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Abstract

To want something now rather than later is a common attitude that reflects the brain’s ten-

dency to value the passage of time. Because the time taken to accomplish an action inevitably

delays task achievement and reward acquisition, this idea was ported to neural movement control

within the “cost of time” theory. This theory provides a normative framework to account for5

the underpinnings of movement time formation within the brain and the origin of a self-selected

pace in human and animal motion. Then, how does the brain exactly value time in the control of

action? To tackle this issue, we employed an inverse optimal control approach and developed a

general methodology allowing to squarely sample infinitesimal values of the time cost from exper-

imental motion data. The cost of time underlying saccades was found to have a concave growth,10

thereby confirming previous results on hyperbolic reward discounting yet without making any

prior assumption about this hypothetical nature. For self-paced reaching, however, movement

time was primarily valued according to a striking sigmoidal shape; its rate of change consistently

presented a steep rise before a maximum was reached and a slower decay was observed. Theo-

retical properties of uniqueness and robustness of the inferred time cost were established for the15

class of problems under investigation, thus reinforcing the significance of the present findings.

These results may offer a unique opportunity to uncover how the brain values the passage of

time in healthy and pathological motor control and shed new light on the processes underlying

action invigoration.

Significance Statement20

Movement time is a fundamental characteristic of neural motor control but the principles underlying

its formation remain little known. This work addresses that question within the inverse optimal

control framework where the challenge is to uncover what optimality criterion underlies a system’s

behavior. Here we rely on the “cost of time” theory that finds its roots into the brain’s tendency to

discount the actual value of future reward. It asserts that the time elapsed until action completion25

entails a cost, thereby making slow moves non-optimal. By means of a thorough theoretical analysis,

the present article shows how to sample the infinitesimal values of the time cost without prior

assumption about its hypothetical nature and emphasizes its sigmoidal shape for reaching.
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Introduction

Movement time (MT) is an inherent characteristic of motor control but the profound principles30

underlying its formation, be they neural or computational, remain in practice little understood.

Prediction of MT is however a critical issue in all fields concerned with biological movement such

as humanoid/rehabilitation robotics, neuroprosthetics, brain-machine interfaces or computer ani-

mation. In neuroscience, investigating the underpinnings of one’s own motion pace is of crucial

importance as many motor disorders like Parkinson’s disease lead to bradykinesia (Berardelli et35

al., 2001). This symptomatic movement slowness, not reducible to musculoskeletal or sensorimotor

deficits, seems to be due to a lack of implicit “motor motivation” (Mazzoni et al., 2007; Baraduc et

al., 2013). Such a reduced action vigor mainly originates from a dysfunction of the basal ganglia

(BG) and the dopamine system (Turner and Desmurget, 2010; Desmurget and Turner, 2010; Brücke

et al., 2012), thereby showing that MT is not just an emergent property of the task but a planned40

quantity. While it is well-understood why movements cannot be too fast, as exemplified by the

speed/accuracy trade-off (Fitts, 1954; Harris and Wolpert, 1998; Tanaka et al., 2006), few studies

actually addressed the complementary question of why movements are not slower.

Recently, the theory of the cost of time (CoT) has emerged as a promising avenue to tackle the

issue of action invigoration (Shadmehr, 2010; Shadmehr et al., 2010; Shadmehr and Mussa-Ivaldi,45

2012). This theory was originally motivated by the natural tendency of the brain to decrease the

actual value of future reward (Myerson and Green, 1995). Porting this psycho-economical decision

making to motor control (Wolpert and Landy, 2012), Shadmehr and colleagues proposed that the

purpose of any action would be to put the neural system in a more rewarding state. Therefore,

the slower the movement, the smaller the acquired reward. In other words, slow movements may50

be undesirable because the very passage of time entails a cost per se, thus placing the problem

within the normative framework of optimal control (OC) theory (Todorov, 2004; Scott, 2004). The

generic concept of a CoT revealed itself sufficient to account for MT in a variety of motor tasks

(Hoff, 1994; Liu and Todorov, 2007; Shadmehr, 2010; Shadmehr et al., 2010; Rigoux and Guigon,

2012). The actual shape of the time cost remains however rather elusive in neural motor control55

because it was chosen a priori in most existing investigations. Researchers have assumed linear

(Hoff, 1994; Harris and Wolpert, 2006; Liu and Todorov, 2007), concave (hyperbolic, Shadmehr,
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2010; Haith et al., 2012 or exponential, Huh et al., 2010; Rigoux and Guigon, 2012) and even convex

(quadratic, Shadmehr et al., 2010) shapes for the CoT (Fig. 1a). This choice could be motivated by

psychological/behavioral observations, imposed by the mathematical constraints of the problem’s60

formulation or just guided by the researcher’s intuition.

In the present study, we instead employed an inverse OC approach where the goal is to auto-

matically uncover what optimality criterion underlies a (presumably optimal) system’s behavior.

To this aim, we developed a complete and robust methodology for characterizing how the brain

values time from basic experimental motion data. The hyperbolic nature of the temporal discount-65

ing of reward (Shadmehr et al., 2010; Haith et al., 2012) was reaffirmed for saccades but without

making any prior assumption about its hypothetical nature. When applied to reaching, a striking

sigmoidal shape of the CoT was discovered over the time interval of actual reach durations, thereby

ruling out purely concave or convex time costs for limb movement control. These methodological

and empirical breakthroughs may offer a unique opportunity to assess how the brain values time in70

neural movement control across tasks, individuals or species.

Materials and Methods

Theoretical analysis

Working hypotheses This work relies upon the general assumption that biological movement

is optimal with respect to some cost function (Engelbrecht, 2001; Todorov, 2004). It generally75

supposes that the trajectories triggered by the central nervous system can be accounted for by

a certain infinitesimal cost h(x,u, t) depending on the system state, the motor command and

the time, respectively. Originally, models of OC for biological movement were developed in fixed

time where MT was typically taken from experimental measurements. This restriction can be

released in free-time OC whereby MT emerges from the optimality of behavior (Pontryagin et al.,80

1964; Kirk, 1970). In this context and in agreement with the CoT theory, we further assume that

h can be separated into a term that values time only, g(t) (the infinitesimal CoT) and a term

that depends on the state/control variables, l(x,u) (see Fig. 1b). A mathematical treatment of

that problem, given below, shows that it is actually possible to compute g(t) by resolving an OC

problem in fixed time t with known initial/final states, given a system dynamics and trajectory85
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cost. When the dynamics is linear with a single control variable and the trajectory cost is quadratic

(i.e. a single-input LQ problem), there moreover exist mathematical properties of uniqueness and

robustness for the CoT, guaranteeing that the CoT can be identified unequivocally for that class of

problem. Our main hypothesis is thus about the additive separability of temporal and trajectory

costs, which is consistent with the computational motor control literature and coherent with all the90

previous works devised in fixed time (see below for a justification of this assertion). An alternative

formulation, often seen in reinforcement learning, may have assumed multiplicative separability

(e.g. exponential discounting in an infinite-horizon setting, Sutton and Barto, 1998). While we do

not have theoretical results in the latter case, Rigoux and Guigon (2012) showed that under certain

restrictive assumptions (e.g. reward acquired on a single time step and state) a similar free-time95

additive setting can be recovered. Note however that assuming a multiplicative temporal cost would

be a major change of paradigm with respect to the motor control literature as the presence of such

a term could modify all the predictions made by classical fixed-time optimal control models.

