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Lützowstraße 5
46236 Bottrop, Germany

Email: firstname.lastname@hochschule-ruhrwest.de

Alexander Gepperth
ENSTA ParisTech, INRIA FLOWERS

828 Blvd des Maréchaux
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Abstract—We present a novel hierarchical approach to multi-
class classification which is generic in that it can be applied
to different classification models (e.g., support vector machines,
perceptrons), and makes no explicit assumptions about the proba-
bilistic structure of the problem as it is usually done in multi-class
classification. By adding a cascade of additional classifiers, each
of which receives the previous classifier’s output in addition to
regular input data, the approach harnesses unused information
that manifests itself in the form of, e.g., correlations between
predicted classes. Using multilayer perceptrons as a classification
model, we demonstrate the validity of this approach by testing it
on a complex ten-class 3D gesture recognition task.

I. INTRODUCTION

This contribution is in the context of classification, in
particular multi-class classification (MCC) where an input data
vector has to be assigned one of multiple output classes.
Although there is a truly abundant amount of work on bi-
nary classification, its foundations and applications, the same
cannot be said for MCC. This is probably due to the fact
that the statistical theory behind the binary case[1] cannot
be trivially generalized[2], making model and hyperparameter
selection much more complex to treat in MCC. On a purely
application-oriented level, there is a multitude of models that
have been proposed for performing MCC, although reported
performances are in general very similar, or, where they
differ, the differences are strongly task-dependent and show
no trend towards universally ”better” or ”worse” methods.
Additionally, almost all of the proposed methods suffer either
from prohibitive training complexity, unclear assumptions on
the problem, or difficult-to-tune parameters.

A. Related work

When it comes to MCC, generally there is a distinction
between models that can directly treat multiple classes, and
decomposition approaches that reduce a multi-class problem
to several binary ones. ”Direct” models include extensions
of large margin classifiers such as M-SVMs [3], [4], [5],
[6], multinomial kernel regression[7] and even multilayer
perceptrons (MLPs) if classification is treated as a regression
problem. In this contribution, we focus on decomposition
approaches as there seems to be no evidence at all that they
perform worse than ”direct” MCC[2], and in fact are often
much more computationally efficient[2]. There has been a
considerable body of work on decomposition approaches for
support vector machines (SVMs) which are very powerful
binary classifiers. Nevertheless, since such decomposition ap-
proaches are in principle independent of the choice of the
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Fig. 1. Unnormalized covariance matrix between the activities of output
neurons in a neural network trained on the multi-class classification task
considered in this study. It can be observed that some neurons are not at
all correlated, and thus are rarely active together, whereas other are correlated
quite strongly. Our hypothesis is that this structure contains information about
the task that can be used to further improve classification accuracy.

underlying classifier, as long as it is binary, all results are
generalizable. There are two main decomposition approaches:
first of all, there is the ”one-versus-all” (OVA) [8], [9] approach
which trains one binary classifier to distinguish one class from
all the other classes. Then, the final decision is simply the
argmax over all classifier responses. On the other hand, there
is the ”one-vs-one” (OVO) approach [10], [11], [12], [13],
[14], [15], [16] which trains a binary classifier for each pair of
classes. The final decision is then, in the simplest formulation,
obtained by a voting scheme among all pairwise classifiers.
The main drawback of this approach are the limited number
of samples available for each pairwise classifier, (although
there are more complex formulations that fix this[17]), and the
assumption that a pairwise classifier will have a weak response
when presented with classes unknown to it. Lastly, there are
more complex graph-based approaches[18], [19] that construct
decision trees, at each node of which there is a binary classifier
that determines the progress in the tree until a leaf is reached.

Common to all of the decomposition approaches is the
fact that more or less strong assumptions are made about the
problem at hand. Most fundamentally, all approaches need to
make responses from different binary classifiers comparable.
As this is not possible in general for discriminatively trained
classifiers, some sort of calibration procedure (often the tech-
nique from [20]) is used to obtain normalized ”probabilities”
from classifier outputs, although this makes more or less strong
assumptions about the data. Secondly, especially for OVO ap-
proaches, the precise way of implementing the voting scheme
makes assumptions (usually about conditional independence
properties) that may or may not apply.



