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Abstrat

A phenomenologial model desribing the time-frequeny dependene of the

power spetrum of thin plates vibrating in a wave turbulene regime, is in-

trodued. The model equation ontains as basi solutions the Rayleigh-Jeans

equipartition of energy, as well as the Kolmogorov-Zakharov spetrum of wave

turbulene. In the Wave Turbulene Theory framework, the model is used to

investigate the self-similar, non-stationary solutions of fored and free turbu-

lent vibrations. Frequeny-dependent damping laws an easily be aounted for.

Their e�ets on the harateristis of the stationary spetra of turbulene are

then investigated. Thanks to this analysis, self-similar universal solutions are

given, relating the power spetrum to both the injeted power and the damping

law.

1. Introdution

The Wave (or Weak) Turbulene Theory (WTT) aims at desribing the long-

term behaviour of weakly nonlinear systems where the nonlinearity ontrols the

exhanges between sales [1, 2, 3℄. Under lassial assumptions suh as disper-

sivity, weak nonlinearities and the existene of a transpareny window in whih

the dynamis is assumed to be onservative, a kineti equation an be dedued

for the slow dynamis of the spetral amplitude. In addition to the Rayleigh-

Jeans spetrum that orresponds to the equipartition of the onserved quantity,

here the energy, a broadband Kolmogorov-Zakharov (KZ) spetrum of onstant

energy �ux is predited, by analogy with hydrodynami turbulene [1, 2℄. Suh

dynamis has been �rstly studied for oean (gravity) waves [4, 5, 6℄ and sine

then in systems suh as apillary waves [7, 8℄, nonlinear optis [9℄ or plasmas [10℄.
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A wave turbulene spetrum for elasti vibrating plates has been dedued

theoretially and observed numerially in [11℄. The theoretial analysis onsiders

the dynamis of a geometrially nonlinear thin vibrating plate in the framework

of the Föppl-von Kármán (FVK) equations. The WTT analysis leads to the

predition of a diret asade haraterized by a KZ spetrum with onstant

energy �ux. Soon after, two independent experiments performed on thin elasti

plates [12, 13, 14℄ did not reover the theoretially predited and numerially ob-

served spetra, questioning the validity of the underlying assumptions of WTT

in the ase of vibrating plates. Reently, an experimental and numerial study

onsidering the e�et of damping on the turbulent properties of thin vibrating

plates has learly established that [15℄ :

� In experiments, damping ats at all sales suh that the assumption of a

transpareny window, a domain in the wave number spae where dissipa-

tion and injetion an be negleted, is questionable.

� Modifying the damping alters the shape of the veloity power spetra so

that a diret omparison with the predited spetra is out of reah in

experimental onditions.

� However, by inluding the experimentally measured damping laws in the

numerial simulations of the full dynamis (the FVK equations), a good

agreement with the experiments is retrieved. This suggests that the dis-

repanies between the experiments and the WTT preditions are mainly

due to damping.

These onlusions have been orroborated by a numerial study where the damp-

ing was gradually modi�ed, from the experimentally measured law to a vanishing

value in a given frequeny band [16℄, showing also how the spetra are modi�ed

by a small yet non-negligible values of damping found in real plates.

Aounting for dissipation within the WTT framework remains hallenging

sine the analyti alulations are based on the long time asymptoti evolution

of the weakly nonlinear Hamiltonian dynamis. The injetion and dissipation in

this ontext an be seen as boundary onditions imposed to the transpareny

window in the wave number spae and to the best of our knowledge, we do

not know any analytial attempt to introdue dissipation within the WTT. An-

other option would be to �nd an alternative desription of the dynamis of

the power spetrum, where adding dissipation appears more straightforward.

The alternative an be provided by using a phenomenologial model desrib-

ing the temporal evolution of the power spetra, as �rst proposed by Leith for

hydrodynami isotropi turbulene [17℄. These models provide a natural frame-

work for investigating unsteady and self-similar dynamis in a variety of ontext

[17, 18, 19, 20, 21, 22℄. They are generally derived from ad-ho assumptions,

by onstruting a model equation admitting as stationary solutions both the

Rayleigh-Jeans equipartition of energy and the KZ spetrum. This results in a

nonlinear di�usion equation in the wave number (k-spae) or the frequeny (ω-
spae) domain, whih mimis the energy transfer within the modes. Thanks to

this approah, ideal situations an be investigated, as for instane the injetion

of a onstant �ux of energy at small sales and its di�usion, or the evolution of
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an initial ondition in absene of dissipation. Self-similar dynamis are generally

observed in these ases.

