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Abstra
t

A phenomenologi
al model des
ribing the time-frequen
y dependen
e of the

power spe
trum of thin plates vibrating in a wave turbulen
e regime, is in-

trodu
ed. The model equation 
ontains as basi
 solutions the Rayleigh-Jeans

equipartition of energy, as well as the Kolmogorov-Zakharov spe
trum of wave

turbulen
e. In the Wave Turbulen
e Theory framework, the model is used to

investigate the self-similar, non-stationary solutions of for
ed and free turbu-

lent vibrations. Frequen
y-dependent damping laws 
an easily be a

ounted for.

Their e�e
ts on the 
hara
teristi
s of the stationary spe
tra of turbulen
e are

then investigated. Thanks to this analysis, self-similar universal solutions are

given, relating the power spe
trum to both the inje
ted power and the damping

law.

1. Introdu
tion

The Wave (or Weak) Turbulen
e Theory (WTT) aims at des
ribing the long-

term behaviour of weakly nonlinear systems where the nonlinearity 
ontrols the

ex
hanges between s
ales [1, 2, 3℄. Under 
lassi
al assumptions su
h as disper-

sivity, weak nonlinearities and the existen
e of a transparen
y window in whi
h

the dynami
s is assumed to be 
onservative, a kineti
 equation 
an be dedu
ed

for the slow dynami
s of the spe
tral amplitude. In addition to the Rayleigh-

Jeans spe
trum that 
orresponds to the equipartition of the 
onserved quantity,

here the energy, a broadband Kolmogorov-Zakharov (KZ) spe
trum of 
onstant

energy �ux is predi
ted, by analogy with hydrodynami
 turbulen
e [1, 2℄. Su
h

dynami
s has been �rstly studied for o
ean (gravity) waves [4, 5, 6℄ and sin
e

then in systems su
h as 
apillary waves [7, 8℄, nonlinear opti
s [9℄ or plasmas [10℄.
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A wave turbulen
e spe
trum for elasti
 vibrating plates has been dedu
ed

theoreti
ally and observed numeri
ally in [11℄. The theoreti
al analysis 
onsiders

the dynami
s of a geometri
ally nonlinear thin vibrating plate in the framework

of the Föppl-von Kármán (FVK) equations. The WTT analysis leads to the

predi
tion of a dire
t 
as
ade 
hara
terized by a KZ spe
trum with 
onstant

energy �ux. Soon after, two independent experiments performed on thin elasti


plates [12, 13, 14℄ did not re
over the theoreti
ally predi
ted and numeri
ally ob-

served spe
tra, questioning the validity of the underlying assumptions of WTT

in the 
ase of vibrating plates. Re
ently, an experimental and numeri
al study


onsidering the e�e
t of damping on the turbulent properties of thin vibrating

plates has 
learly established that [15℄ :

� In experiments, damping a
ts at all s
ales su
h that the assumption of a

transparen
y window, a domain in the wave number spa
e where dissipa-

tion and inje
tion 
an be negle
ted, is questionable.

� Modifying the damping alters the shape of the velo
ity power spe
tra so

that a dire
t 
omparison with the predi
ted spe
tra is out of rea
h in

experimental 
onditions.

� However, by in
luding the experimentally measured damping laws in the

numeri
al simulations of the full dynami
s (the FVK equations), a good

agreement with the experiments is retrieved. This suggests that the dis-


repan
ies between the experiments and the WTT predi
tions are mainly

due to damping.

These 
on
lusions have been 
orroborated by a numeri
al study where the damp-

ing was gradually modi�ed, from the experimentally measured law to a vanishing

value in a given frequen
y band [16℄, showing also how the spe
tra are modi�ed

by a small yet non-negligible values of damping found in real plates.

A

ounting for dissipation within the WTT framework remains 
hallenging

sin
e the analyti
 
al
ulations are based on the long time asymptoti
 evolution

of the weakly nonlinear Hamiltonian dynami
s. The inje
tion and dissipation in

this 
ontext 
an be seen as boundary 
onditions imposed to the transparen
y

window in the wave number spa
e and to the best of our knowledge, we do

not know any analyti
al attempt to introdu
e dissipation within the WTT. An-

other option would be to �nd an alternative des
ription of the dynami
s of

the power spe
trum, where adding dissipation appears more straightforward.

The alternative 
an be provided by using a phenomenologi
al model des
rib-

ing the temporal evolution of the power spe
tra, as �rst proposed by Leith for

hydrodynami
 isotropi
 turbulen
e [17℄. These models provide a natural frame-

work for investigating unsteady and self-similar dynami
s in a variety of 
ontext

[17, 18, 19, 20, 21, 22℄. They are generally derived from ad-ho
 assumptions,

by 
onstru
ting a model equation admitting as stationary solutions both the

Rayleigh-Jeans equipartition of energy and the KZ spe
trum. This results in a

nonlinear di�usion equation in the wave number (k-spa
e) or the frequen
y (ω-
spa
e) domain, whi
h mimi
s the energy transfer within the modes. Thanks to

this approa
h, ideal situations 
an be investigated, as for instan
e the inje
tion

of a 
onstant �ux of energy at small s
ales and its di�usion, or the evolution of
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an initial 
ondition in absen
e of dissipation. Self-similar dynami
s are generally

observed in these 
ases.

