

y=−H/2
vdxdy. (4)

〈v〉w can be seen as the instantaneous global side velocity of the near wake.

For the remainder of the paper, a∗ denotes the non-dimensional value of
any quantity a(x, y, z, t) made dimensionless by a combination of the height
H and the inlet velocity U0. Furthermore, any time averaged quantities are
denoted with a upper case letter: A = a, and the prime denotes the root

mean square about the mean A′ =

√
(a− A)2. The quantity A will be called

the mean of a and A′ its fluctuation.
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3. Body alignment, RSB modes, bistability and fluid force

As already pointed out by the previous studies of Grandemange et al.
(2013a,b, 2014b, 2015), this flow is highly sensitive to any symmetry defects
comprising both main flow inhomogeneities and geometrical imperfections.
This sensitivity can be characterized by changing accurately the yaw angle
β of the model. We first show in Fig. 2(a), the variation with β of the
statistics of the horizontal pressure gradient as defined in Eq. (3). There is
a clear discontinuity with two opposite most probable pressure gradients at
β = −1◦. It is now admitted from these previous works that their existence
is due to the two mirror RSB modes of the turbulent wake.

The left to right reflectional symmetry of the flow (with respect to the
y = 0 plane) is not respected when β = 0 (corresponding to the geometrical
alignment in the wind tunnel), since the wake is locked on one of the two RSB
modes producing a significant positive horizontal mean pressure gradient at
the base. A misalignment close to β = −1◦ is needed to obtain the equal
exploration of the two RSB modes that restores the symmetry in a statistical
sense (indicated by the absence of a mean horizontal pressure gradient).

We turn now to the statistics of the side force in Fig. 2(b). The force is not
zero for β = 0 thus confirming a small angular deviation of the main flow (it
was measured to be smaller than 0.25◦ in free stream conditions). Even small,
the flow deviation is enough to lock the wake on the RSB mode having the
positive horizontal pressure gradient at the base. In consequence, the value
of the lateral force which is about Fy ∼ −0.32 N is a cumulative effect of a
small main flow deviation together with the selection of a RSB mode. It is
likely that the condition β = −1◦ is the best alignment with the main flow,
because the two RSB modes are clearly observable in both the lateral force
and the pressure gradient. The fact that the mean value is Fy ∼ 0.9 N is
a simple consequence of the non zero yaw angle that produces a small drag
force projection in the y direction of the force balance measurements.

Finally, the symmetrical defect should not be ascribed to the main flow
only. Indeed, in the present case the pressure scanner cable exits the model
just behind the left rear support and is fixed on the floor using adhesive tape.
We did a test with the cable exiting the model from the right rear support,
and the best alignment was β = −0.5◦. Thus, any geometrical defects of the
model will also have their significant influence.

For all the experiments presented next, the body alignment is β = −1◦

to guarantee the equal exploration of both RSB modes.
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4. Results

4.1. Reference case

Table 1: Mean and fluctuation of the coefficients Cref
i and Cref

i
′

(see text) for the reference
squareback model with no cavity, d∗ = 0.

d∗ Cref
b Cref

x Cref
y Cref

z Cref
x
′

Cref
y
′

Cref
z
′

0 0.149 0.288 0.037 -0.117 4 ×10−3 5 ×10−3 4× 10−3

The force coefficients Cref
i of the reference case (i.e. d∗ = 0, no cavity)

are given in Table 1. The base suction represents 51.7% of the total mean
drag coefficient Cx that takes into account both the form and friction drag.
This important contribution is a well known feature of the Ahmed body
(Ahmed et al., 1984) which gives a prior interest to the flow dynamics at
the body base. The body develops a small negative lift ascribed to a flow
acceleration in the ground clearance. The small positive side force coefficient
is a consequence of the body alignment as discussed above. The fluctuation
of the side force coefficient is the largest of the three components of the force
which is explained by the bistable behavior of the wake.