The goal of this paper is thus to derive and investigate suh a phenomeno-

logial model in the ase of elasti vibrating plates. The model equation should

ontain both Rayleigh-Jeans and KZ solutions. Injetion and dissipation terms

are then introdued in order to study more partiularly the e�ets of the damp-

ing. Two main results are obtained. First, self-similar dynamis for fored and

isolated turbulene in the absene of dissipation are retrieved. In a seond part,

the e�et of the damping on the asading turbulent spetrum is investigated,

exhibiting a self-similar solution relating the power spetrum to the injeted

power and the damping law.

2. Model equation

The appliation of the wave turbulene theory to the Föppl-von Kármán thin

plate equations has been performed in [11℄ (see Appendix A for the dimensional

and non-dimensional forms of these equations. Note that for this setion, all

values are dimensionless). Without realling the details of the derivation and

the omplex form of the kineti equation, one only needs to remind that the

two stationary solutions of the kineti equation, written here under the form of

a density of energy Eω , funtion of the frequeny ω, are :
� The Rayleigh-Jeans equilibrium solution, where the energy Eω is equally

parted along all the available modes. Consequently, the density of energy

Eω is a onstant that is denoted as C :

Eω = C. (1)

� The Kolmogorov-Zakharov solution, for whih an energy �ux ε is trans-

ferred along the asade until its dissipation near ω⋆
, the ut-o� frequeny

of the spetrum. Referring to [11℄, the energy spetrum in this ase is suh

that

EKZ
ω = Aε

1
3 log

1
3

(

ω⋆

ω

)

, (2)

where A is a onstant. The spei� form of this solution, onsisting in

a logarithmi orretion of the Rayleigh-Jeans spetrum, omes from a

degeneray of the equilibrium solution in a similar manner as for the non-

linear Shrödinger equation [9℄. In fat, this logarithmi orretion is ob-

tained using a perturbative expansion and is valid far from ω⋆
. Therefore,

although Eq. (2) exhibits a steep ut-o� beause of the non-existene of

the mathematial solution above ω⋆
(negative energy), experiments and

numerial simulations do not show suh a behaviour, and the spetrum

dereases more smoothly as ω inreases in the viinity of ω⋆
[15, 24, 25℄.

The phenomenologial model is diretly dedued from these stationary solu-

tions of the energy spetrum. Let us onsider the following di�usion-like equation
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in the ω-spae for the energy spetrum Eω(ω, t) :

∂tEω = ∂ω(ωE
2
ω∂ωEω), (3)

where ∂t and ∂ω refer respetively for the partial derivatives with respet to

time and angular frequeny. The energy �ux assoiated to this equation reads

straightforwardly

ε = −ωE2
ω∂ωEω. (4)

Thanks to the identi�ation of the energy �ux ε, the proportionality onstant A
of Eq. (2) is then uniquely de�ned as A = 3

1
3
. Hene, for the phenomenologial

model the KZ solution �nally reads :

EKZ
ω = (3ε)

1
3 log

1
3

(

ω⋆

ω

)

. (5)

The model equation, Eq. (3), is onstruted so that Eq. (1) and (2) are stationary

solutions (∂tEω = 0). The Rayleigh-Jeans equilibrium is a trivial solution to

Eq. (3) in the stationary ase sine ∂ωEω = 0. For the KZ spetrum, one has just

to verify, by deriving Eq. (2) with respet to ω, that ωE2
ω∂ωEω is onstant with

respet to ω. Beause this model equation has been dedued in the dimensionless

framework, only a numerial prefator, whih ould be easily absorbed by a

resaling of the time, should be present in the right-hand side of Eq. (3).

The phenomenologial equation is nothing else than a nonlinear di�usion

equation in the frequeny spae, in the spirit of the Rihardson asade view of

turbulent proesses [23℄. However, a diret derivation of this equation starting

from the kineti equation annot be done formally, and only qualitative argu-

ments an be dedued from a loal approah on the kineti equation [1℄(Setion

4.3). In fat, attempts to dedue suh simpli�ed Fokker-Plank equation from

the weak turbulene equations go bak to the pioneering works done for oean

waves by Hasselmann [31, 32, 33℄, although additional approximations were

needed to dedue suh loal models in frequeny.

Nonlinear di�usion equations an exhibit important di�erenes as ompared

to di�usion one. In partiular, singularity an be formed by the nonlinear dy-

namis and ompat support solutions an also be present, by opposition to the

the linear di�usion where disturbanes propagate at in�nite speed [34℄. Here,

while a singular ut-o� will be observed for the spetra, the equation does not

orrespond a priori to the situation were ompat support solutions have been

proved to exist [35℄. Finally, it should be said that other phenomenologial mod-

els exhibiting the same stationary solutions ould be dedued and the present

model an be onsidered as one of the simplest among other ones.