The goal of this paper is thus to derive and investigate su
h a phenomeno-

logi
al model in the 
ase of elasti
 vibrating plates. The model equation should


ontain both Rayleigh-Jeans and KZ solutions. Inje
tion and dissipation terms

are then introdu
ed in order to study more parti
ularly the e�e
ts of the damp-

ing. Two main results are obtained. First, self-similar dynami
s for for
ed and

isolated turbulen
e in the absen
e of dissipation are retrieved. In a se
ond part,

the e�e
t of the damping on the 
as
ading turbulent spe
trum is investigated,

exhibiting a self-similar solution relating the power spe
trum to the inje
ted

power and the damping law.

2. Model equation

The appli
ation of the wave turbulen
e theory to the Föppl-von Kármán thin

plate equations has been performed in [11℄ (see Appendix A for the dimensional

and non-dimensional forms of these equations. Note that for this se
tion, all

values are dimensionless). Without re
alling the details of the derivation and

the 
omplex form of the kineti
 equation, one only needs to remind that the

two stationary solutions of the kineti
 equation, written here under the form of

a density of energy Eω , fun
tion of the frequen
y ω, are :
� The Rayleigh-Jeans equilibrium solution, where the energy Eω is equally

parted along all the available modes. Consequently, the density of energy

Eω is a 
onstant that is denoted as C :

Eω = C. (1)

� The Kolmogorov-Zakharov solution, for whi
h an energy �ux ε is trans-

ferred along the 
as
ade until its dissipation near ω⋆
, the 
ut-o� frequen
y

of the spe
trum. Referring to [11℄, the energy spe
trum in this 
ase is su
h

that

EKZ
ω = Aε

1
3 log

1
3

(

ω⋆

ω

)

, (2)

where A is a 
onstant. The spe
i�
 form of this solution, 
onsisting in

a logarithmi
 
orre
tion of the Rayleigh-Jeans spe
trum, 
omes from a

degenera
y of the equilibrium solution in a similar manner as for the non-

linear S
hrödinger equation [9℄. In fa
t, this logarithmi
 
orre
tion is ob-

tained using a perturbative expansion and is valid far from ω⋆
. Therefore,

although Eq. (2) exhibits a steep 
ut-o� be
ause of the non-existen
e of

the mathemati
al solution above ω⋆
(negative energy), experiments and

numeri
al simulations do not show su
h a behaviour, and the spe
trum

de
reases more smoothly as ω in
reases in the vi
inity of ω⋆
[15, 24, 25℄.

The phenomenologi
al model is dire
tly dedu
ed from these stationary solu-

tions of the energy spe
trum. Let us 
onsider the following di�usion-like equation
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in the ω-spa
e for the energy spe
trum Eω(ω, t) :

∂tEω = ∂ω(ωE
2
ω∂ωEω), (3)

where ∂t and ∂ω refer respe
tively for the partial derivatives with respe
t to

time and angular frequen
y. The energy �ux asso
iated to this equation reads

straightforwardly

ε = −ωE2
ω∂ωEω. (4)

Thanks to the identi�
ation of the energy �ux ε, the proportionality 
onstant A
of Eq. (2) is then uniquely de�ned as A = 3

1
3
. Hen
e, for the phenomenologi
al

model the KZ solution �nally reads :

EKZ
ω = (3ε)

1
3 log

1
3

(

ω⋆

ω

)

. (5)

The model equation, Eq. (3), is 
onstru
ted so that Eq. (1) and (2) are stationary

solutions (∂tEω = 0). The Rayleigh-Jeans equilibrium is a trivial solution to

Eq. (3) in the stationary 
ase sin
e ∂ωEω = 0. For the KZ spe
trum, one has just

to verify, by deriving Eq. (2) with respe
t to ω, that ωE2
ω∂ωEω is 
onstant with

respe
t to ω. Be
ause this model equation has been dedu
ed in the dimensionless

framework, only a numeri
al prefa
tor, whi
h 
ould be easily absorbed by a

res
aling of the time, should be present in the right-hand side of Eq. (3).

The phenomenologi
al equation is nothing else than a nonlinear di�usion

equation in the frequen
y spa
e, in the spirit of the Ri
hardson 
as
ade view of

turbulent pro
esses [23℄. However, a dire
t derivation of this equation starting

from the kineti
 equation 
annot be done formally, and only qualitative argu-

ments 
an be dedu
ed from a lo
al approa
h on the kineti
 equation [1℄(Se
tion

4.3). In fa
t, attempts to dedu
e su
h simpli�ed Fokker-Plan
k equation from

the weak turbulen
e equations go ba
k to the pioneering works done for o
ean

waves by Hasselmann [31, 32, 33℄, although additional approximations were

needed to dedu
e su
h lo
al models in frequen
y.

Nonlinear di�usion equations 
an exhibit important di�eren
es as 
ompared

to di�usion one. In parti
ular, singularity 
an be formed by the nonlinear dy-

nami
s and 
ompa
t support solutions 
an also be present, by opposition to the

the linear di�usion where disturban
es propagate at in�nite speed [34℄. Here,

while a singular 
ut-o� will be observed for the spe
tra, the equation does not


orrespond a priori to the situation were 
ompa
t support solutions have been

proved to exist [35℄. Finally, it should be said that other phenomenologi
al mod-

els exhibiting the same stationary solutions 
ould be dedu
ed and the present

model 
an be 
onsidered as one of the simplest among other ones.