General methodology for identifying the cost of time Consider a system dynamics ẋ =

f(x,u), with state x ∈ Rn and control u ∈ Rm, and fix a target xf (f stands for final throughout100

the text). A dot above a variable stands for its time derivative. Given an input u(·) defined on

an interval [0, tu], we denote by xu(·) the trajectory of ẋ(t) = f
(
x(t),u(t)

)
arriving at xf , i.e.

satisfying xu(tu) = xf . We assume that the cost function writes as the combination of the CoT

plus a trajectory cost, as follows:

C(u, tu) =
ˆ tu

0

(
g(t) + l

(
xu(t),u(t)

))
dt, (1)

where the functions g and l are non-negative. The function l is classical to motor control and105

may capture various aspects of the trajectory such as effort, energy, smoothness or accuracy. It

has been the subject of extensive investigations (e.g. Berret et al., 2011). It will be referred to as

the trajectory cost throughout the study. What we know about l is that it must account for the

system trajectories in fixed time (i.e. when MT is known). To get persuaded of this, it suffices

to realize that a model predicting MT accurately would be meaningless if it does not predict the110

correct system trajectories in fixed time as well. In what follows, we shall assume that l is either
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known from the literature or can be identified via some inverse OC procedure performed in fixed-

time (e.g. Mombaur et al., 2009; Berret et al., 2011). The function g is the infinitesimal (i.e.

instantaneous) CoT we are looking for, whose antiderivative is the actual CoT and will be denoted

by G(t)−G(0) =
´ t

0 g(s)ds (in the sequel, we will assume that G(0) = 0).115

We consider the following free-time OC problems:

Given an initial condition x0, minimize the cost C(u, tu) among all inputs u(·) and all times tu

such that xu(0) = x0 and xu(tu) = xf (by definition of xu).

The existence of minimal solutions u(·) with a finite time tu may be guaranteed under some

technical conditions on the dynamics and on the cost (typically, compactness of the set of controls120

and convexity of f and l with respect to u, or f linear and l quadratic; e.g. Lee and Markus, 1967).

We will assume that such conditions hold here.

Let u(·) be a minimal solution of the problem. Then there exists a curve p(t), t ∈ [0, tu], in

Rn called the adjoint or co-state vector, and a real number λ = 0 or 1, such that
(
x(·),p(·),u(·), λ

)
satisfies the conditions of the Pontryagin Maximum Principle (PMP for short, e.g. Pontryagin et al.125

1964; Lee and Markus 1967; Todorov 2006). In particular, defining the Hamiltonian of the problem

as

H(t,x,p,u, λ) = p>f(x,u) + λ
(
l(x,u) + g(t)

)
, (2)

the adjoint vector satisfies the Hamiltonian equation ṗ = −∂H
∂x (t,x,p,u, λ); moreover, the free-time

setting gives the following additional equation (called transversality condition):

H
(
tu,x(tu),p(tu),u(tu), λ

)
= 0. (3)

Note that the case λ = 0 occurs only for singular controls of the dynamics f(x,u) (these controls are130

such that the linearization of the system around the associated trajectory xu is not controllable).

We will assume that no such control exist for f(x,u) (this is always true for controllable linear

systems for instance), and so we can choose λ = 1 in H. As a consequence we obtain

g(tu) = −p(tu)>f
(
x(tu),u(tu)

)
− l
(
x(tu),u(tu)

)
. (4)

On the other hand, it is obvious that u(·) is also a minimal solution of the following OC problem
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in fixed time tu:135

Minimize the cost

Ctu(v) =
ˆ tu

0
l
(
xv(t),v(t)

)
dt, (5)

among all inputs v(·) such that xv(0) = x0 (and xv(tu) = xf ). The Hamiltonian associated with

this problem is

H0(x,p,u, λ) = p>f(x,u) + λl(x,u). (6)

Note that H0 defines the same Hamiltonian equation than H since ∂H0
∂x = ∂H

∂x , so p(·) is also an

adjoint vector for this OC problem in fixed time, and it is the only one since the adjoint vector140

associated with λ = 1 is unique.

Thus, for a given time tu and a given cost l, we can compute the value g(tu) in the following

way. First, solve the fixed-time OC problem in time tu. The result is a triple (x(·),p(·),u(·)) from

which the Hamiltonian can be calculated. Second, set

g(tu) = −H0
(
x(tu),p(tu),u(tu), 1

)
(7)

to get the value of the infinitesimal CoT at time tu. A flowchart illustrating the process is given in145

Figure 2.

A more elegant way to obtain the same conclusion is to proceed as follows. Let V (t,x0) be the

value function of the OC problem in fixed-time t, that is

V (t,x0) = inf
ˆ t

0
l
(
xu(s),u(s)

)
ds, (8)

where the infimum is taken among all inputs u(·) such that xu(0) = x0 (and xu(t) = xf ). It is the

optimal cost of a motion in time t between x0 and xf . Then the time tu of an optimal solution u(·)150

of the free-time problem satisfies

tu ∈ argmint≥0

(ˆ t

0
g(s)ds+ V (t,x0)

)
, (9)

and so necessarily g(tu)+ ∂V
∂t (tu,x0) = 0 (we assume here that V is differentiable with respect to t).

It is well-known from the Hamilton-Jacobi-Bellman (HJB) theory that ∂V∂t (tu,x0) = H?0
(
x(tu),p(tu), 1

)
,
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whereH?0(x,p, 1) = maxvH0(x,p,v, 1). Since for the optimal control u we haveH?0
(
x(tu),p(tu), 1

)
=

H0
(
x(tu),p(tu),u(tu), 1

)
, we recover in this way Eq. (7). Note that we did not use the standard way155

to define the value function: for a MT equal to t, this is usually Ṽ (w,x(w)) = inf
´ t
w l
(
xu(s),u(s)

)
ds.

Here we set V (t− w,x(w)) = Ṽ (w,x(w)), hence ∂V
∂t = −∂Ṽ

∂t .

Remarkably, the latter analysis shows that the derivation extends to stochastic settings (Stengel,

1986; Todorov, 2006). In that case, the infinitesimal CoT is simply the partial time derivative of

the expected value function of the stochastic OC problem in fixed-time tu. More precisely, for the160

stochastic dynamics dx = f(x,u)dt+g(x,u)dξ where dξ is a standard Wiener process, g(tu) results

from the stochastic HJB equation:

g(tu) = ∂V
∂t (tu,x0)

= minu
(
l(x,u) + ∂V

∂x (tu,x0)>f(x,u)

+1
2trace

(
∂2V
∂x2 (tu,x0)g(x,u)g(x,u)>

))
(10)

In the linear quadratic Gaussian (LQG) case, the infinitesimal CoT can be easily computed

because the value function has a parametric form whose parameters can be evaluated via the

resolution of decoupled ordinary differential equations (e.g. Kappen, 2011).165

In summary, the above theoretical considerations show that g(t) can be calculated by solving

a deterministic or stochastic OC problem in fixed time t for some initial/final states of the system

(x0 and xf ). Movement duration and initial/final states are basic information that can be retrieved

from experimental data. Thus, given a trajectory cost l and a model of the system dynamics, it

is straightforward to sample the values of the mapping t 7→ g(t) on some time interval [tmin, tmax].170

The boundary values correspond to the range where real observations can be taken in practice and

come out experimentally. This is the empirical range of movement durations. As a consequence,

the integral CoT (i.e. G) can only be identified up to a constant since the values of g(t) for t < tmin

are unknown/unobservable. This constant shift however does not affect neither the solution of the

free-time OC problem nor the predicted amplitude-duration relationship over the range [tmin, tmax]175

(that will be exactly recovered on this interval). To infer the CoT outside of the range of actual

measurements, we may devise at least two ways. First, the identified CoT may just be extrapolated

for t < tmin and t > tmax. Alternatively, values of g(t) may be computed for unobserved times by
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relying on predictions of the empirical amplitude-duration relationship (e.g. obtained via regression

analysis). Values inferred using the first and second methods will be respectively displayed as180

dotted and solid lines in all graphs depicting the CoT. Values inferred over the range of actual reach

durations will be emphasized by filled circles added on the top of solid lines, which locate where the

CoT was the most reliably identified.