Numerial simulations of this model equation will now be onduted in var-

ious ases in order to investigate di�erent dynamial situations. We begin with

the lassial ase where an energy �ux is imposed at low frequeny and for

whih the lassial KZ spetrum should be observed when dissipation ats at

high frequeny.
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3. Conservative dynamis of the spetrum in the inertial range

3.1. Fored turbulene

3.1.1. Non-stationary and stationary spetra

In order to simulate numerially Eq. (3), a �nite volume method is used.

The �ux ε is omputed at eah frequeny inrement and the value of Eω is

de�ned at the entre of the mesh element. A onstant value εI over time for

the �ux at ω = 0 is applied and strong dissipation is inluded upon ω = 103.
Remarkably, thanks to this model equation along with this numerial method,

simulations exatly orresponding to the ideal on�guration of turbulene an

be launhed, with a �ux of energy imposed at ω = 0, and dissipation of energy

realized with a sink at high frequeny. A typial run onsists in 2048 points in

the ω diretion, a time step equal to 10−7
time unit and a total duration of

2 time units. When the dissipative sale is reahed, the asade front stops its

evolution and a stationary regime arises.

Fig. 1(a) displays the energy spetrum every 0.2 time unit in the onsid-

ered framework. At the beginning (for t < 1), the asade grows toward high

frequenies suggesting a self-similar behaviour. More preisely, a harateristi

frequeny may be de�ned as

ωc =

∫

∞

0
Eωωdω

∫

∞

0
Eωdω

, (6)

in order to obtain a more quantitative analysis. Fig. 1(b) shows the evolution of

ωc versus time, exhibiting a lear linear behaviour in the transpareny window.

When the asade front reahes the dissipative sale �xed here arbitrarily at

ω = 103, the harateristi frequeny does not evolve anymore and is onstant.

Let us �rst onsider the non-stationary regime where the harateristi fre-

queny of the asade evolves linearly with time for a onstant �xed �ux.

Fig. 1() displays the non-stationary spetra of Fig. 1(a) taken before t < 1
as funtions of the non-dimensional frequeny ω/ωc. All the urves merge into

a unique funtion, on�rming the self-similar growth of the asade. The shape

of this funtion will be disussed later but an already be ompared to the

Kolmogorov-Zakharov spetrum Eq. (5), the solution of the phenomenologial

equation for the onservative ase, displayed by a green dashed line in Fig. 1().

Although the two funtions are quite lose to eah other, the self-similar fun-

tion of the non-stationary regime is steeper near the ut-o�. This disrepany

has already been noted in [24℄, where the ase of fored turbulene within the

framework of the Föppl-von Kármán equations (diret simulation) has been

studied.

In the stationary regime, shown in Fig. 1(d), the phenomenologial model

reover the Kolmogorov-Zakharov solution for thin plates, as awaited. The sal-

ing of the amplitude of the spetrum by ε
1/3
I , as theoretially predited, is also

veri�ed by our data. The typial behaviour of energy spetra of vibrating plates

in the stationary regime is therefore orretly desribed by the phenomenologi-

al Eq. (3). Moreover, our model reovers the fat that the asade grows with
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Figure 1: Fored turbulene. (a) Energy spetrum Eω as a funtion of the

frequeny ω, for times inreasing from the left to the right, and with εI = 1.
(b) Charateristi frequeny ωc de�ned by Eq. (6) as a funtion of time. Red

dashed line : ωc ∝ t. () Energy spetrum Eω(
ω
ωc
) omputed from the non-

stationary spetra (before t = 1) shown in (a), and ompared to the stationary

Kolmogorov-Zakharov spetrum EKZ
ω = (3εI)

1
3 log

1
3 (ω

⋆

ω ) (green dashed line).

(d) Stationary regime. Energy spetrum Eω, divided by ε
1/3
I , plotted as a fun-

tion of the resaled frequeny ω/ωc for several energy �uxes εI = 0.5, 1, 2, 5 and
ompared to the KZ theoretial spetrum EKZ

ω (green dashed line).
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a steeper funtion of the frequeny until its front reahes the dissipative sales,

where a stationary regime in agreement with the theoretial preditions arises.

3.1.2. Self-similar analysis

In order to reover the numerial behaviour of the non-stationary regime

observed in Fig. 1(a)(b)(), the self-similar solutions of Eq. (3) are investigated.

The solutions are thus written under the form

Eω = tαg(
ω

tβ
), (7)

with α and β two real unknowns and g a funtion to be determined. Inserting

Eq. (7) into Eq. (3), one �nds that α and β must ful�ll the relationship

2α = β − 1. (8)

If we assume further that when injeting with a onstant �ux over time, the

total energy of the plate is growing linearly with time, the equality

∫ +∞

0

Eωdω = Bt, (9)

where B is a onstant, leads to a seond relationship α + β = 1. This yields
α = 0 and β = 1 so that �nally the self-similar solutions are neessarily under

the form

Eω = g(
ω

t
). (10)

The previous observation that the harateristi frequeny of the self-similar

solutions of Eq. (3) in ase of fored turbulene grows linearly with time is

retrieved.