Numeri
al simulations of this model equation will now be 
ondu
ted in var-

ious 
ases in order to investigate di�erent dynami
al situations. We begin with

the 
lassi
al 
ase where an energy �ux is imposed at low frequen
y and for

whi
h the 
lassi
al KZ spe
trum should be observed when dissipation a
ts at

high frequen
y.
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3. Conservative dynami
s of the spe
trum in the inertial range

3.1. For
ed turbulen
e

3.1.1. Non-stationary and stationary spe
tra

In order to simulate numeri
ally Eq. (3), a �nite volume method is used.

The �ux ε is 
omputed at ea
h frequen
y in
rement and the value of Eω is

de�ned at the 
entre of the mesh element. A 
onstant value εI over time for

the �ux at ω = 0 is applied and strong dissipation is in
luded upon ω = 103.
Remarkably, thanks to this model equation along with this numeri
al method,

simulations exa
tly 
orresponding to the ideal 
on�guration of turbulen
e 
an

be laun
hed, with a �ux of energy imposed at ω = 0, and dissipation of energy

realized with a sink at high frequen
y. A typi
al run 
onsists in 2048 points in

the ω dire
tion, a time step equal to 10−7
time unit and a total duration of

2 time units. When the dissipative s
ale is rea
hed, the 
as
ade front stops its

evolution and a stationary regime arises.

Fig. 1(a) displays the energy spe
trum every 0.2 time unit in the 
onsid-

ered framework. At the beginning (for t < 1), the 
as
ade grows toward high

frequen
ies suggesting a self-similar behaviour. More pre
isely, a 
hara
teristi


frequen
y may be de�ned as

ωc =

∫

∞

0
Eωωdω

∫

∞

0
Eωdω

, (6)

in order to obtain a more quantitative analysis. Fig. 1(b) shows the evolution of

ωc versus time, exhibiting a 
lear linear behaviour in the transparen
y window.

When the 
as
ade front rea
hes the dissipative s
ale �xed here arbitrarily at

ω = 103, the 
hara
teristi
 frequen
y does not evolve anymore and is 
onstant.

Let us �rst 
onsider the non-stationary regime where the 
hara
teristi
 fre-

quen
y of the 
as
ade evolves linearly with time for a 
onstant �xed �ux.

Fig. 1(
) displays the non-stationary spe
tra of Fig. 1(a) taken before t < 1
as fun
tions of the non-dimensional frequen
y ω/ωc. All the 
urves merge into

a unique fun
tion, 
on�rming the self-similar growth of the 
as
ade. The shape

of this fun
tion will be dis
ussed later but 
an already be 
ompared to the

Kolmogorov-Zakharov spe
trum Eq. (5), the solution of the phenomenologi
al

equation for the 
onservative 
ase, displayed by a green dashed line in Fig. 1(
).

Although the two fun
tions are quite 
lose to ea
h other, the self-similar fun
-

tion of the non-stationary regime is steeper near the 
ut-o�. This dis
repan
y

has already been noted in [24℄, where the 
ase of for
ed turbulen
e within the

framework of the Föppl-von Kármán equations (dire
t simulation) has been

studied.

In the stationary regime, shown in Fig. 1(d), the phenomenologi
al model

re
over the Kolmogorov-Zakharov solution for thin plates, as awaited. The s
al-

ing of the amplitude of the spe
trum by ε
1/3
I , as theoreti
ally predi
ted, is also

veri�ed by our data. The typi
al behaviour of energy spe
tra of vibrating plates

in the stationary regime is therefore 
orre
tly des
ribed by the phenomenologi-


al Eq. (3). Moreover, our model re
overs the fa
t that the 
as
ade grows with

5
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Figure 1: For
ed turbulen
e. (a) Energy spe
trum Eω as a fun
tion of the

frequen
y ω, for times in
reasing from the left to the right, and with εI = 1.
(b) Chara
teristi
 frequen
y ωc de�ned by Eq. (6) as a fun
tion of time. Red

dashed line : ωc ∝ t. (
) Energy spe
trum Eω(
ω
ωc
) 
omputed from the non-

stationary spe
tra (before t = 1) shown in (a), and 
ompared to the stationary

Kolmogorov-Zakharov spe
trum EKZ
ω = (3εI)

1
3 log

1
3 (ω

⋆

ω ) (green dashed line).

(d) Stationary regime. Energy spe
trum Eω, divided by ε
1/3
I , plotted as a fun
-

tion of the res
aled frequen
y ω/ωc for several energy �uxes εI = 0.5, 1, 2, 5 and

ompared to the KZ theoreti
al spe
trum EKZ

ω (green dashed line).
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a steeper fun
tion of the frequen
y until its front rea
hes the dissipative s
ales,

where a stationary regime in agreement with the theoreti
al predi
tions arises.

3.1.2. Self-similar analysis

In order to re
over the numeri
al behaviour of the non-stationary regime

observed in Fig. 1(a)(b)(
), the self-similar solutions of Eq. (3) are investigated.