B. Contribution and novelty

This contribution proposes a pragmatic and application-
oriented approach to MCC when performing an OVA decom-
position approach. Instead of making a priori assumptions
about distributions or conditional independence properties, it is
attempted to learn such properties from data, and to exploit this
knowledge for improved accuracy. For the concrete case of an
MLP classifier trained on a difficult hand gesture recognition
task, we investigate how the addition of another MLP stage
that operates on the class output activities (COAs) of the
first, can affect performance. Our basic assumption is that the
selective inter-class correlations in the COAs, which can be
observed in Fig. 1 and which we suppose will exist for any
problem, contain useful information that the second MLP stage
can extract and harness. Furthermore, we show for the well-
known MNIST classification benchmark for handwritten digits,
that the addition of this second stage does not always greatly
improve performance, but that it causes no degradation either.

The novelty of our approach lies in its simplicity and
generality, as well as its practical applicability. As our classifier
hierarchy attempts to model the structure of the data by itself,
no explicit assumptions need to be made by the user, other
than issues of classifier design and parametrization for which
standard techniques exist.

II. METHODS

In this section, we mainly present two different training
techniques, one of which can be extended n times, depending
on the problem. The dataset has to be prepared accordingly
which is covered separately for each approach. Furthermore,
we present the databases used for all experiments of Sec. IV

A. Training in output neurons

This paragraph describes the cascading of two MLPs,
where the basic idea is to let the first MLP classify a feature
vector, and the second MLP the vector of output neurons of the
first MLP. Training is performed sequentially, and care must
be taken to prevent overfitting as each MLP is trained in a
purely supervised fashion.

The procedure consists of three stages A, B and C which
are schematically depicted in Fig. 2. At first, the whole dataset
has to be divided up randomly into three equally sized sets D1,
D2 and D3. In an initial step, one MLP , here denoted MLP1,
is trained with standard parameters (cf. Sec. III) on D1. Once
MLP1 has converged, training of the second MLP, denoted
MLP2, begins on dataset D2. The training is contrasted in
such a way as now each individual training sample from D2
first has to be fed into MLP1. The input is propagated to
the output layer and each output neuron makes a real-valued
prediction for the possible class. These values form the output
vector of length m equalling the number of classes in the
MCC task at hand. This output vector in turn corresponds to
the input value of each neuron in the input layer of MLP2.
Therefore, for this approach, the size of the input layer of
MLP2 always equals the size of the MCC in the given task.
This propagation of information is shown in Fig. 4. In this
way, MLP2 is trained until convergence. The performance of
our three-stage approach is then measured on dataset D3. Every
sample is first fed into MLP1 which again calculates the values

of its output neurons. These values are then, analogously to
the training phase, presented as inputs to MLP2 which in turn
calculates its own outputs. The determined class for a sample
S corresponds to the neuron with the highest activation in the
output layer:

class{S} = arg max {Oi}, 0 ≤ i ≤ m, (1)

m being the number of classes of the MCC and Oi representing
the output neuron corresponding to class i.

B. Training in output neurons plus features

We extend the approach presented in the preceding section
in such a way that the training of MLP2 (and also the
evaluation) is performed on the neuron values of the output
layer of MLP1 but also on the features of the sample itself,
i.e., the input to MLP1. The whole procedure again comprises
three stages A, B and C and is schematically depicted in
Fig. 3, the main differences to the methodology shown in
Fig. 2 are highlighted. The dataset is randomly split in an
analogous manner to the approach described in Sec. II-A into
three equally sized sets D1, D2 and D3. As before, MLP1 is
trained on the whole dataset D1 until it converges.

However the input for training MLP2 on D2 is now
significantly different, comprising the feature vector of the
sample plus the output vector of MLP1, vout = [O0, ..., On], n
equalling the number of classes and Oi being the activation of
neuron i in the output layer. We thus form a new training input
f̄ resulting from the merging of the current feature vector f
and the output vector vout by simple concatenation. Its length
len(f̄ ) = len(f ) + len(vout) is determined by the size of the
descriptor on the one hand and the number of classes on the
other hand. Fig. 4 shows the propagation of the features and
the formation of the input, in this case the Feature-Output-
Fusion. Opposed to the procedure described in Sec. II-A the
input now has length n + m, n being the size of the feature
vector and m the size of the MCC.