The bistability is the dynamics of the random exploration of both RSB
modes which is unambiguously observable in the horizontal pressure distri-
bution (defined in Eq. 2) at the base shown as space time diagram cp(y

∗, t)
in the left column of Fig. 3(a). The total time duration of these samples is
T ∗ = 4000. Note that the typical time τ ∗ for vortex shedding with a Strouhal
number St= 0.2 is τ ∗ = 1/St = 5. The trace of the RSB modes are easily
detectable by the permanent strong asymmetry in the pressure distribution
with one low pressure side at a level cp ∼ −0.2 appearing in blue and a high
pressure side at a level cp ∼ −0.1 appearing in red.

It is convenient to identify the mode by the sign of their horizontal base
pressure gradient at the centre of the base. In Fig. 3(a, left), a time interval
spent in the RSB mode with negative base pressure gradient is indicated by
the letter N and in the RSB mode with positive pressure by the letter P .
Eight switches between the two RSB modes are observable in (a). The time
spent in one mode varies between 200 to 1000, this long time dynamics was
already mentioned and its statistics thoroughly studied in the previous paper
by Grandemange et al. (2013b).
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Figure 3: Space time diagram of the horizontal, cp(y∗, t) (left) and vertical, cp(z∗, t)
(right) pressure distribution at the base (Eq. 2) vs. the cavity depth d∗.N and P denote
respectively a time duration spent in the RSB mode with negative and positive horizontal
pressure gradient.
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The acquisition rate of the pressure scanner allows to follow the dynamics
of the base pressure gradient in correlation to the base suction. We show in
Fig. 4(a,b) trajectories in the plane base pressure gradient versus base suction
over the same time duration as in Fig. 3(a). For the horizontal base pressure
gradient (Fig. 4a), the 8 trajectories linking the two basins of attraction of
each mode are representative of the switching dynamics. The lowest base
suction is observed during switchings having base pressure gradient close to
zero.

Conditional statistics are used to obtain the property of one mode only.
Since both modes are mirror from each other we will only display the mode
N . It consists in keeping the events of negative pressure gradient only as
illustrated in Fig. 5. The resulting base pressure distribution of the mode
N is shown in Fig. 6(a). The velocity field in the z = 0 plane of the wake
mode N , shown in Fig. 7(a,c), is obtained by keeping PIV fields having a
negative instantaneous global side velocity in the near wake (see Fig. 5).
The correlation between simultaneous measurements of both the pressure
and global side velocity in Fig. 5 is excellent indicating that the RSB mode
N is directly associated with a negative v-component velocity inside the
recirculating bubble.

The RSB mode N wake in the plane z = 0 in Fig. 7(a) and (c) is in agree-
ment with Grandemange et al. (2013b), the striking feature is the presence
of a circular recirculation, close to the base and on the hand side y∗ > 0
corresponding to the low pressure footprint in Fig. 6(a). By looking at the
velocity fluctuation in Fig. 7(c), we see that this circular recirculation is lo-
cated in a place with low fluctuations, on the contrary to the opposite ellipti-
cal recirculation that concentrates high fluctuation level. Then, the circular
recirculation looks rather like a steady vortex whose intensity is likely to be
responsible for the low pressure footprint of the RSB mode in Fig. 6(a). This
experimental result is confirmed by the recent large eddy simulation of Pas-
quetti and Peres (2015) showing unambiguously the mode N pressure field
of the squareback Ahmed body at Re=5.12× 104.

The RSB modes are not distinguishable neither for velocity fields in the
plane y = 0, nor in the vertical pressure gradient displayed in Fig. 3(a, right).
There is then no justification to perform conditional statistics and we show
in Fig. 8(a,c) the complete average of the PIV data measured in the plane
y = 0 that should be relevant for both RSB modes N and P .
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4.2. Cavity effect on the fluid force and base pressure

The evolutions of the force coefficients, ∆Ci = Ci − Cref
i , with the cavity

depth are plotted in Fig. 9(a) and (b). As can be seen, a spectacular drag
reduction ∆Cx is produced by the depth of the cavity. The effect saturates
around d∗ = 0.27 for which the drag decrease is about ∆Cx = 0.026 corre-
sponding to a maximum reduction of 9% from the reference case detailed in
table 1. The base suction coefficient variations ∆Cb are a bit more noisy but
follow significantly the drag variations. It indicates that the increase of the
mean base pressure is the only source of the observed drag reduction. The
maximum base suction decrease can be estimated to ∆Cb = 0.027 ± 0.002
corresponding to a relative reduction from the reference (table 1) of 18±1.5%