The solutions are thus written under the form

Eω = tαg(
ω

tβ
), (7)

with α and β two real unknowns and g a fun
tion to be determined. Inserting

Eq. (7) into Eq. (3), one �nds that α and β must ful�ll the relationship

2α = β − 1. (8)

If we assume further that when inje
ting with a 
onstant �ux over time, the

total energy of the plate is growing linearly with time, the equality

∫ +∞

0

Eωdω = Bt, (9)

where B is a 
onstant, leads to a se
ond relationship α + β = 1. This yields
α = 0 and β = 1 so that �nally the self-similar solutions are ne
essarily under

the form

Eω = g(
ω

t
). (10)

The previous observation that the 
hara
teristi
 frequen
y of the self-similar

solutions of Eq. (3) in 
ase of for
ed turbulen
e grows linearly with time is

retrieved.

Inserting Eq. (10) into Eq. (3), the equation for the self-similar fun
tion

gη = g(ω/t) �nally reads

−ηg′η = (ηg2ηg
′

η)
′, (11)

where

′
stands for the derivative with respe
t to the self-similar variable η = ω/t.

This equation is solved using Matlab algorithm ode45 whi
h applies a fourth-

order Runge-Kutta s
heme with a variable time step [26℄. For this purpose,

Eq. (11) is written at the �rst order :

Y ′ =

(

1 0

0 − 1
g2
η
− 1

η − 2
g′

η

gη

)

Y, with Y =

[

gη
g′η

]

and Y ′ =

[

g′η
g′′η

]

. (12)

The initial value problem 
onsists in 
hoosing, for η0 given and small (in the

simulations, η0 = 0.01 is sele
ted), the values of gη and g′η that determine the

desired initial �ux εI . Whereas the value of gη(η0) is sele
ted for 
omparison

with a given dataset, g′(η0) is retrieved from Eq. (4). As the �ux εI is �xed, one
obtains g′η(η0) = − εI

η0g2
η(η0)

.

Fig. 2(a) 
ompares the self-similar solution dedu
ed from the phenomeno-

logi
al model (and already displayed in Fig. 1(
)) with the self-similar solution
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provided by Eq. (11). A perfe
t agreement is observed, exhibiting in parti
ular

a 
ut-o� above whi
h the solution vanishes. As shown in [24℄, the self-similar

solution 
an be obtained dire
tly from the kineti
 equation. However in this


ase, the general shape of the fun
tion is not provided by the theory. Thanks

to Eq. (11), the phenomenologi
al model is able to predi
t the shape of the

self-similar fun
tion.

Let us now 
ompare this solution with dire
t numeri
al simulations. Fig. 2(b)

shows the obtained results, res
aled a

ording to the self-similar relationship

proposed in Eq. (11). Two di�erent numeri
al s
hemes have been used for a

better 
omparison. On the one hand, a �nite-di�eren
e and energy-
onserving

s
heme simulates a perfe
t re
tangular plate with simply-supported out-of-plane

boundary 
onditions and in-plane movable edges [24℄. The plate has a surfa
e

of 0.4× 0.6 m

2
, the thi
kness is 1 mm, and the material parameters are that

of a metal, see [24℄ for more details. The other solution is obtained thanks

to the pseudo-spe
tral method used in previous works [11, 15℄, where su
h a

spe
tral approa
h leads to periodi
 boundary 
onditions. The simulated plate

has also the material properties of a metal and 
orresponds to a square of

0.4 × 0.4 m2
and its thi
kness is 1 mm [11℄. In both numeri
s, the plate is


ontinuously ex
ited at large s
ale, 
orresponding roughly to a 
onstant inje
tion

of energy with time. For the �nite-di�eren
e simulation, this is realized with a

pointwise for
ing, the frequen
y of whi
h is sele
ted in the vi
inity of the fourth

eigenfrequen
y. For the pseudo-spe
tral 
ode, this is realized in the Fourier spa
e

dire
tly through a random noise a
ting at small wave numbers only. With the

two numeri
al s
hemes, a 
lear self-similar behaviour has been observed. Hen
e

we are in position to 
ompare the master 
urves of the self-similar pro
ess for

the phenomenologi
al model with those found in the numeri
al simulations. For

the detailed presentation of the self-similar pro
ess found in dire
t numeri
al

simulations, the interested reader is referred to [24℄.

Fig. 2(b) shows that the two di�erent numeri
al methods exhibit similar

res
aled spe
tra. Comparing to Fig. 2(a), one 
an observe two dis
repan
ies

between the two solutions :

� In the dire
t numeri
al simulations, the slope in the turbulent 
as
ading

regime is a bit steeper. This 
an be assigned to the presen
e of the for
ing

term in the very-low frequen
y part of the spe
trum, whi
h 
reates a

small prominen
e that has already been observed and 
ommented, see

e.g. [24, 28℄.

� Near the 
ut-o�, it appears that numeri
al spe
tra of the full dynami
s

de
rease 
ontinuously and smoothly, whereas theoreti
al spe
tra display

a steep 
ut-o� be
ause of the non-existen
e of the mathemati
al solution.

This observation is similar to what has been obtained for the KZ stationary

spe
trum.

Despite these two di�eren
es, the general shape of the self-similar solutions

in the 
ase of non-stationary for
ed turbulen
e shows a very good agreement,

validating the results provided by the phenomenologi
al model.
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Figure 2: Self-similar fun
tion gη in 
ase of non-stationary for
ed turbulen
e.

(a) Blue points : numeri
al simulation of Eq. (3) with εI = 1. Red dashed line :

solution of Eq. (11). (b) Dire
t simulations of the Föppl-von Kármán equations.