Inserting Eq. (10) into Eq. (3), the equation for the self-similar funtion

gη = g(ω/t) �nally reads

−ηg′η = (ηg2ηg
′

η)
′, (11)

where

′
stands for the derivative with respet to the self-similar variable η = ω/t.

This equation is solved using Matlab algorithm ode45 whih applies a fourth-

order Runge-Kutta sheme with a variable time step [26℄. For this purpose,

Eq. (11) is written at the �rst order :

Y ′ =

(

1 0

0 − 1
g2
η
− 1

η − 2
g′

η

gη

)

Y, with Y =

[

gη
g′η

]

and Y ′ =

[

g′η
g′′η

]

. (12)

The initial value problem onsists in hoosing, for η0 given and small (in the

simulations, η0 = 0.01 is seleted), the values of gη and g′η that determine the

desired initial �ux εI . Whereas the value of gη(η0) is seleted for omparison

with a given dataset, g′(η0) is retrieved from Eq. (4). As the �ux εI is �xed, one
obtains g′η(η0) = − εI

η0g2
η(η0)

.

Fig. 2(a) ompares the self-similar solution dedued from the phenomeno-

logial model (and already displayed in Fig. 1()) with the self-similar solution
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provided by Eq. (11). A perfet agreement is observed, exhibiting in partiular

a ut-o� above whih the solution vanishes. As shown in [24℄, the self-similar

solution an be obtained diretly from the kineti equation. However in this

ase, the general shape of the funtion is not provided by the theory. Thanks

to Eq. (11), the phenomenologial model is able to predit the shape of the

self-similar funtion.

Let us now ompare this solution with diret numerial simulations. Fig. 2(b)

shows the obtained results, resaled aording to the self-similar relationship

proposed in Eq. (11). Two di�erent numerial shemes have been used for a

better omparison. On the one hand, a �nite-di�erene and energy-onserving

sheme simulates a perfet retangular plate with simply-supported out-of-plane

boundary onditions and in-plane movable edges [24℄. The plate has a surfae

of 0.4× 0.6 m

2
, the thikness is 1 mm, and the material parameters are that

of a metal, see [24℄ for more details. The other solution is obtained thanks

to the pseudo-spetral method used in previous works [11, 15℄, where suh a

spetral approah leads to periodi boundary onditions. The simulated plate

has also the material properties of a metal and orresponds to a square of

0.4 × 0.4 m2
and its thikness is 1 mm [11℄. In both numeris, the plate is

ontinuously exited at large sale, orresponding roughly to a onstant injetion

of energy with time. For the �nite-di�erene simulation, this is realized with a

pointwise foring, the frequeny of whih is seleted in the viinity of the fourth

eigenfrequeny. For the pseudo-spetral ode, this is realized in the Fourier spae

diretly through a random noise ating at small wave numbers only. With the

two numerial shemes, a lear self-similar behaviour has been observed. Hene

we are in position to ompare the master urves of the self-similar proess for

the phenomenologial model with those found in the numerial simulations. For

the detailed presentation of the self-similar proess found in diret numerial

simulations, the interested reader is referred to [24℄.

Fig. 2(b) shows that the two di�erent numerial methods exhibit similar

resaled spetra. Comparing to Fig. 2(a), one an observe two disrepanies

between the two solutions :

� In the diret numerial simulations, the slope in the turbulent asading

regime is a bit steeper. This an be assigned to the presene of the foring

term in the very-low frequeny part of the spetrum, whih reates a

small prominene that has already been observed and ommented, see

e.g. [24, 28℄.

� Near the ut-o�, it appears that numerial spetra of the full dynamis

derease ontinuously and smoothly, whereas theoretial spetra display

a steep ut-o� beause of the non-existene of the mathematial solution.

This observation is similar to what has been obtained for the KZ stationary

spetrum.

Despite these two di�erenes, the general shape of the self-similar solutions

in the ase of non-stationary fored turbulene shows a very good agreement,

validating the results provided by the phenomenologial model.

8



10
−1

10
0

10
−4

10
−2

10
0

 ω/ω
c

 g
η

(a)

10
−1

10
0

10
−4

10
−2

10
0

(b)

 ω/ω
c

 g
η

Figure 2: Self-similar funtion gη in ase of non-stationary fored turbulene.

(a) Blue points : numerial simulation of Eq. (3) with εI = 1. Red dashed line :

solution of Eq. (11). (b) Diret simulations of the Föppl-von Kármán equations.

Blak line : �nite-di�erene and energy-onserving sheme [24℄. Green line :

pseudo-spetral method detailed in [11℄.