We can see in Fig. 9(a) that the reduction does not affect either the mean
lift ∆Cz or the mean side force coefficient, ∆Cy. Similarly in Fig. 9(b), it
does not affect either the fluctuating drag and lift but it is clearly correlated
with a reduction in the side force fluctuation C ′y of about 65% compared to
the reference (table 1).

For each cavity depth, the pressure gradient statistics is shown in Fig. 9(c)
for the vertical z direction and in (d) for the horizontal y direction. While no
effect can be identified from the vertical gradient in Fig. 9(c), the statistics
of the horizontal base pressure gradient is indicating a bifurcated diagram
showing the suppression of the bi-modal behavior of the base pressure. In-
deed, for a cavity deeper than d∗ = 0.25, the most probable value unique and
close to zero, as expected from the reflectional symmetry of the set-up. The
huge reduction of the horizontal pressure gradient fluctuations at the base is
then responsible for the observed reduction of the side force fluctuations C ′y
in Fig. 9(b).

The extinguishment of the bi-modal dynamics of the horizontal pressure
distribution at the base, cp(y

∗, t) is observable in the left column of Fig. 3.
Six cavity depths from the reference case (a), d∗ = 0 to the deepest cavity (e),
d∗ = 0.337 are displayed. When the cavity gets deeper, the lowest pressures
(green to blue, cp < −0.16) disappear, thus leaving only the level of high
pressure coefficient around cp ∼ −0.12. In the z-direction (right column), the
mode switchings are hardly detectable, and the cavity effect homogenizes the
pressure distribution such that for the deepest cavity one cannot distinguish
between the vertical and the horizontal pressure coefficient profiles. The same
conclusion is observable in the trajectories displayed in Fig. 4(b,c) implying
an isotropic dynamics of the base pressure gradients with the deepest cavity.
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In conclusion, the drag reduction mechanism is a consequence of the loss
of the low pressure region at the base. It can be better quantified in Fig. 6 by
comparing the mean base pressure distribution of the RSB mode N (Fig. 6a)
for d∗ = 0 and the mean pressure distribution for the deepest cavity (Fig. 6b)
for d∗ = 0.337.

4.3. Cavity effect on the wake

The statistics of the global side velocity of the wake < v∗ >w (Eq. 4)
are plotted in Fig.10 as a function of the cavity depth. The statistics are
not well converged because of the only 400 realizations of the velocity fields.
However they contain sufficient information to conclude about the cavity
effect on the symmetry properties of the wake. For cavities such that d∗ <
d∗c = 0.24, it is clear that during the PIV measurements, the dynamics is
essentially exploring the mode having the negative side velocity, say mode
N . For cavities deeper than d∗c , the most probable side velocity of the wake is
unique and close to zero as expected by the body symmetry, thus indicating
a stabilization of the wake on a symmetry preserved mode. For these large
deepness, the symmetry preserved mode of the wake is then characterized
by the total averaging of the velocity fields as shown in Fig. 7(b,d) and
Fig. 8(b,d) measured respectively in the two perpendicular planes z = 0 and
y = 0.

In the horizontal plane z = 0, the stabilized wake (Fig. 7b) using the
deep cavity d∗ = 0.337 presents two symmetric elliptical recirculations. We
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Figure 11: Schematic drawing of the mean vortex system in (a) the reference wake showing
the two mirror RSB modes and in (b) with a deep cavity.

note the absence of circular recirculations comparable to the reference wake
(Fig. 7a). We can also observe a global reduction of the fluctuation level in
the mixing layers in Fig. 7(d) compared to the reference case in Fig. 7(c).