Bla
k line : �nite-di�eren
e and energy-
onserving s
heme [24℄. Green line :

pseudo-spe
tral method detailed in [11℄.

3.2. Free Turbulen
e

The 
ase of free turbulen
e, i.e. the evolution of the 
as
ade without external

for
ing, for a given amount of energy as initial 
ondition, is now 
onsidered.

As shown in [24℄ from the kineti
 equation and 
on�rmed by dire
t numeri
al

simulation, the 
as
ade front must evolve to high frequen
ies as t1/3. The ability
of the phenomenologi
al model to retrieve this dynami
s is now investigated.

3.2.1. Self-similar analysis

Considering free turbulen
e leads to withdraw for
ing and damping terms.

The system being 
onservative, the amount of initial energy K is 
onserved, so

that Eq. (9) is repla
ed by :

∫ +∞

0

Eωdω = K. (13)

The se
ond relationship that links the unknowns α and β now turns to be

α = −β, leading to α = −1/3 and β = 1/3. The self-similar solution for the

energy spe
trum Eω reads in this 
ase

Eω = t−1/3h(
ω

t1/3
). (14)

In order to simulate numeri
ally the framework of free turbulen
e, the dis-

sipation introdu
ed earlier at high frequen
y, is now removed. An energy �ux

εI is imposed for a few time steps and then 
an
elled, thus �xing the origin

of time. Then, the simulation is run by imposing a vanishing energy �ux at

ω = 0, ensuring free turbulen
e. Fig. 3(a) shows the evolution for an initial

amount of energy K (
orresponding to the spe
trum in red) as a fun
tion of

time. Fig. 3(b)(
) des
ribe the evolution of the 
hara
teristi
 frequen
y ωc as

9



well as the evolution of the amplitude of the energy spe
trum at the 
entre of

the �rst mesh element (ω = 0.5). Two behaviours respe
tively proportionals to

t1/3 and to t−1/3
are displayed. These two observations are in agreement with

the self-similar solution given by Eq. (14).

In the same manner as for the for
ed 
ase, the solution given by Eq. (14)


an be inserted into Eq. (3) in order to obtain the evolution equation of the self-

similar fun
tion hν = h(ω/t1/3). The analogue of Eq. (11) for the free turbulen
e

ase then reads

−1

3
νh′

ν = (νh2
νh

′

ν)
′, (15)

where

′
stands here for the derivative with respe
t to the self-similar variable

ν = ω/t1/3. The numeri
al method used in order to solve Eq. (11) is now ap-

plied to Eq. (15). Fig. 4(a) displays the self-similar fun
tion built from the

spe
tra 
al
ulated by the phenomenologi
al model at multiple times and s
aled

as pres
ribed by Eq. (14). For 
omparison, the solution of the self-similar equa-

tion Eq. (15) is also represented. A good agreement is observed, 
on�rming the

self-similar evolution of the spe
trum. Fig. 4(b) displays the numeri
al results

from the dire
t numeri
al simulations of the Föppl-von Kármán equations. On
e

again, the two numeri
al s
hemes leads to fun
tions that are very 
lose from ea
h

other. A mu
h better agreement is observed between the solutions from dire
t

simulations and the one from the phenomenologi
al model, in parti
ular the

slope in the 
as
ade regime are really the same. This 
on�rms on
e again the

e�e
t of the for
ing whi
h 
reates a small bump in the very low-frequen
y part

of the spe
trum and alters the dire
t 
omparison between the di�erent solu-

tions. Here in the free turbulen
e 
ase, a perfe
t agreement is observed, the only

di�eren
e being the behaviour near the 
ut-o� frequen
y where the de
rease of

the spe
trum is mu
h slower for the dire
t numeri
al simulations, as already


ommented.

Two situations belonging to the theoreti
al 
onservative framework of wave

turbulen
e in thin vibrating plates have been investigated through numeri
al

simulations of the phenomenologi
al equation. Self-similar behaviours pertaining

to the phenomenology of the Föppl-von Kármán equations have been su

ess-

fully re
overed. Note also that the behaviours Eω = g(ωt ) for for
ed turbulen
e

and Eω = t−1/3h( ω
t1/3

) for free turbulen
e 
an be derived by an analysis of the

kineti
 equation, as shown in [24℄. However, in this 
ase the self-similar fun
tions

g and h are left unknown. Thanks to the phenomenologi
al model, two di�erent

ordinary di�erential equations have been dedu
ed, the solutions of whi
h are

fun
tions g and h. Hen
e, the model gives further informations whi
h have been

found to be relevant by 
omparisons with the dire
t numeri
al simulations. All

these results show the ability of our simple equation to re
over 
omplex features

of the physi
s of the problem.
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Figure 3: (a) Energy spe
trum Eω as a fun
tion of the frequen
y ω at (from

top to bottom) t = 0, 1, 2, 3, 4 [nondim℄. (b) Chara
teristi
 frequen
y ωc as a

fun
tion of time. Red dashed line : ωc ∝ t1/3. (
) Eω(ω = 0.5) as a fun
tion of

time. Red dashed line : Eω(ω = 0.5) ∝ t−1/3
.
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Figure 4: Self-similar fun
tion in 
ase of free turbulen
e. (a) Points : spe
tra

of Fig. 3 res
aled by the self-similar law given by Eq. (14). Red dashed line :

solution of Eq. (15). (b) Results of the dire
t simulations of the Föppl-von Kár-

mán equations. Bla
k line : �nite-di�eren
e and energy-
onserving s
heme [24℄.