A variation of this approach with only a slight modification
of the original algorithm is simply achieved by training two
separate MLPs (MLP1-A, MLP1-B) on D1. Now we are
able to concatenate both MLP outputs with the feature vector
coming from training and test set D2 and D3 respectively. The
main difference is that each sample, in training and testing
phase, is now presented to both MLP1-A and MLP1-B which
propagate their inputs so that both outputs generated from
each MLP can be concatenated with the feature vector. The
length of the newly formed feature vector now of course
differs, depending on the size of the classification task, i.e.
for the approach just described it is formed as len(f̄ ) = len(f )
+ k∗len(vout), with k being the number of different MLPs
trained on D1 or on separate datasets.

C. Hand Gesture Database and Descriptors

We record data from 16 persons, each displaying 10
different hand poses (cf. Figure 5). One data sample is stored
as a so-called point cloud describing the hand shape of a person
by a vector of real-valued x-y-z coordinates. For each gesture,
3000 samples are recorded, summing up to 30000 samples
per person and a total database of 480000 samples. In order to
induce some variance into the data, during the recording phase
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Fig. 2. Training and testing procedure as described in Sec. II-A. The whole database is randomly split into three subsets D1-D3. There are Training Phases 1
and 2 and one Test Phase (denoted A, B and C respectively) during which the MLPs are trained and evaluated.
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Fig. 3. Training and testing procedure as described in Sec. II-B. The whole database is randomly split into three subsets D1-D3. There are Training Phases
1 and 2 and one Test Phase (denoted A, B and C respectively) during which the MLPs are trained and evaluated. The main differences are the fusion steps
forming feature vector* from the original feature vector and the output vector. This occurs for MLP 2 in Training Phase B and Test Phase C, highlighted in
orange (cf. with Fig. 2).
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Fig. 4. Schematic procedure of sample propagation and fusion technique. MLP1 is always trained with the unchanged samples taken from the training data
set. A sample, represented by a feature vector of length n, is fed into the MLP’s input layer. After MLP1 has propagated the input and calculated each neuron’s
activation in the output layer, MLP2 is trained on the output vector of size m. Optionally, the output vector is fused with the feature vector itself (cf. Fig. 3),
forming the new input of size m+ n.

each participant is asked to rotate and translate their hand in all
possible directions. Moreover, to tackle the task of scaling, for
each gesture we define 3 different distance ranges, in which
the participant is asked to perform the hand gesture in order
to ensure sufficient sample coverage for various distances. To
sum up, this results in an alphabet of ten hand poses: Counting
from 1-5 and fist, stop, grip, L, point denoted by a-j (cf. Figure
5).
Each sample originates from raw point cloud data which
is transformed via a global Point Cloud Descriptor into a
histogram of fixed size. The descriptor depicts the global shape
of the cloud via the relationship of the angles calculated from
a sample subset of point pairs as well as the distance between
a point pair. The histogram calculated in this manner forms the
feature vector i.e. the input for the MLPs in the early training
and late fusion stages described in Sec. II-A and Sec. II-B.
For a more in-depth specification of this feature transformation
please refer to [21].

III. MLP STRUCTURE

Within the frame of the experiments, each MLP comprises
one input, hidden and output layer, each layer being fully
connected to its successor (cf. Fig. 4). The output layer
depends on the size of the classification task as each class is
represented by a neuron. Depending on the training technique
used, see Secs. II-A, II-B, the input layer varies in size. During
the first stage, the input layer of the first MLP always equals
the size of the feature vector. For the second stage, this varies
depending on the technique employed as the input here is
either formed by the output vector alone or the output vector

concatenated with the feature vector. Therefore the input layer
is of size n for MLP1 during training and testing and of size
m or m+n for MLP2, the number of classes or the number of
classes + length of feature vector respectively, depending on
the technique. When employing the extension of the method
described in Sec. II-B, the size of the input layer increases to
n+ k ∗m, k being the number of individual MLPs trained on
a dataset.

For the experiments, varying hidden layer sizes were tested
within range of [40, 150] neurons, having a noteworthy but not
excessive effect on the results. Depending on the size of the
input layer, which can vary due to the techniques described
in this paper, choosing a different number of hidden neurons
may be beneficial. Since this is also beyond the scope of
this contribution we only state that a proper parameter search
may lead to some improvement in terms of classification
performance.