Detailed solution for single-input LQ problems For deterministic single-input linear-quadratic

problems, a more detailed account of the methodology can be given and closed-form solutions of185

the CoT can be obtained. This case is relevant as it includes basic eye and arm movements. The

state of such systems can be described by x = (θ, . . . , θ(n−1)) ∈ Rn and then the dynamics has the

form

θ(n) + cn−1θ
(n−1) + · · ·+ c0θ = u, (11)

which is a single-input linear system ẋ = Ax + Bu, u ∈ R. Typically n = 2 or 3 for dynamical

models of the arm or the eye (see below). Let us assume that a quadratic cost l(x, u) = (u−kTx)2190

has been determined (e.g. an “effort” cost). We choose the final point xf as an equilibrium state

of the system. Up to a translation in θ, we can always assume xf = 0. We then choose a family of

initial conditions x0(a) = (a, 0, . . . , 0), which are equilibrium states parameterized by the movement

extent a > 0 (i.e. the amplitude of the motion). For every amplitude a > 0 we denote by t∗(a)

the duration of the motion between x0(a) and xf (which can be estimated experimentally), and by195

ua(·) a control minimizing the integral cost Ct∗(a)(u) =
´ t∗(a)

0
(
u − kTxu(t)

)2
dt in fixed time t∗(a)

between xu(0) = x0(a) and xu(t∗(a)) = xf = 0. Applying the above methodology, we have to

compute H0(x(t∗(a)),p(t∗(a)), u(t∗(a)), 1) where

H0(x,p, u, 1) = pT (Ax +Bu) + (u− kTx)2. (12)

From the PMP, ua(t∗(a)) minimizes H0
(
x(t∗(a)),p(t∗(a)), u, 1

)
with respect to u, which means

∂H0
∂u = 0, and replacing the solution in Eq. 12, we obtain200

H0(x(t∗(a)),p(t∗(a)), ua(t∗(a)), 1) = −ua(t∗(a))2. (13)
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Moreover, the value ua(t∗(a)) can be seen to depend linearly on xu(0) in the LQ case, and so it

depends linearly on a since xu(0) = x0(a) = ax0(1). In other words, ua(t∗(a)) = aϕ(t∗(a)), where

the function ϕ(·) is defined as follows: for every τ > 0, ϕ(τ) is the value u1(τ) of the control

minimizing the integral cost Cτ (u) =
´ τ

0 (u−kTxu(t))2dt in fixed time τ between xu(0) = x0(1) and

xu(τ) = 0. Note that the function ϕ(·) is a universal value of time that depends only on the system205

dynamics (A, B) and the trajectory cost (k) and not on the specific behavior of an individual. This

universal value of time can be computed explicitly thanks to the equations given in Ferrante et al.

(2005). Applying formula given in Eq. (7), we finally obtain g
(
t∗(a)

)
= ϕ

(
t∗(a)

)2
a2.

Empirical observations show that the time t∗(a) is typically an increasing function of the ampli-

tude, so that its inverse a∗(t) exists. We can then determine the function g(·) by g(t) = ϕ(t)2a∗(t)2.210

In particular, if it appears from experiments that the function t∗ is approximately affine of the form

t∗(a) = αa+ β, then the infinitesimal CoT can be written g(t) = ϕ(t)2( 1
α t−

β
α)2. Hence, it suffices

to compute the universal value of time ϕ(t), which can be done explicitly, to recover the actual

infinitesimal CoT from the experimental duration/amplitude mapping.

Interestingly, this analysis also reveals the effect of globally rescaling g by multiplying it by215

some positive parameter κ. This would induce a new amplitude
√
κa∗(t). Therefore, the rescaled

CoT would lead to the affine amplitude-duration relationship t∗(a) = α a√
κ

+β. It can be concluded

that simply rescaling the CoT does not allow to change both the slope and the intercept of the

amplitude/duration relationship. Hence, if both the intercept and slope are found to change ex-

perimentally, this variation cannot be attributed to a global rescaling of the time cost. The latter220

point is important if attempting to account for speed variations and inter-individual differences (see

Results).

Uniqueness and robustness properties for single-input LQ problems From the above

considerations, it is clear that the values of the infinitesimal CoT may critically depend on the

trajectory cost. This raises the question about the robustness and uniqueness of g in general as the225

cost l may be known only approximately or may even be quite different from the true cost without

it being noticeable in the motion data under investigation. Although important, this question was

not addressed in previous studies. The problem can be exemplified for planar point-to-point reaches

where the torque change (Uno et al., 1989) and jerk (Flash and Hogan, 1985) trajectory costs are
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hardly distinguishable despite their different nature (dynamic versus kinematic costs). For the230

CoT theory, different trajectory costs may conceivably lead to divergent time costs. Thus, before

identifying the CoT, the question of what trajectory cost underlies the system trajectories with

known MT must be posed. It may be argued that the trajectory cost must be identified through

the resolution of the following inverse OC problem in fixed time:

Given a set of recorded trajectories in time τ , find l such that every recorded trajectory y(t) is a235

minimum of the integral cost

Cτ (xu) =
ˆ τ

0
l(xu(t), u(t))dt, (14)

among all trajectories xu such that xu(0) = y(0) and xu(τ) = y(τ).

However, this inverse problem is ill-posed in general, which means that its solutions l(x, u) are

neither unique nor stable with respect to perturbations of the recorded data (which are affected by

sensorimotor and measurement noise and subject to inter-individual variability). Within the single-240

input LQ framework, however, powerful results of uniqueness and robustness can be obtained, as

explained hereafter.

We thus assume that the class of admissible trajectory costs is the class L of quadratic costs

L = {l(x, u) = u2 + xTQx + 2xTSu}, with standard hypothesis on the matrices Q and S (i.e.

Q = QT ≥ 0 and S is such that l is a positive semidefinite quadratic form). Given a cost l ∈ L,245

the classical fixed-time LQ theory asserts that the solution of the corresponding OC problem in

time τ satisfies u(t) = Kτ (t)x(t), where the time-dependent matrices Kτ (t) are determined through

some Riccati equations. Alternatively, Ferrante and collaborators Ferrante et al. (2005) showed

that all solutions in fixed time are determined by only two (1 × n) matrices K−, K+, i.e., the set

{Kτ (·), τ > 0} is uniquely characterized by a pair (K−,K+). Following the latter approach, let us250

introduce the set K of all such pairs, that is, (K−,K+) belongs to K if there exists a LQ problem

associated with a cost l ∈ L whose solutions are characterized by (K−,K+). The following Theorem

is proved in Nori and Frezza (2004).

Theorem 1. For any pair (K−,K+) ∈ K there exists a unique vector k ∈ Rn such that (K−,K+)

describes the optimal solutions of the fixed-time OC problems associated with255

ˆ τ

0
(u− kTx)2dt. (15)
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Moreover the map (K−,K+) 7→ k is continuous (actually k = −KT
+).

As a consequence, for single-input LQ problems, there exists a complete methodology for deter-

mining unequivocally and robustly the cost of the time g. The method is summarized as follows:

(i) determine a pair (K−,K+) ∈ K such that the associated optimal trajectories match accurately

the recorded ones in fixed time (this can be written as a least-square problem); (ii) set k = −KT
+260

and l(x, u) = (u− kTx)2; (iii) compute the function ∂V
∂t (t,x) by using the Hamiltonian H0 associ-

ated with l(x, u); (iv) for every time t, identify from experimental data an initial condition x∗(t)

corresponding to a movement in time t (if it exists for that t); (v) set g(t) = −∂V
∂t (t,x∗(t)). The

latter analysis proves that the CoT can be unequivocally and robustly identified from experimental

data for single-input LQ problems. Although restricted, this class of problems covers most of the265

applications considered in the present study, which reinforces the significance of our findings. For

more general problems, either the literature already provides some widely-accepted trajectory cost

or numerical techniques of inverse optimal control can be employed to identify the cost function

best replicating the system trajectories in fixed time (e.g. Berret et al., 2011).

Computational procedures270

Models for saccades The eye plant model was taken from Shadmehr et al. (2010). Briefly, the

eye dynamics was single-input linear system as follows:

c1
...
θ + c2θ̈ + c3θ̇ + c4θ = u (16)

where c1 = 1.165 × 10−5, c2 = 3.9 × 10−3, c3 = 0.241 and c4 = 1 for a human eye. The system

state was x> = (θ, θ̇, θ̈)> and an effort cost l(x, u) = u2 was minimized. Note that this problem

falls within the single-input LQ framework described above.275

We also performed simulations with a signal-dependent noise following Shadmehr et al. (2010)

and identified the CoT in this stochastic context. Signal-dependent noise is a random variable with

a normal distribution of mean zero and variance equal to kSDNu
2. This problem then falls within

the LQG framework, for which closed-form solutions are available to compute the value function

and in particular its partial time derivative (see Kappen, 2011 for the equations). The default noise280

level (signal-dependent noise) was set to kSDN = 0.0075 and a terminal cost accounting for accuracy
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of the form x>Dx with D = diag(103, 1, 10−2) was added to the integral cost.