Green line : pseudo-spe
tral method detailed in [11℄.
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4. Non 
onservative 
ase : the e�e
t of damping

4.1. Model equation

Physi
al dissipation 
an be introdu
ed in the phenomenologi
al model by

adding a linear dissipation term to Eq. (3) :

∂tEω = ∂ω(ωE
2
ω∂ωEω)− γ̂Eω, (16)

where γ̂ 
an be 
hosen as a fun
tion of ω for the sake of generality. In thin

plates, the damping depends strongly on parameters su
h as the size of the

plate, its thi
kness, the boundary 
onditions. Regarding these values and the

frequen
y range of interest, either thermoelasti
, vis
oelasti
, a
ousti
al radia-

tion, or losses through the boundary 
onditions, 
an dominate [36, 37, 38, 39℄.

In the framework of our experimental set-up, the importan
e of most of these


ontributions has been estimated and related to theoreti
al predi
tions in [40℄.

As a starting point, let us 
onsider the damping laws obtained from experi-

ments. As observed in [15℄ where experimental methods have been used in order

to in
rease the amount of damping in the plate, the damping laws for four dif-

ferent 
on�gurations were found to follow the power-law γ̂ = ξω0.6
, with relative

values of ξ (with respe
t to the smallest one) ranging from 1 to 5. This damping

law with varying ξ is �rst used for investigating the solutions of Eq. (16). Ap-

pendix B gives the full 
orresponden
e between experimentally measured values

of ξ and their respe
tive dimensionless 
ounterparts used in the numeri
al sim-

ulations of Eq. (16). The same �nite volume method is used as in the previous

se
tions, and the �ux of energy εI is �xed at ω = 0. After a 
ertain number

of time steps (depending on the sele
ted damping 
oe�
ient ξ), a stationary

regime is rea
hed.

Fig. 5 exhibits the stationary energy spe
trum obtained for ea
h of the four

damping 
ases retrieved from [15℄, with an amount of damping 
oe�
ient ξ
multiplied by 5 between the smallest and largest ones. The energy �ux at ω = 0 is
the same for ea
h situation. For very low frequen
ies (say 0 < ω < 5), all spe
tra
shows roughly the same behaviour. For larger frequen
ies, the more damped the

system, the steeper the spe
trum and the smaller its 
hara
teristi
 frequen
y are.

Moreover, it appears that the dissipation a�e
ts the energy transfers between

s
ales, so that summing up the stationary spe
tra to power laws is not possible

anymore.

Fig. 6 shows the previous spe
tra as fun
tions of the res
aled frequen
y

ω/ωc. The res
aling of the frequen
y axis makes all spe
tra 
ollapse into a sin-

gle 
urve, whi
h appears to be steeper than the Kolmogorov-Zakharov spe
trum

(displayed by a green dashed line in Fig. 6). This result, obtained with the phe-

nomenologi
al model, is similar to the 
on
lusions already reported in [15℄ from

experiments only : damping plays an important role in the dis
repan
ies be-

tween theoreti
al and experimental spe
tra. However, this unique master 
urve

has never been observed before and tends to provide a simple explanation on the

behaviour of the 
as
ade in presen
e of damping. Indeed, it shows that the e�e
t

of damping on the turbulent 
as
ade 
an be mainly attributed to the balan
e

12
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between the 
onservative term ∂ω(ωE
2
ω∂ωEω) and the dissipative term γ̂ωEω,

sin
e only these terms are present in the phenomenologi
al model, and allows

one to retrieve the experimental observations. There is obviously no inertial

range so that the stationary solution depends on the shape of the dissipation

fun
tion and di�ers from the Kolmogorov-Zakharov spe
trum.

Finally, the 
ollapse suggests a self-similar behaviour of the spe
trum as a

fun
tion of the inje
ted �ux εI and the damping 
oe�
ient ξ. In order to derive

the equation 
orresponding to this self-similar solution, the energy spe
trum Eω

is thus written under the form

Eω = εµI ξ
xfη

(

ω

ωc

)

with ωc = εyIξ
z , (17)

where fη is an unknown fun
tion of the self-similar variable η = ω/ωc and

µ, x, y, z are 
onstants to be determined. Re
alling that the inje
ted �ux εI

orresponds in the phenomenologi
al model to

εI = lim
ω→0

(−ωE2
ω∂ωEω), (18)

one obtains, after inserting Eq. (17) into Eq. (18), the following relationship :

εI = −ε3µI ξ3x lim
η→0

(ηf2
η∂ηfη), (19)

so that µ = 1/3 and x = 0. The energy spe
trum must thus write :

Eω = ε
1/3
I fη

(

ω

εyIξ
z

)

. (20)

In addition, inserting Eq. (17) in the phenomenologi
al equation (16) with a

damping of the form of an unknown power law γ̂ = ξωλ = ξηλωλ
c yields :

∂tEω = 0 = ε1−y
I ξ−z∂η(ηf

2
η∂ηfη)− ε

λy+1/3
I ξλz+1ηfη. (21)

Thus, the unknowns y and z must ful�ll the following relationships that depends
on the frequen
y dependen
e of the damping :

z = − 1

1 + λ
, y =

2

3(1 + λ)
. (22)