3.2. Free Turbulene

The ase of free turbulene, i.e. the evolution of the asade without external

foring, for a given amount of energy as initial ondition, is now onsidered.

As shown in [24℄ from the kineti equation and on�rmed by diret numerial

simulation, the asade front must evolve to high frequenies as t1/3. The ability
of the phenomenologial model to retrieve this dynamis is now investigated.

3.2.1. Self-similar analysis

Considering free turbulene leads to withdraw foring and damping terms.

The system being onservative, the amount of initial energy K is onserved, so

that Eq. (9) is replaed by :

∫ +∞

0

Eωdω = K. (13)

The seond relationship that links the unknowns α and β now turns to be

α = −β, leading to α = −1/3 and β = 1/3. The self-similar solution for the

energy spetrum Eω reads in this ase

Eω = t−1/3h(
ω

t1/3
). (14)

In order to simulate numerially the framework of free turbulene, the dis-

sipation introdued earlier at high frequeny, is now removed. An energy �ux

εI is imposed for a few time steps and then anelled, thus �xing the origin

of time. Then, the simulation is run by imposing a vanishing energy �ux at

ω = 0, ensuring free turbulene. Fig. 3(a) shows the evolution for an initial

amount of energy K (orresponding to the spetrum in red) as a funtion of

time. Fig. 3(b)() desribe the evolution of the harateristi frequeny ωc as

9



well as the evolution of the amplitude of the energy spetrum at the entre of

the �rst mesh element (ω = 0.5). Two behaviours respetively proportionals to

t1/3 and to t−1/3
are displayed. These two observations are in agreement with

the self-similar solution given by Eq. (14).

In the same manner as for the fored ase, the solution given by Eq. (14)

an be inserted into Eq. (3) in order to obtain the evolution equation of the self-

similar funtion hν = h(ω/t1/3). The analogue of Eq. (11) for the free turbulene
ase then reads

−1

3
νh′

ν = (νh2
νh

′

ν)
′, (15)

where

′
stands here for the derivative with respet to the self-similar variable

ν = ω/t1/3. The numerial method used in order to solve Eq. (11) is now ap-

plied to Eq. (15). Fig. 4(a) displays the self-similar funtion built from the

spetra alulated by the phenomenologial model at multiple times and saled

as presribed by Eq. (14). For omparison, the solution of the self-similar equa-

tion Eq. (15) is also represented. A good agreement is observed, on�rming the

self-similar evolution of the spetrum. Fig. 4(b) displays the numerial results

from the diret numerial simulations of the Föppl-von Kármán equations. One

again, the two numerial shemes leads to funtions that are very lose from eah

other. A muh better agreement is observed between the solutions from diret

simulations and the one from the phenomenologial model, in partiular the

slope in the asade regime are really the same. This on�rms one again the

e�et of the foring whih reates a small bump in the very low-frequeny part

of the spetrum and alters the diret omparison between the di�erent solu-

tions. Here in the free turbulene ase, a perfet agreement is observed, the only

di�erene being the behaviour near the ut-o� frequeny where the derease of

the spetrum is muh slower for the diret numerial simulations, as already

ommented.

Two situations belonging to the theoretial onservative framework of wave

turbulene in thin vibrating plates have been investigated through numerial

simulations of the phenomenologial equation. Self-similar behaviours pertaining

to the phenomenology of the Föppl-von Kármán equations have been suess-

fully reovered. Note also that the behaviours Eω = g(ωt ) for fored turbulene

and Eω = t−1/3h( ω
t1/3

) for free turbulene an be derived by an analysis of the

kineti equation, as shown in [24℄. However, in this ase the self-similar funtions

g and h are left unknown. Thanks to the phenomenologial model, two di�erent

ordinary di�erential equations have been dedued, the solutions of whih are

funtions g and h. Hene, the model gives further informations whih have been

found to be relevant by omparisons with the diret numerial simulations. All

these results show the ability of our simple equation to reover omplex features

of the physis of the problem.
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Figure 3: (a) Energy spetrum Eω as a funtion of the frequeny ω at (from

top to bottom) t = 0, 1, 2, 3, 4 [nondim℄. (b) Charateristi frequeny ωc as a

funtion of time. Red dashed line : ωc ∝ t1/3. () Eω(ω = 0.5) as a funtion of

time. Red dashed line : Eω(ω = 0.5) ∝ t−1/3
.
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Figure 4: Self-similar funtion in ase of free turbulene. (a) Points : spetra

of Fig. 3 resaled by the self-similar law given by Eq. (14). Red dashed line :

solution of Eq. (15). (b) Results of the diret simulations of the Föppl-von Kár-

mán equations. Blak line : �nite-di�erene and energy-onserving sheme [24℄.