Models for reaching Single degree-of-freedom (dof) limb. For a 1-dof arm moving in the hori-

zontal plane, the basic model used throughout the study was already described in numerous other

studies (e.g. Hogan 1984; Gentili et al. 2007; Tanaka et al. 2006; Gaveau et al. 2014) and is as285

follows: 
Iθ̈ = τ − bθ̇

τ̇ = u

(17)

where is θ the shoulder joint angle, τ is the muscle torque, b is the friction coefficient (b = 0.87

here), I is the moment of inertia of the arm with respect to the shoulder joint (value estimated

based upon Winter’s table for each participant; Winter, 1990) and u is the single control variable.

For the trajectory cost we typically considered canonical quadratic costs of the form l(x, u) =290

(u − k>x)2dt, where x> = (θ, θ̇, θ̈) denotes the system state. The two most famous examples are

the minimum torque change corresponding to l(x, u) = u2 (i.e. k = 0; Uno et al., 1989) and the

minimum jerk corresponding to l(x, u) =
...
θ

2 (i.e. k> = (0, 0, b); Flash and Hogan, 1985). However,

other costs, possibly composite, may account for such planar movements. Therefore, additional

perturbations of the effort cost were tested as follows: a torque-based cost (l(x, u) = 0.05u2 + τ2)295

(Nelson, 1983), an energy-based cost (absolute work, l(x, u) = 0.05u2 + |τ θ̇|) (Berret et al., 2008),

and an acceleration-based cost (l(x, u) = 0.05u2 + θ̈2) (Ben-Itzhak and Karniel, 2008). All these

costs were checked to predict symmetrical and smooth velocity profiles and thus to be plausible

trajectory costs for such a type of movement under consideration. For visualization purposes, we

considered when convenient l(x, u) = 0.05u2 and l(x, u) = 0.05
...
θ

2 for the torque change and jerk300

costs, respectively.

Sensorimotor noise is known to play a role on motor control during reaching, especially signal-

dependent noise (Todorov and Jordan, 2002; van Beers et al., 2004). Therefore, we also tested

signal-dependent noise among values in the following range kSDN = [0; 0.05; 0.075; 0.1; 0.125]. In

this stochastic context, a terminal cost accounting for accuracy of the form x>Dx with D =305

5diag(105, 103, 102) was added to the integral cost.

1-dof with muscle dynamics. For the sake of completeness, we also tested a more advanced

model of the arm, namely a rigid body actuated by two antagonist muscles modeled as second-
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order low-pass filters (Van der Helm and Rozendaal, 2000) with certain time constants. In that

case, the single-joint arm dynamics could be written:310



Iθ̈ = τ1 − τ2 − bθ̇

τ̇i = (εi − τi)/σ, i = 1, 2

ε̇i = (ui − εi)/σ, i = 1, 2

(18)

where the subscripts 1 and 2 denote the agonist and antagonist muscles respectively, ε is the muscle

excitation, ui is the control variable, which can be thought of as motor neuron input, and σ is

the time constant of the filter. Typically the value is chosen about 0.04 s in the literature for fast

movements (e.g. Guigon et al., 2007; Liu and Todorov, 2007) but we tested values ranging from

0.03 s to 0.08 s to evaluate the effects of varying this parameter on the shape of the CoT. In the315

reported simulations, we minimized the following effort cost: l(x, u) = 0.005(u2
1 + u2

2).

2-dof arm. For a nonlinear multijoint planar arm model, a full description and the parameters

used for the present simulations can be found in previously published articles (e.g. Berret et al.,

2008, 2011). Briefly,

τ =M(θ)θ̈ + C(θ, θ̇)θ̇ + F θ̇, (19)

where θ = (θ1, θ2)> and τ = (τ1, τ2)> denote the joint angle and torque vectors, respectively.320

The quantities M, C, andF are the inertia, the Coriolis/centripetal and the viscosity matrices,

respectively.

Smooth torque signals were obtained by controlling the torque derivative in order to emulate

the low-pass filter characteristics of muscles, which is a classical assumption done in other studies

(e.g. Uno et al., 1989; Nakano et al., 1999) and is as follows:325

τ̇ = u, (20)

where u is the control variable.

Anthropometric parameters were taken from Winter’s tables (Winter, 1990) and values were

adjusted to each participant.
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Numerical optimal control In order to solve a free-time optimal control problem, a naive

strategy might consist in testing different movement times until the best duration is found, by solving330

fixed-time problems at each iteration. This approach would be of course computationally intensive

and rather inefficient. However it can be seen from the PMP that the free time setting just introduces

an additional equation (see Eq. 3). Indeed, the Hamiltonian has to be zero along the optimal

state/costate trajectory, which can be exploited to find the solution without resorting to any trial-

error procedure and without additional computational complexity. For resolving general optimal335

control problems (fixed- or free-time), we relied here a classical method that consists of transforming

the OCP into a nonlinear programming (NLP) problem with constraints. More specifically, we used

an orthogonal collocation method that is efficiently implemented in Matlab (The MathWorks, Inc.,

Natick, Massachusetts, United States), called GPOPS (Benson et al., 2006; Garg et al., 2009; Rao

et al., 2010). The NLP problem was solved by means of the well-established numerical software340

SNOPT (Gill et al., 2005). We checked a posteriori that the Hamiltonian was either zero (in free-

time) or constant (in fixed-time) along the resulting optimal state/costate trajectories. For LQ

or LQG problems, the simulations were also performed by using the closed-form solutions of the

problem, and we checked that both numerical methods yielded the same trajectories and time costs.

Experimental procedures345

Main experimental task Participants. Twenty right-handed healthy adults, without neuromus-

cular diseases and with normal or corrected-to-normal vision, participated in this study (10 males,

age: 30± 5 years, mass: 67± 12 kg). Written informed consent was obtained from each participant

in the study as required by the Helsinki declaration and the EA 4042 local Ethics Committee. All

the participants were naive to the purpose of the experiment.350

Motor task. Participants performed visually-guided single-joint movements (rotation around

the shoulder joint) in the horizontal plane. Participants stood in front of a large vertical screen

where spotlight targets (3 cm diameter) were displayed. We tested 10 amplitudes ranging from

5° to 95° and 10 repetitions were recorded for each amplitude (5 in the rightward and 5 in the

leftward direction). Participants started with the arm orthogonal to the screen. A sequence of 20355

targets was then displayed (a new target appeared every 3.5 seconds). The starting arm position was

varied across the experiment and coincided with the previous target location. For each participant, 5
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blocks of 20 movements were recorded, for a total of 100 movements per participant. The sequence of

trials was fully randomized within each block, however ensuring that one leftward and one rightward

movement of each amplitude was presented within each sequence of 20 trials.360

Instructions. Participants were instructed to move at a spontaneous, comfortable speed. They

were asked to point toward the displayed spotlight target without trying to touch it because it

would otherwise induce trunk movements. They were required to keep the arm fully extended, to

minimize trunk rotations while performing the task and to perform one-shot movements without

correction. They also had to support the weight of their arm by themselves and try to move in a365

transverse plane as much as possible. A familiarization phase consisting of 20 trials was performed

prior to the recording of the 100 trials. Participants were allowed to rest and relax their arm every

20 trials for several minutes (a “pause” word appeared on the screen for that purpose).

Data Collection and Processing Materials. Arm and head motion of the dominant arm were

recorded by means of a motion capture system (Optitrack device). Ten cameras were used to370

capture the movement of five retro reflective markers (14 mm in diameter), placed at well-defined

anatomical locations on the moving arm and head (acromial process, humeral lateral condyle, apex

of the index finger, left and right sides of the frontal bone).