All the unknowns of Eq. (17) have been determined, leading to an equation for

the fun
tion fη,
∂η(ηf

2
η∂ηfη)− fηη

λ = 0, (23)

and to an expression for the 
hara
teristi
 frequen
y as a fun
tion of the damping

and the inje
ted �ux :

ωc = ε
2

3(1+λ)

I ξ−
1

1+λ . (24)

Eq. (23) has no analyti
al solution but 
an be solved numeri
ally following the

same pro
edure as for Eq. (11) and (15). The result is plotted in red in Fig. 6,
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teristi
 frequen
y ωc as a fun
tion of the damping 
oe�
ient

ξ, εI = 1 × 10−5
. Bla
k : λ = 2. Red : λ = 1. Blue : λ = 0.6. Dashed lines :

evolution laws predi
ted by Eq. (24).

displaying a perfe
t agreement with the universal solution obtained by res
aling

all the spe
tra.

To 
on
lude this part, the validity of Eq. (24), whi
h expresses the behaviour

of the 
hara
teristi
 frequen
y, is questioned. As already observed in Fig. 5

for λ = 0.6, in
reasing the damping 
oe�
ient ξ de
reases the 
hara
teristi


frequen
y ωc. In this 
ase, the theoreti
al predi
tion provided by Eq. (24) reads

ωc = ε
5/12
I ξ−5/8. (25)

Fig. 7 
ompares this predi
tion with the 
hara
teristi
 frequen
ies obtained by

solving Eq. (16) for γ̂ = ξωλ
and λ = 0.6. The same study for λ = 1 and λ = 2

is also displayed. A perfe
t agreement is found, showing that the evolution of

the 
hara
teristi
 frequen
y 
an be fully explained thanks to the self-similar

behaviour of the energy spe
trum with damping and inje
ted �ux.

4.2. Dis
ussion

The results of the previous se
tion, obtained with the phenomenologi
al

model, have shown the existen
e of a unique master 
urve on whi
h all spe
tra


ollapse when res
aling the frequen
y with respe
t to the 
hara
teristi
 fre-

quen
y. This feature has not been noti
ed before in the experimental results

reported in [15℄, where four di�erent 
on�gurations of damping for the same

plate have been measured. It is potentially a very important result sin
e it sug-

gests that the 
hange in the 
as
ade slope observed when the damping varies

(following the stronger the dissipation, the steeper the energy spe
tra are) is

simply a 
onsequen
e of the master 
urve whi
h does not exhibit a single slope.
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Figure 8: Power spe
tral density of the transverse velo
ity Pv as a fun
tion

of the res
aled frequen
y f/fc. Red : ξ = 0.045. Bla
k : ξ = 0.072. Magenta :

ξ = 0.14. Blue : ξ = 0.22. (a) Experiments. Red : εI = 0.56 × 10−3
m

3.s−3
.

Bla
k : εI = 0.54 × 10−3
m

3.s−3
. Magenta : εI = 0.52 × 10−3

m

3.s−3
. Blue :

εI = 0.48 × 10−3
m

3.s−3
. (b) Numeri
al simulations. Green : ξ = 0, εI =

0.057× 10−3
m

3.s−3
. Other 
ases : εI = 0.024× 10−3

m

3.s−3
.

Depending on the dissipation a di�erent region of the master 
urve is domi-

nating, exhibiting di�erent "apparent" slope. It is thus 
ru
ial to investigate

whether this feature is also present in experiments and in numeri
al simulations

of the plate equations.

Fig. 8 displays pre
isely the experimental and numeri
al (pseudo-spe
tral

method) power spe
tral densities Pv from [15℄ as fun
tions of the res
aled fre-

quen
y f/fc for di�erent damping 
oe�
ients ξ. As for the phenomenologi
al

model, the proposed res
aling 
auses all 
urves to 
ollapse into a unique mas-

ter 
urve. In Fig. 8(b), the spe
tra from the damped 
ase are 
ompared to the

KZ spe
trum obtained numeri
ally when the dissipation is only lo
ated at high

frequen
y, showing that the spe
tra are 
learly steeper than the usual KZ spe
-

trum. Moreover, both the experimental and the numeri
al 
ases exhibit similar

pro�les, but are very di�erent from the master 
urve of the phenomenologi
al

model, in the same vein than the other situations studied above. Nevertheless,

these �gures 
on�rm here that the observations brought by the phenomenolog-

i
al model des
ribe a true feature of the physi
al system.

Finally, the relation Eq. (24) between the 
hara
teristi
 frequen
y, the damp-

ing and the inje
ted power 
an also be questioned using the experimental results.

Fig. 9 displays, for three inje
ted powers, the evolution of the ratio ωc/ε
5/12
I as

a fun
tion of the damping parameter ξ. The predi
ted dependen
e of ωc with

ξ is also drawn for 
omparison : ωc/ε
5/12
I ∝ ξ−5/8

. The a

ordan
e is good,


on�rming that the results of the model are in agreement with the behaviour of

the experiments.
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ted by Eq. (24) : ωc/ε
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I ∝ ξ−5/8

.

5. Con
lusion

A phenomenologi
al model des
ribing the time-frequen
y dependen
e of the

power spe
trum for wave turbulen
e in thin vibrating plates, has been derived.