Green line : pseudo-spetral method detailed in [11℄.
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4. Non onservative ase : the e�et of damping

4.1. Model equation

Physial dissipation an be introdued in the phenomenologial model by

adding a linear dissipation term to Eq. (3) :

∂tEω = ∂ω(ωE
2
ω∂ωEω)− γ̂Eω, (16)

where γ̂ an be hosen as a funtion of ω for the sake of generality. In thin

plates, the damping depends strongly on parameters suh as the size of the

plate, its thikness, the boundary onditions. Regarding these values and the

frequeny range of interest, either thermoelasti, visoelasti, aoustial radia-

tion, or losses through the boundary onditions, an dominate [36, 37, 38, 39℄.

In the framework of our experimental set-up, the importane of most of these

ontributions has been estimated and related to theoretial preditions in [40℄.

As a starting point, let us onsider the damping laws obtained from experi-

ments. As observed in [15℄ where experimental methods have been used in order

to inrease the amount of damping in the plate, the damping laws for four dif-

ferent on�gurations were found to follow the power-law γ̂ = ξω0.6
, with relative

values of ξ (with respet to the smallest one) ranging from 1 to 5. This damping

law with varying ξ is �rst used for investigating the solutions of Eq. (16). Ap-

pendix B gives the full orrespondene between experimentally measured values

of ξ and their respetive dimensionless ounterparts used in the numerial sim-

ulations of Eq. (16). The same �nite volume method is used as in the previous

setions, and the �ux of energy εI is �xed at ω = 0. After a ertain number

of time steps (depending on the seleted damping oe�ient ξ), a stationary

regime is reahed.

Fig. 5 exhibits the stationary energy spetrum obtained for eah of the four

damping ases retrieved from [15℄, with an amount of damping oe�ient ξ
multiplied by 5 between the smallest and largest ones. The energy �ux at ω = 0 is
the same for eah situation. For very low frequenies (say 0 < ω < 5), all spetra
shows roughly the same behaviour. For larger frequenies, the more damped the

system, the steeper the spetrum and the smaller its harateristi frequeny are.

Moreover, it appears that the dissipation a�ets the energy transfers between

sales, so that summing up the stationary spetra to power laws is not possible

anymore.

Fig. 6 shows the previous spetra as funtions of the resaled frequeny

ω/ωc. The resaling of the frequeny axis makes all spetra ollapse into a sin-

gle urve, whih appears to be steeper than the Kolmogorov-Zakharov spetrum

(displayed by a green dashed line in Fig. 6). This result, obtained with the phe-

nomenologial model, is similar to the onlusions already reported in [15℄ from

experiments only : damping plays an important role in the disrepanies be-

tween theoretial and experimental spetra. However, this unique master urve

has never been observed before and tends to provide a simple explanation on the

behaviour of the asade in presene of damping. Indeed, it shows that the e�et

of damping on the turbulent asade an be mainly attributed to the balane

12
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between the onservative term ∂ω(ωE
2
ω∂ωEω) and the dissipative term γ̂ωEω,

sine only these terms are present in the phenomenologial model, and allows

one to retrieve the experimental observations. There is obviously no inertial

range so that the stationary solution depends on the shape of the dissipation

funtion and di�ers from the Kolmogorov-Zakharov spetrum.

Finally, the ollapse suggests a self-similar behaviour of the spetrum as a

funtion of the injeted �ux εI and the damping oe�ient ξ. In order to derive

the equation orresponding to this self-similar solution, the energy spetrum Eω

is thus written under the form

Eω = εµI ξ
xfη

(

ω

ωc

)

with ωc = εyIξ
z , (17)

where fη is an unknown funtion of the self-similar variable η = ω/ωc and

µ, x, y, z are onstants to be determined. Realling that the injeted �ux εI
orresponds in the phenomenologial model to

εI = lim
ω→0

(−ωE2
ω∂ωEω), (18)

one obtains, after inserting Eq. (17) into Eq. (18), the following relationship :

εI = −ε3µI ξ3x lim
η→0

(ηf2
η∂ηfη), (19)

so that µ = 1/3 and x = 0. The energy spetrum must thus write :

Eω = ε
1/3
I fη

(

ω

εyIξ
z

)

. (20)

In addition, inserting Eq. (17) in the phenomenologial equation (16) with a

damping of the form of an unknown power law γ̂ = ξωλ = ξηλωλ
c yields :

∂tEω = 0 = ε1−y
I ξ−z∂η(ηf

2
η∂ηfη)− ε

λy+1/3
I ξλz+1ηfη. (21)

Thus, the unknowns y and z must ful�ll the following relationships that depends
on the frequeny dependene of the damping :

z = − 1

1 + λ
, y =

2

3(1 + λ)
. (22)