Data analysis. All the analyses were performed with custom software written in Matlab (Math-

works, Natick, MA) from the recorded 3D positions of the markers (sampling frequency of 250375

Hz). Recorded signals were low-pass filtered using a digital fifth-order Butterworth filter at a cut-

off frequency of 10 Hz (Matlab filtfilt function). Velocity profiles were computed via numerical

differentiation.

The movement onset time was defined as the instant at which the linear tangential velocity of

the fingertip exceeded 5% of its peak and the end of movement as the point at which the same380

velocity dropped below the 5% threshold. Movement duration was first inferred from those values

as it is a traditional method. However, given the purpose of the paper, a second method was used

where the velocity profiles were fitted to minimum jerk velocity profiles (Flash and Hogan, 1985)

in order to infer the movement duration (in the spirit of Botzer and Karniel, 2009). To do so,

a global optimization using Matlab’s patternsearch function was carried out and the parameters385

of the best-fitting minimum jerk problem were identified. On average, both methods gave similar
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results but the second method revealed itself to be more robust to variations of motion amplitude

and noise, and was therefore much more reliable in general. This second method was thus retained.

Finally, the angular position of the arm was also evaluated from the shoulder and finger markers

and using some trigonometry. The error between the theoretical amplitude and the one inferred390

from our recorded data was 2.0±0.9 degrees on average across participants. This indicated that the

participants fulfilled the task correctly by respecting the required amplitudes and that the stimuli

displayed on the screen were correctly calibrated.

Additional experiment Four right-handed healthy adults were tested during an additional ex-

periment addressing the case of small amplitudes/times (age: 32 ± 2 years, mass: 66 ± 4 kg). The395

same protocol than the main experiment was used except that a smaller target width (0.3 cm in-

stead of 3 cm) and a smaller fingertip marker (9 mm instead of 14 mm) were used since specific

focus was put on small motion extents. A first block of 100 movements was recorded for amplitudes

ranging from 5° to 95° as for the main task. A second block of 100 movements was recorded for

amplitudes ranging from 1° to 5°. The order of the two blocks was counterbalanced across subjects.400

The smallest tested movements were about 12 mm here, which was still much above the accuracy

of the motion capture system (<0.5 mm from calibration). A total of 200 reaches per participant

was thus available in this data set, ranging from very small to very large motion extents.

Results

Illustration for saccades405

We first considered the case of saccades to test the effectiveness and relevance of our methodology.

In a series of paper (Shadmehr et al., 2010; Shadmehr, 2010), Shadmehr and colleagues already

investigated in great details the extent to which the CoT theory could account for the duration of

horizontal saccades and their variations with respect to the reward assigned by the brain to the

task. They concluded that a hyperbolic CoT replicated better the amplitude-duration relationship410

than linear or quadratic alternatives. However, “the timescales [were] too short to allow [them]

to dissociate between hyperbolic and exponential temporal discount functions” (Shadmehr, 2010).

Considering intertrial intervals, they nevertheless concluded later that an exponential cost of time
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was inconsistent with the data (Haith et al., 2012). Here we relied upon the same experimental data

(reported in Collewijn et al., 1988) and we used the same linear model of the oculomotor plant and415

trajectory cost (i.e. “effort” cost, quadratic in the control variable) to identify the CoT underlying

human saccades (as described also in Harris and Wolpert, 1998; Tanaka et al., 2006; Kardamakis

and Moschovakis, 2009; Shadmehr et al., 2010).

In contrast with Shadmehr et al. (2010), the present investigation did not require guessing a

parametric form of the way the brain values the passage of time. Instead, we directly computed the420

infinitesimal CoT at different times based upon either the affine amplitude-duration relationship or

the true data points exhibiting a growth larger than linear for ample saccades reported in Collewijn

et al. (1988). We identified two similar yet slightly different time costs (black and gray traces

in Fig. 3a,b). First, our results confirmed previous findings by showing that the CoT underlying

saccades had undeniably a concave shape, thereby ruling out other time costs such as linear and425

convex ones. When fitting the infinitesimal CoT on the range of actual durations (i.e., [36.5-295 ms]),

we found that the root mean square error (RMSE) for the exponential fit was only slightly better

than the hyperbolic one (0.010 vs 0.015). Fitting g on a larger interval would be possible but the

result would then depend heavily on the extrapolation method. Second, the reward assigned to

the task could be estimated from the asymptotic value of G, without the need for a parametric430

guess of the CoT. However, when a parametric model of CoT was available (not based on blind

intuition though but on the shape of g), the reward could be estimated via the parameter α (see

Fig. 3c.), without resorting to any trial/error adjustments. In that case, the reward discount rate

could be evaluated as well via the parameter β (Fig. 3c). Third, when modeling signal-dependent

noise and thus switching to the stochastic context like in Shadmehr et al. (2010) or Harris and435

Wolpert (1998), the identified values of the infinitesimal CoT were found to be larger than for the

deterministic case (Fig. 3d). This increase of the CoT was mainly a consequence of the larger

expected trajectory cost due to the effects of sensorimotor noise. As the level of noise increased,

the CoT approached a hyperbolic rather than an exponential discounting of reward (see RMSE

in Fig. 3d). Since our methodology provides an exact solution to the identification problem, the440

original amplitude-duration relationship was perfectly recovered from free-time OC simulations as

expected (using the inferred CoT, see Fig. 3e). The associated optimal saccade velocity profiles

are reported in Figure 3f. The important result was that in all cases the instantaneous CoT was
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a decreasing function of time such that G (the integrated CoT) always had a clear concave shape.

Importantly, our theoretical results for single-input LQ problems ensure that this inferred CoT is445

not just an artifact but does possess such well-identified characteristics. Our findings thus rule out

non-concave time costs for the control of saccades and confirm the hyperbolic shape of the CoT

(Shadmehr et al., 2010; Haith et al., 2012).

Application to reaching

We then investigated in depth the CoT underlying the control of reaching. As far as we know,450

inferring the CoT for reaching has not been attempted yet. To start, we considered the case of a

single-joint arm moving in the horizontal plane whose linear musculoskeletal dynamics was described

in several studies (Hogan, 1984; Tanaka et al., 2006; Berret et al., 2008; Gaveau et al., 2014) and

detailed in Materials and Methods. We relied on the effort required to generate a reach as trajectory

cost, i.e. a quadratic cost in the control variable. Incidentally, it coincided here with the torque455

change (Uno et al., 1989), a prominent model known to replicate well the bell shape of velocity

profiles during single-joint rotations (Gottlieb et al., 1989). Note that this problem also falls within

the single-input LQ class for which we have powerful mathematical results.

In order to uncover the CoT underlying such self-paced arm pointing movements, experimental

data were first gathered and parameters such as movement extent and duration were computed. For460

all the participants, the relationship between amplitude and duration was approximately linear, in

agreement with the existing literature (Brown et al., 1990; Gentili et al., 2007). Figure 4 illustrates

this relationship for 4 participants separately, which was quantified via linear regressions based on

all the 100 trials recorded and depicted as single gray dots (R2 > 0.75 for all the 20 participants).

Even though the task was fairly simple, inter-individual differences were noticeable. In particular,465

both the slope and the intercept of the regression line varied across participants.

For each single movement, information about its amplitude and duration was eventually used

to estimate the value of g for that time. Figure 5a displays the values of g(t) when sampled on such

a single-trial basis (gray dots). Each dot in this figure corresponds to a dot in Figure 4. Because

of sensorimotor noise and inter-trial fluctuations (clearly visible in Fig. 4), the identified CoT was470

itself quite noisy when inferred from single trials. To get a more reliable and noiseless estimation of

g, we then exploited the affine law linking amplitude and MT to infer the CoT on the time interval
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where actual measurements were taken in practice (black traces in Fig. 5a). The time interval

containing the empirical reach durations is emphasized with filled circles added on the CoT traces.