A comparison between the mean flows in Fig. 8(a,b) measured in the
vertical plane y = 0 reveals that the recirculating bubble length, defined
by the separating distance from the body base to the bubble closure at the
reattachment point, is increased by the presence of the cavity. This is a
general result of the relationship between the base suction and the bubble
curvature, that is well reproduced by the steady Euler flow modelling of
separated flows (see general review of Wu (1972)). Since the base suction
with the cavity is decreased, pressure gradients that are mainly compensating
centripetal accelerations are also decreased attenuating the flow curvatures.
A second observation concerns the small but significant reduction of turbulent
fluctuations in the mixing layers with the presence of the cavity in Fig. 8(d)
compared to the reference case of Fig. 8(c).

The main conclusion about the wake velocity measurements is that the
RSB modes of the wake are suppressed for cavities deeper than d∗c ∼ 0.24
leading to a symmetry preserved wake. The steady vortex lying on one hand-
side of the base is then replaced after stabilization by symmetric elliptical
recirculations. It is useful to speculate a schematic view as drawn in Fig. 11
of the three dimensional mean topology of the vortex system for the two
extreme cases. It is inspired from the two perpendicular measurement planes
in Fig. 7(a,b) and Fig. 8(a,b). For the reference case in Fig. 11(a), the flow
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explores randomly the two RSB wakes whose mean topology is depicted by a
horseshoe vortex system. With a sufficiently deep cavity, the horseshoe vor-
tex system is replaced be a toric recirculation in Fig. 11(b) which retrieves
the reflectional symmetry of the geometry. Another important point of the
results concerns the turbulent fluctuation level in the wake, that is reduced
by the presence of the cavity.

In the next section, we compare the effectiveness of suppressing the RSB
modes with the cavity to the technique of Grandemange et al. (2014b) in-
spired from Strykowski and Sreenivasan (1990) to attenuate the bistable be-
havior by placing a small control cylinder at the centre of the recirculating
bubble.

4.4. Control cylinder versus cavity effect

The body is now equipped with a vertical control cylinder as depicted
in Fig. 1(c). The experiments are reproduced varying the cavity depth, but
with shorter force and pressure time recording of T ∗ = 4000 and without any
PIV measurements. The effect of the cylinder on the mean force coefficients
and base suction is shown in Fig. 12(a) in comparison to the reference case
(Table 1).

We first discuss the case with no cavity (d∗ = 0), the addition of the con-
trol cylinder produces an overall drag coefficient decrease of 0.011 which cor-
responds to a drag reduction of 3.8% similar to the value obtained in Grande-
mange et al. (2014b). It is accompanied to a lift coefficient increase, with no
effect on the side force coefficient. About the fluctuations in Fig. 12(b), they
are significantly increased for the lift coefficient and decreased for the side
force coefficient compared to the reference case. Comparing the base pres-
sure gradient statistics at d∗ = 0 with the reference case in Fig. 9(c,d), we see
that the cylinder actually spreads the statistics of the vertical gradient and
significantly affects the statistics of the horizontal pressure gradient. There
is a continuum of values within the range defined by the two most probable
values of the reference case, which causes the side force fluctuation reduction.
The RSB modes are then surely affected by the introduction of the control
cylinder but not suppressed. Strong asymmetry reversals are indeed still
observable in the space time diagram of the horizontal pressure coefficient
profile in Fig. 13(a,left) but without any discrete states as confirmed by the
trajectories in Fig. 14. We can notice from these phase diagrams, that the
events of smallest base suction (lower drag) are correlated to the absence of
base pressure gradients.
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In Fig. 12(a), the drag coefficient and the base suction decrease contin-
uously as the cavity is deepen from d∗ = 0 to d∗ ∼ 0.1 and then reach
a plateau. The smaller magnitude of the drag coefficient variation than the
base suction variation indicates a positive contribution of the control cylinder
to the overall drag. We can see from the figure that the cylinder contribution
to the drag increases as the cavity gets deeper. This effect, that was also ob-
served for another set of experiments at a larger main flow velocity, cannot
be deduced from the wake modifications due the cavity only that are shown
in Fig. 8 and Fig. 7. From these figures, we see that the cavity effect is to
increase the size of the back flow region as well as its intensity at the virtual
location of the cylinder compared to the reference case. One would then
expect the cylinder to have a negative drag, thus having a negative contri-
bution to the overall drag. The contrary is observed in Fig. 12(a), indicating
that the cylinder must modify the back flow consequently.