All the unknowns of Eq. (17) have been determined, leading to an equation for

the funtion fη,
∂η(ηf

2
η∂ηfη)− fηη

λ = 0, (23)

and to an expression for the harateristi frequeny as a funtion of the damping

and the injeted �ux :

ωc = ε
2

3(1+λ)

I ξ−
1

1+λ . (24)

Eq. (23) has no analytial solution but an be solved numerially following the

same proedure as for Eq. (11) and (15). The result is plotted in red in Fig. 6,
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Figure 7: Charateristi frequeny ωc as a funtion of the damping oe�ient

ξ, εI = 1 × 10−5
. Blak : λ = 2. Red : λ = 1. Blue : λ = 0.6. Dashed lines :

evolution laws predited by Eq. (24).

displaying a perfet agreement with the universal solution obtained by resaling

all the spetra.

To onlude this part, the validity of Eq. (24), whih expresses the behaviour

of the harateristi frequeny, is questioned. As already observed in Fig. 5

for λ = 0.6, inreasing the damping oe�ient ξ dereases the harateristi

frequeny ωc. In this ase, the theoretial predition provided by Eq. (24) reads

ωc = ε
5/12
I ξ−5/8. (25)

Fig. 7 ompares this predition with the harateristi frequenies obtained by

solving Eq. (16) for γ̂ = ξωλ
and λ = 0.6. The same study for λ = 1 and λ = 2

is also displayed. A perfet agreement is found, showing that the evolution of

the harateristi frequeny an be fully explained thanks to the self-similar

behaviour of the energy spetrum with damping and injeted �ux.

4.2. Disussion

The results of the previous setion, obtained with the phenomenologial

model, have shown the existene of a unique master urve on whih all spetra

ollapse when resaling the frequeny with respet to the harateristi fre-

queny. This feature has not been notied before in the experimental results

reported in [15℄, where four di�erent on�gurations of damping for the same

plate have been measured. It is potentially a very important result sine it sug-

gests that the hange in the asade slope observed when the damping varies

(following the stronger the dissipation, the steeper the energy spetra are) is

simply a onsequene of the master urve whih does not exhibit a single slope.
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Figure 8: Power spetral density of the transverse veloity Pv as a funtion

of the resaled frequeny f/fc. Red : ξ = 0.045. Blak : ξ = 0.072. Magenta :

ξ = 0.14. Blue : ξ = 0.22. (a) Experiments. Red : εI = 0.56 × 10−3
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3.s−3
.

Blak : εI = 0.54 × 10−3
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3.s−3
. Magenta : εI = 0.52 × 10−3

m

3.s−3
. Blue :

εI = 0.48 × 10−3
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3.s−3
. (b) Numerial simulations. Green : ξ = 0, εI =

0.057× 10−3
m

3.s−3
. Other ases : εI = 0.024× 10−3

m

3.s−3
.

Depending on the dissipation a di�erent region of the master urve is domi-

nating, exhibiting di�erent "apparent" slope. It is thus ruial to investigate

whether this feature is also present in experiments and in numerial simulations

of the plate equations.

Fig. 8 displays preisely the experimental and numerial (pseudo-spetral

method) power spetral densities Pv from [15℄ as funtions of the resaled fre-

queny f/fc for di�erent damping oe�ients ξ. As for the phenomenologial

model, the proposed resaling auses all urves to ollapse into a unique mas-

ter urve. In Fig. 8(b), the spetra from the damped ase are ompared to the

KZ spetrum obtained numerially when the dissipation is only loated at high

frequeny, showing that the spetra are learly steeper than the usual KZ spe-

trum. Moreover, both the experimental and the numerial ases exhibit similar

pro�les, but are very di�erent from the master urve of the phenomenologial

model, in the same vein than the other situations studied above. Nevertheless,

these �gures on�rm here that the observations brought by the phenomenolog-

ial model desribe a true feature of the physial system.

Finally, the relation Eq. (24) between the harateristi frequeny, the damp-

ing and the injeted power an also be questioned using the experimental results.

Fig. 9 displays, for three injeted powers, the evolution of the ratio ωc/ε
5/12
I as

a funtion of the damping parameter ξ. The predited dependene of ωc with

ξ is also drawn for omparison : ωc/ε
5/12
I ∝ ξ−5/8

. The aordane is good,

on�rming that the results of the model are in agreement with the behaviour of

the experiments.
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Red : εI = 0.52 × 10−3
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5. Conlusion

A phenomenologial model desribing the time-frequeny dependene of the

power spetrum for wave turbulene in thin vibrating plates, has been derived.