Its boundary values, corresponding respectively to the faster and slower motions observed during475

the experimental session, varied between participants as they were instructed to move at their own

pace. Outside of this interval, the shape of the infinitesimal CoT was less reliable as it was either

computed based upon regression equations (yielding predicted MTs for untested amplitudes) or just

extrapolated by assuming that the initial and asymptotic values of g were both zero (respectively

plotted as solid and dotted lines in Fig. 5a). In Figure 5b, the corresponding integral CoTs, G,480

are depicted. The CoT exhibited a striking logistic shape for all the 20 participants, irrespective of

their spontaneous pace and anthropometric characteristics. Importantly, this conclusion could be

drawn from the most reliable part of the curve, that is, over the range of MTs that were recorded

in practice (and without resorting to any sort of extrapolation). This non-trivial shape would have

been hardly predictable using a parametric approach as the CoT is neither concave or convex but485

sigmoidal (at least on the time interval of interest, i.e. from about 500 ms to 1500 ms). As a

by-product, these results show that for reaching the CoT is not purely hyperbolic or exponential.

Verification through direct optimal control simulations in free time Before going further,

we performed free-time optimal control simulations by using the identified g to verify numerically

the effectiveness of our methodology. As expected, the fitted relationship between amplitude and490

duration was exactly the same in simulation and experiment (see Fig. 6a). This was expected

given that the method seeks the CoT that will exactly account for the original amplitude-duration

relationship. The velocity profiles were also bell-shaped and simply scaled with speed in accordance

with well-known experimental observations (see Fig. 6b and Gottlieb et al., 1989 for example). It is

worth noting that solving free-time optimal control problems is not computationally more intensive495

than solving their fixed-time counterparts. In particular, resolving a free-time problem does not

necessarily require a trial/error procedure as it is often assumed or done in the literature (e.g.

Shadmehr et al., 2010; Rigoux and Guigon, 2012 but see Hoff, 1994; van Beers, 2008).

Consistency with respect to the fitting of the amplitude-duration relationship In the

preceding paragraphs, we assumed an affine relationship between amplitude and duration with the500
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consequence of having non-zero MT at zero amplitude. Actually, other functions such as concave

ones may fit the data equally well, with or without bias at the origin. To investigate the time cost

consistency with respect to data fitting, we collected additional data involving reaching movements

of amplitudes less than 5° since non-linearity could mainly arise for small times/amplitudes (see

additional experiment in Materials and Methods). While the shape of the amplitude-duration505

relationship was very close to linear for reaches greater than 5°, these data allowed us to refine our

analysis near the origin. Figure 7a shows the amplitude-duration relationship for amplitudes ranging

from 1° to 5° (100 reaches) and 5° to 95° (100 reaches) for horizontal reaches with a fully-extended

arm. The data revealed that the relationship was more concave than linear in the vicinity of small

amplitudes, even though an affine fit still performed relatively well overall (R2 > 0.85). Although it510

was not possible to decide between concave fits with or without intercept from the R2 values (light

vs. dark gray traces), the CoT appeared to be sigmoidal over the range of empirical MTs in any case

(i.e., between approximately 300 ms and 1500 ms, see Fig. 7b). For all the participants, a similar bell

shape for the function g starting from times about 300 ms was found. The only noticeable difference

between fits with or without intercept occurred for small times (corresponding to very short motion515

extents because the fitted curve was very steep near the origin) where g was found to increase as

MT tended to zero in the latter case (dark gray traces). This finding is however hypothetical since

it is not grounded on real data as we did not measure reaches with duration smaller than 300 ms in

this experiment. Nevertheless, the integral CoT, G, exhibited a clear sigmoidal shape over the range

of actual reach durations. The latter was fully characterized up to a constant shift corresponding to520

the (unknown) values of g(t) for t < 300 ms. These values however do not affect the ability of the

identified G to predict the correct amplitude-duration relationship for times of practical interest for

reaching.

Consistency with respect to trajectory costs, motor noise and muscle dynamics Before

concluding about the sigmoidal shape of the CoT on the time interval of empirical reach durations,525

we further tested its consistency with respect to changes of trajectory cost, motor noise and muscle

dynamics (Fig. 8). Thus far, we relied on a simple quadratic effort cost (i.e. the torque change here).

However, since a variety of trajectory costs could replicate the bell-shaped velocity profiles of such

single-joint arm rotations, we assessed the robustness of the CoT with respect to other plausible
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trajectory costs. We considered the minimum jerk (Flash and Hogan, 1985), torque (Nelson, 1983),530

absolute work (Berret et al., 2008) or acceleration (Ben-Itzhak and Karniel, 2008) models. The

extracted time costs are reported in Figure 8a. This numerical analysis confirmed the consistency

of the shape of g with respect to l. Note that a candidate trajectory cost must at least replicate the

arm trajectories when MT is known and, therefore, this condition was ensured before extracting

the CoT (i.e. the smooth bell shape of velocity profiles). We then tested the effect of motor noise535

as it is known play on role on arm movement control (Todorov and Jordan, 2002; van Beers et

al., 2004). Results are reported in Figure 8b. Signal-dependent noise did not change the overall

sigmoidal shape of the CoT but just tended to increase the CoT magnitude.

In the preceding simulations, a simple model of the arm mechanics and muscle dynamics was

used. We tested the extent to which the sigmoidal shape of the CoT was dependent on the model of540

the musculoskeletal system. To this aim, we considered that the arm was driven by two antagonist

muscles modeled as 2nd-order low-pass filters with specific time constants. When still minimizing

the torque change (but controlling the input to muscles), we found that the CoT remained very

precisely the same whatever the time constants of the muscles (we tested from 0.03 s to 0.15 s).

However, when the cost function was modified such that a quadratic cost (i.e. a “neural effort”) was545

minimized instead of the torque change, the CoT depended on the muscle characteristics (Fig. 8c).

Importantly, although the precise values of the CoT obviously obviously varied as a function of the

muscle time constants, its sigmoidal shape was nevertheless preserved. Its rate of change g was

robustly characterized by a steep increase until a peak was reached and followed by a slower decay

on the time interval where the CoT could be reliably sampled. These tests further show that the550

neural effort cost, yet another plausible candidate trajectory cost known to predict smooth bell-

shaped velocity profiles (e.g. Guigon et al., 2007; Liu and Todorov, 2007), also yields a sigmoidal

CoT (especially for σ ≈ 0.04 s where velocity profiles are close to minimum jerk ones, Richardson

and Flash, 2002).

Consistency with respect to multijoint dynamics, different initial/final states and speed555

instructions Experimentally, different initial/final arm configurations may lead to the same MT.

From the identification standpoint, this may yield several possible values for g(t) where the CoT

theory would only assume one. For the above planar single-joint arm movements, this was however
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not a problem. At the theoretical level, the invariance of g with respect to initial/final states

follows trivially from the fact that the optimal solutions only depend on the amplitude a, and not560

specifically on the states x0 and xf . This fact is consistent with experimental observations where

MT was found to mostly depend on a and neither specifically on the relative starting hand position

in the workspace nor on the leftward/rightward direction of the motion for such horizontal single-

joint rotations (Gentili et al., 2007). In general, however, reaching involves a non-linear plant and

several degrees of freedom. The situation is thus more complex for a multi-articulated arm but565

our methodology allows for sampling g(t) in the exact same way and effortlessly as soon as the

associated fixed-time OC problem can be (numerically) resolved.

For a two-joint arm moving in the horizontal plane, the role of the state/control cost l is re-

inforced because the hand path depends on it. Attempting to predict MT would be completely

irrelevant if the hand path cannot be accurately replicated when MT is known at least. Here we570

still considered the minimum torque change model for the trajectory cost because it is known to

account well for both the quasi-straight path and bell-shaped velocity profile of the hand during

planar point-to-point arm movements (Uno et al., 1989). We used the data of Young et al. (2009)

and the reported equations for the amplitude-duration relationship to recover the CoT underlying

such multijoint arm reaches. The task is illustrated in Figure 9a and the amplitude-duration map-575

pings at natural and quick speeds are given in Figure 9b. The CoT g was then sampled pointwise

from these linear fits using our methodology (Figure 9c,d) and it was extrapolated out of the range

of real measurements. Since Young and colleagues did not report any leftward/rightward difference

regarding MTs, we used the same affine relationship for leftward and rightward movements per-

formed at natural speed. The infinitesimal CoT differed slightly depended on movement direction.580

Additionally, varying the starting posture of the arm also led to different instantaneous time costs

for leftward hand displacements (Fig. 9c, left). These CoT variations are due to the arm’s inertial

anisotropy (Gordon et al., 1994) and the fact that the torque change is a dynamic cost. For the

sake of completeness, we also identified the CoT for the hand jerk cost (Flash and Hogan, 1985)

and this revealed that the CoT remained exactly the same irrespective of movement direction and585

initial posture (data not shown).