In the framework of non-stationary turbulen
e, the model equation has shown

its ability in predi
ting the self-similar behaviours for two di�erent 
ases : free

and for
ed turbulen
e. These two examples show the ability of our model to 
ap-

ture the most salient features of the dynami
s of thin elasti
 plates. The model

equation possesses a number of attra
ting features for further studies, the promi-

nent one being its simpli
ity in handling 
ompli
ating e�e
ts su
h as for
ing and

dissipation. Besides its ability in re
overing the self-similar behaviours already

derived from the kineti
 equation [24℄, a step further has been obtained with

the derivation of two equations, (11) and (15), the solutions of whi
h are the

self-similar universal fun
tions for the for
ed and the free 
ases, whi
h were not

provided by the theory developed from the kineti
 equation in [24℄.

The phenomenologi
al model has then been used in order to further inves-

tigate the e�e
t of damping on the spe
tra of turbulen
e for thin vibrating

plates reminding that, in that 
ase, damping a
ts at all s
ales and breaks the

transparen
y window required by the wave turbulen
e theory. Then, no more

power-law behaviour 
an be observed, and the slope of energy spe
tra does

not represent the most important parameter to investigate [15℄. Thanks to the

phenomenologi
al model, a self-similar analysis provides new results and makes

appear a relationship between the power spe
tra, the damping law and the in-

je
ted power. With the model equation and for a given damping law, all 
urves


ollapse into a single one when in
reasing the damping fa
tor, and the 
hara
ter-

isti
 frequen
y 
an be dire
tly studied and predi
ted from the energy budget of

17



the 
as
ade. All these results shed new light on experimentally observed turbu-

lent spe
tra with damping. This also 
on�rms that the phenomenologi
al model

is a useful tool for studying 
ompli
ating e�e
ts in wave turbulen
e of plates.

Appendix A. Non-dimensional Föppl-von Kármán equations

The dynami
s of thin vibrating plates is des
ribed by the Föppl-von Kármán

equations with two unknowns that are the transverse displa
ement �eld ζ(x, y, t)
and the Airy stress fun
tion χ(x, y, t). For a thin plate of thi
kness h, made from

a material with Poisson ratio ν, density ρ and Young's modulus E, the equations
of motion read [27, 29, 30℄

ρh
∂2ζ

∂t2
= − Eh3

12(1− ν2)
∆2ζ + L(χ, ζ), (A.1)

∆2χ = −Eh

2
L(ζ, ζ). (A.2)

The operatorL is bilinear symmetri
, and reads in Cartesian 
oordinatesL(f, g) =
fxxgyy + fyygxx − 2fxygxy.

The following 
hange of variables is applied to obtain dimensionless variables

x
′ =

x

l
, ζ′ =

ζ

l
, t′ =

t

τ
, χ′ =

χ

C
, (A.3)

where the 
hara
teristi
 length l = h√
3(1−ν2)

, time τ = l
√

ρ
E and C = Ehl2, have

been introdu
ed. This leads to the following set of non-dimensional dynami
al

equations :

∂2ζ

∂t2
= −1

4
∆2ζ + L(χ, ζ), (A.4)

∆2χ = −1

2
L(ζ, ζ). (A.5)

Appendix B. Corresponden
e between experimental and phenomeno-

logi
al values of the damping 
oe�
ient ξ

In the Föppl-von Kármán equations, vis
ous dissipation 
an be taken into

a

ount with the term ρhγ ∂ζ
∂t , so that the equations of motion writes :

ρh
∂2ζ

∂t2
= − Eh3

12(1− ν2)
∆2ζ + L(χ, ζ)− ρhγ

∂ζ

∂t
, (B.1)

∆2χ = −Eh

2
L(ζ, ζ), (B.2)

where γ is the damping fa
tor. The equivalent set of non-dimensional equations

be
omes :
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∂2ζ

∂t2
= −1

4
∆2ζ + L(χ, ζ) − γ̂

∂ζ

∂t
, (B.3)

∆2χ = −1

2
L(ζ, ζ). (B.4)

γ̂ is the non-dimensional damping fa
tor :

γ̂ = γτ = γh

√

ρ

3E(1− ν2)
. (B.5)

In [7℄, the damping law has been measured and behaves as γ = ξf0.6
, where

ξ is a parameter taking di�erent values, obtained by 
hanging the 
on�guration

of the plate in a given manner. In order to use the same range of damping

values in the phenomenologi
al model as in the experiment, one has to express

the relationship between the dimensional values of ξ and their dimensionless


ounterparts ξ̂. Thanks to Eq. (B.5), we have

γ̂ = τ(ξf0.6) = ξ̂ω̂0.6 with ξ̂ =
τ0.4

(2π)0.6
ξ. (B.6)

Table 1 sums up the numeri
al ξ values obtained from the experiments (�rst line,

from [15℄) and their equivalent non-dimensional values ξ̂ used previously for the

simulations of the phenomenologi
al model. Note that in the present paper and

for the sake of simpli
ity, the 
oe�
ients used in the phenomenologi
al model

were named ξ.

ξ 0.045 0.072 0.14 0.22

ξ̂ × 105 1.908 3.0528 5.9359 9.3279

Table B.1: Corresponden
e between the experimentally measured values of

damping 
oe�
ients ξ and their dimensionless 
ounterparts ξ̂ used in the sim-

ulations.
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