In the framework of non-stationary turbulene, the model equation has shown

its ability in prediting the self-similar behaviours for two di�erent ases : free

and fored turbulene. These two examples show the ability of our model to ap-

ture the most salient features of the dynamis of thin elasti plates. The model

equation possesses a number of attrating features for further studies, the promi-

nent one being its simpliity in handling ompliating e�ets suh as foring and

dissipation. Besides its ability in reovering the self-similar behaviours already

derived from the kineti equation [24℄, a step further has been obtained with

the derivation of two equations, (11) and (15), the solutions of whih are the

self-similar universal funtions for the fored and the free ases, whih were not

provided by the theory developed from the kineti equation in [24℄.

The phenomenologial model has then been used in order to further inves-

tigate the e�et of damping on the spetra of turbulene for thin vibrating

plates reminding that, in that ase, damping ats at all sales and breaks the

transpareny window required by the wave turbulene theory. Then, no more

power-law behaviour an be observed, and the slope of energy spetra does

not represent the most important parameter to investigate [15℄. Thanks to the

phenomenologial model, a self-similar analysis provides new results and makes

appear a relationship between the power spetra, the damping law and the in-

jeted power. With the model equation and for a given damping law, all urves

ollapse into a single one when inreasing the damping fator, and the harater-

isti frequeny an be diretly studied and predited from the energy budget of

17



the asade. All these results shed new light on experimentally observed turbu-

lent spetra with damping. This also on�rms that the phenomenologial model

is a useful tool for studying ompliating e�ets in wave turbulene of plates.

Appendix A. Non-dimensional Föppl-von Kármán equations

The dynamis of thin vibrating plates is desribed by the Föppl-von Kármán

equations with two unknowns that are the transverse displaement �eld ζ(x, y, t)
and the Airy stress funtion χ(x, y, t). For a thin plate of thikness h, made from

a material with Poisson ratio ν, density ρ and Young's modulus E, the equations
of motion read [27, 29, 30℄

ρh
∂2ζ

∂t2
= − Eh3

12(1− ν2)
∆2ζ + L(χ, ζ), (A.1)

∆2χ = −Eh

2
L(ζ, ζ). (A.2)

The operatorL is bilinear symmetri, and reads in Cartesian oordinatesL(f, g) =
fxxgyy + fyygxx − 2fxygxy.

The following hange of variables is applied to obtain dimensionless variables

x
′ =

x

l
, ζ′ =

ζ

l
, t′ =

t

τ
, χ′ =

χ

C
, (A.3)

where the harateristi length l = h√
3(1−ν2)

, time τ = l
√

ρ
E and C = Ehl2, have

been introdued. This leads to the following set of non-dimensional dynamial

equations :

∂2ζ

∂t2
= −1

4
∆2ζ + L(χ, ζ), (A.4)

∆2χ = −1

2
L(ζ, ζ). (A.5)

Appendix B. Correspondene between experimental and phenomeno-

logial values of the damping oe�ient ξ

In the Föppl-von Kármán equations, visous dissipation an be taken into

aount with the term ρhγ ∂ζ
∂t , so that the equations of motion writes :

ρh
∂2ζ

∂t2
= − Eh3

12(1− ν2)
∆2ζ + L(χ, ζ)− ρhγ

∂ζ

∂t
, (B.1)

∆2χ = −Eh

2
L(ζ, ζ), (B.2)

where γ is the damping fator. The equivalent set of non-dimensional equations

beomes :
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∂2ζ

∂t2
= −1

4
∆2ζ + L(χ, ζ) − γ̂

∂ζ

∂t
, (B.3)

∆2χ = −1

2
L(ζ, ζ). (B.4)

γ̂ is the non-dimensional damping fator :

γ̂ = γτ = γh

√

ρ

3E(1− ν2)
. (B.5)

In [7℄, the damping law has been measured and behaves as γ = ξf0.6
, where

ξ is a parameter taking di�erent values, obtained by hanging the on�guration

of the plate in a given manner. In order to use the same range of damping

values in the phenomenologial model as in the experiment, one has to express

the relationship between the dimensional values of ξ and their dimensionless

ounterparts ξ̂. Thanks to Eq. (B.5), we have

γ̂ = τ(ξf0.6) = ξ̂ω̂0.6 with ξ̂ =
τ0.4

(2π)0.6
ξ. (B.6)

Table 1 sums up the numerial ξ values obtained from the experiments (�rst line,

from [15℄) and their equivalent non-dimensional values ξ̂ used previously for the

simulations of the phenomenologial model. Note that in the present paper and

for the sake of simpliity, the oe�ients used in the phenomenologial model

were named ξ.

ξ 0.045 0.072 0.14 0.22

ξ̂ × 105 1.908 3.0528 5.9359 9.3279

Table B.1: Correspondene between the experimentally measured values of

damping oe�ients ξ and their dimensionless ounterparts ξ̂ used in the sim-

ulations.
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