The above variations of CoT were relatively small compared to what was observed during a

change of speed instruction (Fig. 9c, right). When asking the participants to move quickly, one can
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observe that both the slope and the intercept of the affine relationship change drastically (Fig. 9b).

This resulted in very different values for the function g. Not only the peak was multiplied by590

~30x but MT was also penalized slightly earlier (onset time of g). This agrees with our theoretical

analysis where we showed that globally rescaling the CoT cannot lead to a change in both slope

and intercept of the amplitude/duration relationship.

Hitherto, we have identified the CoT from experimental data. We also assessed the extent to

which the CoT identified in a given task could be used to predict MTs in another task. In Figure 9e,595

a center-out reaching task was thus considered as it has been the subject of extensive investigations

(Gordon et al., 1994; van Beers et al., 2004). Using the CoT identified at natural speed for the

central starting position and using the relationship between duration and extent for medio-lateral

movements, it was possible to predict the directional dependence of MT during a center-out task

(Fig. 9f). The same could be observed at quick speed using the corresponding CoT. We eventually600

identified the values of g from the data of van Beers et al. (2004) at quick speed for the 16 movement

directions and plotted the corresponding values in Figure 9d (black dots), where the CoT had been

identified from the data of Young et al. (2009). The location of the dots around the CoT uncovered

at quick speed confirmed the relative directional invariance of the infinitesimal CoT.

Above all, these findings reveal the robust sigmoidal shape of the CoT with respect to modifica-605

tions of data fitting, trajectory cost, system dynamics, initial/final states and task instructions, even

though its precise values necessarily depend on all the details of modeling. These present results

rule out purely concave or convex time costs for reaching whereas its concavity (e.g. hyperbolic)

was confirmed for saccades.

Discussion610

We addressed the issue of how the brain selects the duration of movement. We relied upon the

“cost of time” theory that finds its roots into the brain’s tendency to discount the actual value

of future reward (Shadmehr, 2010; Shadmehr et al., 2010; Shadmehr and Mussa-Ivaldi, 2012). It

asserts that the time elapsed until action completion entails a cost, thereby making slow moves

non-optimal. By means of a thorough mathematical analysis, we developed a complete, robust615

and fairly general methodology to automatically identify the CoT from basic experimental data by
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sampling its infinitesimal values without making prior assumption about its hypothetical nature.

An application to reaching revealed that an overall sigmoidal CoT underlies the planning of arm

movement. In the following, we discuss the possible origin, rationale and implication of such a CoT.

The CoT is a generic but appealing concept that has been recently popularized by Shadmehr’s620

group. In particular, it is straightforward to interpret the CoT as a temporal discounting of reward

by obvious mathematical equivalence (Shadmehr, 2010), thereby creating a link between the reward

system and motor control (Wolpert and Landy, 2012). In most studies investigating this link,

however, humans or animals were motivated via incentives and gratification was often made explicit

to them (e.g. food, monetary, token or sensory information; Battaglia and Schrater, 2007; Niv et625

al., 2007; Dean et al., 2007; Hudson et al., 2008; Guitart-Masip et al., 2012). For the neural control

of movement, the actual reward assigned by the brain to any given action is rather an intrinsic and

hidden quantity. For example, consider reaching for an ordinary object. It is difficult to predict

what reward the brain actually assigns to such a task. Furthermore, if the object is a glass of water,

the theory predicts that movement vigor should increase when the individual is thirsty, but exactly630

knowing the extent to which the intrinsic value of reward is modified seems tricky. Interestingly,

the present methodology offers the possibility to robustly estimate and differentially compare such

intrinsic rewards. Indeed, the reward attributed to the task can be inferred from the asymptotic

value of G. Then it would be possible to record movements under different conditions and analyze

how reward varies, all other things being equal.635

However, time could be costly in motor control for reasons other than just a temporal discounting

of reward. In particular, slow moves might also be undesirable because they monopolize a significant

amount of neural resources due to the inevitable processing of the sensorimotor flow of information

by the central nervous system, and neural processing of information is metabolically expensive

(Laughlin, 2001; Lennie, 2003; Howarth et al., 2012). The attentional cost associated with slow-640

paced movement control could also augment and interfere with the proficiency of achieving other

tasks, as suggested by dual-task experimental paradigms (Krampe et al., 2010). Hence the signalling

and processing of a quantity of information that likely grows with time during sensorimotor control

might induce such a high cognitive load and large neural metabolic energy demand. Interestingly,

a growing body of evidence also suggests that parkinsonian motor symptoms may be linked to645

neural metabolic deficits (Amano et al., 2014). The logistic shape identified for reaching may thus
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reflect this dual nature of the CoT. Indeed, its sole interpretation as a temporal discounting of

reward might be insufficient to account for the inflexion of G and this secondary interpretation

as a metabolic cost related to the engagement into a sensorimotor task may be speculated. This

is what a recent study tends to confirm for planar arm reaching (Huang and Ahmed, 2012). A650

surprising constant metabolic cost related to the simple fact of being engaged in a reaching task

was discovered. Therefore, the CoT we inferred here may also reflect this part of the metabolic

cost that does not depend on the state of the musculoskeletal apparatus but on the underlying

neural mechanisms that are involved in on-line movement control and that presumably depend on

motion duration. An interesting topic for future research would consist in trying to disentangle655

these putative reward and metabolic parts of the CoT. This may be possible by tuning the task

parameters adequately and by analyzing how the CoT varies accordingly (e.g. Klein-Flügge et al.,

2015 where evidence for an inverse sigmoidal effort-related discounting of reward was reported).

It could still be argued that the CoT is just a mathematical epiphenomenon required to com-

pensate for some missing features of the trajectory cost l. Besides a temporal discounting of reward,660

motion duration could indirectly reflect onto other costs such as accuracy via constant noise ac-

cumulation (van Beers et al., 2004; van Beers, 2008) or metabolic energy expenditure (Alexander,

1997; Huang and Ahmed, 2012). For eye movement, it has been suggested that slow saccades are

detrimental to movement accuracy as a consequence of constant noise which accumulates over time

(van Beers, 2008). This would lead to a trajectory cost l exhibiting a “U” shape as a function of665

MT since endpoint variability would not only increase at large speeds as a consequence of signal-

dependent noise (Harris and Wolpert, 1998) but also at small speeds. This would yield optimal MTs

without the need to resort to an explicit CoT. While plausible for saccades and feedforward control,

this view is unsustainable for visually-guided reaching since sensory feedback is processed on-line

to correct for motor errors. For reaching, this is rather the metabolic energy expenditure that may670

critically increase during slow-paced movement. Gravity could then be a predominant factor for

MT formation. If so, MT should drastically increase in weightless conditions but it is known that

cosmonauts increase only slightly MT after adaptation to weightlessness (Papaxanthis et al., 1998).

Moreover, criteria counting the effort required to counteract gravitational torques usually fail to

predict realistic arm trajectories even in fixed time (Berret et al., 2011) and models minimizing675

the metabolic cost of muscle contraction had to resort to parameter tuning to be able to replicate
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empirical trajectories for a wide range of speeds, making it difficult to estimate metabolic energy

expenditure across speeds (Alexander, 1997). Interestingly, the metabolic cost per arm movement

reported in Huang and Ahmed (2012) exhibited a “U” shape with respect to motion speed, as for

the case of walking (Ralston, 1958; Alexander, 1991), but with the difference that the subject’s arm680

was fully supported by a robotic device. This observation further supports that the cost measured

at rest or very low speed was mostly due to a metabolic energy expenditure associated with the

fact of being actively involved into a reaching task (which would therefore depend on time only)

rather than with gravity itself or with the complex energetics of the muscle contraction (e.g. Kush-

merick, 1983). Unfortunately, it seems rather difficult from current knowledge to dissociate the685

part of metabolic energy expenditure that does depend on arm trajectories (and thus contributes

to shaping them) from the one that does not depend on them but just on the passage of time.