We can see in Fig. 13 that the base suction decrease as the cavity gets
deeper is associated with the disappearance of the low pressure region at the
base. As for the cavity effect without the control cylinder, the level of high
pressure remains rather unaffected.
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5. Discussions

5.1. Bifurcation theory

A bifurcated diagram is obtained in Fig. 9(d), with the most probable
horizontal pressure gradient as the control parameter and the cavity depth
as the order parameter. There is a pitchfork point at d∗c ∼ 0.24, one unique
branch for d∗ > d∗c and two branches for d∗ < d∗c . For seek of homogeneity
with other works it is convenient to adopt as order parameter the negative
distance from the threshold ε = d∗c−d∗. In that case a negative ε corresponds
to the unique solution branch, and positive epsilon to the bifurcated branches.
Note that for positive values, ε is bounded by d∗c where the two opposite
pressure gradient worth approximately ±0.15 (see Fig. 15). The normal
form of the bifurcation can be modelled as :

Ȧ = εA− δA3 ≡ −dV
dA

(5)

where A is the horizontal base pressure gradient, δ = d∗c
0.152

and V the corre-

sponding potential. The steady solutions of Eq. 5 (Ȧ = 0) are superimposed
to the statistics in Fig. 9(d) (dashed white lines) with a slight negative verti-
cal shift to take into account the symmetry imperfection of our experimental
flow geometry. Due to the large Reynolds number of the flow, the system
is continuously excited by turbulent fluctuations. Whatever their origins are
(free stream turbulent intensity, laminar separation and turbulent reattach-
ment on the forebody, unsteady separation on the support, wake dynamics...),
they have to be introduced in Eq. 5 with an additional source term :

Ȧ = εA− δA3 + a(ε)f(t) (6)

which is a Langevin equation where f is a random process and a is its am-
plitude. In the bifurcated states, the probability of changing states is given
by (Gammaitoni et al., 1998):

Ns ∼ exp (−γ(ε)) (7)

where γ is the ratio between the potential barrier ∆V = ε2

4δ
separating the two

stable solutions in Eq. 5 and the kinetic energy of the turbulent fluctuation
σ playing a role of temperature:

γ =
∆V

σ
(8)
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as a function of ε = d∗c − d∗. The dashed lines report the pitchfork bifurcation of the
horizontal base pressure gradient observed in Fig. 9(d).

The probability of changing states can be computed from pressure time series,
we just count the number of time the horizontal base pressure gradient crosses
the value 0 indicating a mode switch. Looking at Fig. 3 (left), we can see
that the number of switches clearly decreases as the cavity gets shallow, i.e.
ε increases. It means that the probability of changing states is a decreasing
function of ε. It is in agreement with the model, the potential barrier ∆V
becomes larger as ε increases, which renders more difficult for the system to
jump from one stable position to the other. We plot in Fig.15 the number of
switches per unit of dimensionless time, N∗s in a semi-log plot as a function
of ε. The variation of γ(ε) is not fully quadratic as expected by the potential
barrier of the model, but rather affine for positive values of ε. It might be
ascribed to a turbulent fluctuation evolution with ε, although the Reynolds
number is constant. This effect is possible because the intensity of turbulent
fluctuations (see Fig.7d and Fig.8d) was found to be increased in the wake
when ε is increased (i.e. cavity is reduced).