IV. EXPERIMENTS

All methods were implemented using the FANN library
(see [22]). The training algorithm is RPROP, the activation
function is the sigmoid function in both hidden and output
layers. The rest of the MLP parameters are standard parameters
we don’t vary during the course of our experiments, as we
conducted a series of initial test runs to determine proper pa-
rameters for the described methodology. A complete parameter
search is beyond the scope of this contribution.

We have conducted a series of experiments, all divided into
two different testing phases (Phase 1 and Phase 2) in order to



Fig. 5. The hand gesture database consisting of 10 different static hand poses.

Fig. 6. Experiment 1, Phase 1: Confusion Matrix for the first MLP trained
only on the feature vectors.

be able to directly compare the effects of our techniques on
the classification performance of each MLP. The results are
depicted in the confusion matrices which allow us to compare
the overall performance of the MLPs, the performance on each
individual class as well as the correlations between all classes.

A. Experiment 1 - output neurons only

In the first experiment we test the effect of the technique
described in Sec. II-A. We randomly split the whole database
into three subsets D1-D3 (two for training and one for testing).
Both MLPs have 100 neurons in the hidden layer and were
trained on subset D1 and D2 respectively until they converged.
The results can be seen in Fig. 6 and Fig. 7. The overall
performance of MLP1 (trained on the feature vectors) is at
around 91.80% and at around 91.98% for MLP2 (trained on
the output vector of MLP2) which is an improvement of around
0.2%. Overall, moderate improvements can be observed in
nearly all cases, two cases are subject to negligible decrease

Fig. 7. Experiment 1, Phase 2: Confusion Matrix for the second MLP trained
only on the net outputs of the first MLP.

in performance (< 0,001%).

B. Experiment 2 - output neurons plus features

In the second experiment we test the effect of the technique
described in Sec. II-B. We randomly split the whole database
into three subsets D1-D3 (two for training and one for testing).
Both MLPs have 80 neurons in the hidden layer and were
trained on subset D1 and D2 respectively until they converged.
The results can be seen in Fig. 8 and Fig. 9. The overall
performance of MLP1 (trained on the feature vectors) is at
around 90.0% and at around 91.0% for MLP2 (trained on the
fused vector) which is an improvement of around 1.0%.

A B C D E F G H I J
MLP1 89% 88% 87% 85% 86% 96% 93% 93% 86% 94%
MLP2 91% 91% 89% 88% 88% 96% 94% 93% 89% 95%

TABLE I. CLASSIFICATION RESULTS FOR MLP1 AND MLP2. THE TEN
CLASSES ARE NAMED A-J.



Fig. 8. Experiment 2, Phase 1: Confusion Matrix for the first MLP trained
only on the feature vectors.

Fig. 9. Experiment 2, Phase 2: Confusion Matrix for the second MLP trained
on the fused feature vectors (features + outputs).

Tab. I gives more insight into the improvements of classi-
fication performance related to each individual gesture class.
There is a performance increase for all cases (which is below
0.5% in cases F and H) and ranges between 1-3% for all other
remaining cases. Most notable the presented approach signifi-
cantly boosts performance in situations where MLP1 performs
poorly (cf. cases D + I) as opposed to little improvement in
cases where MLP1 already performs well (e.g. cases F + J).
When comparing the confusion matrices of these cases one
can see that the improvement stems mainly from those classes
which contained most false positives, i.e. class I was most
likely to be mistaken for class A or C (cf. Fig. 8 and Fig. 9).
The number of false positives for this specific example drops
by a rate of >20% which is significant as it allows an improved
disambiguation procedure (613 → 471 and 573 → 439
respectively).

Fig. 10. Experiment 3, Phase 1: Confusion Matrix for the first MLP trained
only on the feature vectors.

Fig. 11. Experiment 3, Phase 2: Confusion Matrix for the second MLP
from the extended fusion technique, i.e. the fused feature vector coming the
original feature vector concatenated with the outputs from two separately
trained MLPs.