5.2. Mechanism of drag reduction with a body cavity

The presence of the cavity of depth d∗ = 0.27 at the body base is able to
achieve a substantial base suction reduction of 18% compared to the blunt
base (d∗ = 0). The magnitude of the effect is in agreement with previous
works about axisymmetric bodies as reported by Viswanath (1996). In our
case the base pressure modification produces a net drag reduction of 9%
without changing the condition of flow separation at the rectangular trailing
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edge. The origin is revealed in Fig. 3 and Fig. 6 showing the disappearance of
the low pressure region ascribed to the interaction between the rectangular
base and the vortex system depicted in Fig. 11(a). As for the interpretation
of the cavity effect in 2D flows (Molezzi and Dutton, 1995), it can be argued
that the increased distance due to the body cavity from the base to the
static vortex system of the RSB mode is the origin of the drag reduction.
This mechanism is likely to be generalized to axisymmetric bodies since RSB
modes has been evidenced very recently for this geometry (Rigas et al., 2014;
Grandemange et al., 2014a). If this is the case, the gain in drag using a body
cavity of 3D bluff bodies is directly related to the strength of their RSB modes
and substantial gain indicates that RSB modes are major contributors to base
suction.

The continuous reduction of the side force fluctuations C ′y in Fig. 9(b)
as the cavity gets deeper is associated with the extinguishment of the bi-
modal behavior of the side force as can be seen in the statistics in Fig. 16.
The side force statistics has indeed the same trend than the horizontal base
pressure gradient statistics shown in Fig. 9(d). However these results alone
are not sufficient to argue that the RSB mode vortex system is weakened
or suppressed by the cavity. For a given strength of a vortex system, both
the distance and the additional inner wall introduced by the cavity depth
may explain respectively the base pressure gradient reduction and the side
force reduction. The decisive arguments showing the weakening and the sup-
pression of the RSB mode wake are the increase of the switching probability
as discussed in the previous discussion and the statistics of the global side
velocity of the wake shown in Fig.16, where the most probable side velocity
becomes zero for deep cavity in consistency with a symmetry preserved wake.

Finally, we summarize the findings about the mechanisms that led to
the spectacular drag reduction associated with the cavity depth in Fig. 9(a).
For small cavity depths, say d∗ < 0.05, the RSB modes strength remains
almost unaffected while a large variation of drag is measured. It is then
the increased distance between the separation location and the base which
reduces the interaction of the 3D vortex system of the RSB mode with the
wall. This lower interaction provokes a raising of the base pressure. This is
similar to the drag reduction mechanism of the cavity effect with 2D bluff
bodies (Molezzi and Dutton, 1995). The 2D periodic Kármán vortices are
playing the same role as the 3D static vortex system of the RSB mode. For
deeper cavities (d∗ > 0.05), the stabilization process toward the symmetry
preserved mode might also contribute to an additional drag reduction with
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The PDFs are normalized by their maximum value using the same color bar as in Fig. 2.

the gradual suppression of the 3D vortex system that is replaced by an el-
liptical toric recirculation. Once the wake is stabilized (d∗ > 0.24), the base
suction saturates to a constant value but the drag slightly increases due to
the additional friction on the inner wall of the cavity.

6. Conclusion

The presence of a cavity at the base of the squareback Ahmed model is
able to reduce substantially the drag coefficient, while the flow at the sepa-
ration is not modified. This cavity effect is due to the permanent presence
in the natural wake of an energetic 3D static vortex system close to the base
of the body (RSB modes). Due to the reflectional symmetry of the rect-
angular base, there are two RSB mirror modes present in the natural wake
that switch from one to the other randomly. It is shown that the cavity is
able to stabilize the natural wake toward a symmetry preserved wake, thus
suppressing the RSB modes and leading to an elliptical toric recirculation.
The stabilization can be modelled with a Langevin equation. The plausi-
ble mechanism for drag reduction is based on the interaction of the static
3D vortex system of the RSB modes with the base of the body and their
suppression by stabilization.

It would be interesting to know whether these results apply for axisym-
metric bodies with cavity in the turbulent regime. Is the drag reduction
observed in these cases (Viswanath, 1996) only related to a simple reduced
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interaction of the SB modes with the body base or associated with a stabi-
lization toward a symmetry preserved mode as in the present case ?

It is shown that the technique of the control cylinder in the recirculating
region only affects partially the RSB mode. It also leads to less drag reduction
than the cavity effect that suppresses the RSB modes.
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