C. Experiment 3 - output neurons plus features with multiple
MLPs

The third experiment evaluates the effect of the extended
technique described in Sec. II-B. We randomly split the whole
database into three subsets D1-D3 (two for training and one
for testing). The main difference here is resembled by the fact
that we used two MLPs (MLP1-A, MLP1-B) trained on set
D1, instead of just one. Therefore we first have to feed every
sample into both MLPs and calculate their output vectors.
These are in turn then concatenated with the feature vector
to form the new input vector for MLP2 during training and
testing. The results of this extended technique are shown in
Fig. 10 and Fig. 11. The overall performance of MLP1 (trained
on the feature vectors) is at around 91.0% and at around 93.0%
for MLP2 (trained on the fused vector) which is an overall
improvement of around 2.0%.



A B C D E F G H I J
MLP1 90% 90% 89% 87% 87% 95% 92% 92% 89% 95%
MLP2 93% 93% 93% 90% 91% 97% 94% 94% 91% 96%
TABLE II. CLASSIFICATION RESULTS FOR MLP1 AND MLP2. THE

TEN CLASSES ARE NAMED A-J.

Individual improvements range from 2-4% for all classes
(cf. Tab.II). As before (cf. Sec. IV-C) misclassification rates
drop around 20% - 25% for the most difficult cases (compare
class E: 704 → 524 and 612 → 380 for cases D and G
respectively).

D. Experiment 4 - MNIST

As a supplementary exercise, we test our approach on
the well-known MNIST hand-written digit database[23], using
the fusion strategy from Sec. II-B. We observe, without any
parameter tuning, a classification around 93% which does not
noticeably improve by adding the second MLP. On the other
hand, no degradation of performance is observed either. What
seems to be the problem here is that, being forced to divide
the dataset into three parts, we can use less training examples
than other approaches can, which maybe explains the lack of
improvement.

V. DISCUSSION AND OUTLOOK

In this article, we present a multi-class classification
scheme that is intended to be useful in practical applications.
As it does not make explicit assumptions about the nature of
classification tasks, it contains no additional parameters beyond
those that would have to be tuned any case for binary classifier
training, in this case MLPs. No significant theoretical modeling
of the classification task at hand needs to be performed as
we rely on the capacity of the second MLP to extract those
properties to the best of its capabilities. Furthermore, when
observing the result, we find that the overall improvements
are modest, i.e., in the range of ≤ 5%. However, in an
application it is often not the overall classification rate that is
of importance, but the worst case, that is to say, the behavior of
the classifier for specific ”difficult” classes. Here, we observe
a strong benefit from using our two-stage approach as the
performance on some classes improves by > 20% which
is highly significant in practice. Further strengthening the
link to practical applicability, we observe that the additional
computational cost of adding the second MLP is virtually non-
existent, or rather, very hard to measure due to the efficient
C implementation. We therefore obtain significant gains in
applicability at negligible computational cost, which is always
an important point in practice, especially in a vehicular context
where we apply this technique for the purposes of human-
machine interaction.

The reason for the improvement as far as ”difficult” classes
are concerned, probably stems from the fact that those classes
are very similar to certain others and thus are often confused by
MLP1. The second MLP can presumably detect such confusion
events by specific patterns of activated output neurons in
MLP1, and correct the decision. The fact of providing the
original feature vector seems to have a beneficial effect on
this technique.

A critical point of the presented approach is its hunger for
data: as we split the original dataset into three parts, instead

of two as is usually the case, we have less data to train our
classifiers with, potentially incurring a loss of performance. In
order to remedy this, we are currently studying the question
of how to perform the presented scheme with only two data
sets, one for training and one for testing. This would involve
training MLP1 and MLP2, in a supervised fashion, on the
same dataset, which we consider problematic for reasons of
overfitting. Nevertheless, initial test have shown that generali-
zation performance is not in the least affected by this, so we
will pursue this avenue of research further, possible with the
aid of advanced regularization methods. After all, deep belief
networks train their layers one after the other, each layer on
the outputs of the previous one, all on the same training set.

A further critical point is the lack of generality of the
presented experiments: in future work, we will definitely apply
this method to a multitude of other datasets in order to
better validate its worthwhileness. This will also allow us
to determine whether the approach gives higher performance
gains for rather simple problems (as treated here), or for very
hard problems.
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