Whatever the exact nature of this time cost is (temporal discounting of reward, neural/attentional

metabolic cost or even something else, e.g. working memory decay), the present methodology al-

lowed us to reliably infer its global shape for times corresponding to empirical reach and saccade690

durations. For reaching, the time interval approximately ranged from 300 ms to 1500 ms whereas

for saccades it ranged from about 30 ms to 300 ms. Since the two CoTs exhibited different shapes,

the question of their link can be posed. On the one hand, it seems conceivable to argue that the

time costs underlying saccades and reaches are just independent because the two systems and their

functions are different. On the other hand, it also seems possible to assume a single time cost.695

Indeed, the two CoTs may be juxtaposed as they only slightly overlap on their respective time

intervals. Support for this idea was found when assuming zero duration at zero amplitude: in that

case, the CoT for reaching had a shape reminiscent of the one for saccades in the vicinity of small

times (typically <200 ms). However, such a similarity was only hypothetical because reach data

were unavailable on such a range and whether or not the amplitude-duration relationship passed700

through the origin was undecidable on the present data. Actually, a regression intercept is often

assumed in the literature (e.g. Fitts’ law and Young et al., 2009) but its relatively large value for

reaching contrasts with the case of saccades. This discrepancy could be due to the role of feedback

(which may require MT extensions to improve terminal reach accuracy) or to the incompressible

duration of skeletal muscles activation/deactivation (which differ from extraocular muscles) making705

it impossible to attain zero duration as amplitude tends to zero. We nevertheless showed that this
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point was not critical regarding our main conclusion about the sigmoidal shape of the time cost

over the range of real movement times. Further work seems however required to assess the extent

to which temporal costs inferred from different motor tasks and systems (e.g. eye, wrist, arm or

whole-body) have compatible shapes on overlapping time intervals and whether or not they can be710

related.

Although the neural substrate of such a CoT is unknown, one may speculate that it is linked

with the dopaminergic system since movement vigor is significantly altered in Parkinson’s disease

(Mazzoni et al., 2007). Indeed, dopamine plays a central role in the BG, a region related to the

control of movement gain (extent and speed) and cost functions (Shadmehr and Krakauer, 2008;715

Schmidt et al., 2008; Desmurget and Turner, 2008; Turner and Desmurget, 2010; Amano et al.,

2014). More specifically, a number of studies showed that transient inactivation or ablation of

the globus pallidus internus, the principal output nucleus for the BG, reduced movement velocity

and acceleration without altering hand path, reach accuracy or movement sequencing (Anderson

and Horak, 1985; Mink and Thach, 1991; Inase et al., 1996; Desmurget and Turner, 2010). In720

addition, the striatum could play a critical role on MT since it has been shown to be related to

the temporal discounting of reward (Kobayashi and Schultz, 2008). Therefore, valuation of MT

could be partly encoded in that area as it is a fundamental center to gauge effort-benefit situations

(Croxson et al., 2009) even in the absence of extrinsic reward (Schouppe et al., 2014). It would be

the purpose of future studies to investigate the neural correlates of time cost variations arising from725

task modifications. The present robust and automated methodology may offer such an opportunity

by providing the genuine shape of CoT in neural motor control.

28



References

Alexander RM (1991) Energy-saving mechanisms in walking and running. J Exp Biol 160:55–69.

Alexander RM (1997) A minimum energy cost hypothesis for human arm trajectories. Biol Cy-

bern 76:97–105.

Amano S, Kegelmeyer D, Hong SL (2014) Rethinking energy in parkinsonian motor symptoms: a

potential role for neural metabolic deficits. Front Syst Neurosci 8:242.

Anderson ME, Horak FB (1985) Influence of the globus pallidus on arm movements in monkeys.

iii. timing of movement-related information. J Neurophysiol 54:433–448.

Baraduc P, Thobois S, Gan J, Broussolle E, Desmurget M (2013) A common optimization principle

for motor execution in healthy subjects and parkinsonian patients. J Neurosci 33:665–677.

Battaglia PW, Schrater PR (2007) Humans trade off viewing time and movement duration to

improve visuomotor accuracy in a fast reaching task. J Neurosci 27:6984–6994.

Ben-Itzhak S, Karniel A (2008) Minimum acceleration criterion with constraints implies bang-bang

control as an underlying principle for optimal trajectories of arm reaching movements. Neural

Comput 20(3):779–812.

Benson DA, Huntington GT, Thorvaldsen TP, Rao AV (2006) Direct trajectory optimization and

costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and

Dynamics 29:1435–1440.

Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in

parkinson’s disease. Brain 124:2131–2146.

Berret B, Chiovetto E, Nori F, Pozzo T (2011) Evidence for composite cost functions in arm

movement planning: an inverse optimal control approach. PLoS Comput Biol 7:e1002183.

Berret B, Darlot C, Jean F, Pozzo T, Papaxanthis C, Gauthier JP (2008) The inactivation principle:

mathematical solutions minimizing the absolute work and biological implications for the planning

of arm movements. PLoS Comput Biol 4:e1000194.

29



Botzer L, Karniel A (2009) A simple and accurate onset detection method for a measured bell-

shaped speed profile. Front Neurosci 3:61.

Brücke C, Huebl J, Schönecker T, Neumann WJ, Yarrow K, Kupsch A, Blahak C, Lütjens G, Brown

P, Krauss JK, Schneider GH, Kühn AA (2012) Scaling of movement is related to pallidal gamma

oscillations in patients with dystonia. J Neurosci 32:1008–1019.

Brown SH, Hefter H, Mertens M, Freund HJ (1990) Disturbances in human arm movement trajec-

tory due to mild cerebellar dysfunction. J Neurol Neurosurg Psychiatry 53:306–313.

Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human horizontal sac-

cadic eye movements. J Physiol 404:157–182.

Croxson PL, Walton ME, O’Reilly JX, Behrens TEJ, Rushworth MFS (2009) Effort-based cost-

benefit valuation and the human brain. J Neurosci 29:4531–4541.

Dean M, Wu SW, Maloney LT (2007) Trading off speed and accuracy in rapid, goal-directed

movements. J Vis 7:10.1–1012.

Desmurget M, Turner RS (2008) Testing basal ganglia motor functions through reversible inactiva-

tions in the posterior internal globus pallidus. J Neurophysiol 99:1057–1076.

Desmurget M, Turner RS (2010) Motor sequences and the basal ganglia: kinematics, not habits. J

Neurosci 30:7685–7690.

Engelbrecht S (2001) Minimum principles in motor control. J Math Psychol 45:497–542.

Ferrante A, Marro G, Ntogramatzidis L (2005) A parametrization of the solutions of the finite-

horizon lq problem with general cost and boundary conditions. Automatica 41:1359–1366.

Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude

of movement. J Exp Psychol 47:381–391.

Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed math-

ematical model. J Neurosci 5:1688–1703.

30



Garg D, Patterson MA, Hager WW, Rao AV, Benson DA, Huntington GT (2009) A unified frame-

work for the numerical solution of optimal control problems using pseudospectral methods (to

appear). Automatica .

Gaveau J, Berret B, Demougeot L, Fadiga L, Pozzo T, Papaxanthis C (2014) Energy-related

optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.

J Neurophysiol 111:4–16.

Gentili R, Cahouet V, Papaxanthis C (2007) Motor planning of arm movements is direction-

dependent in the gravity field. Neuroscience 145:20–32.

Gill PE, Murray W, Saunders MA (2005) Snopt: An sqp algorithm for large-scale constrained

optimization. SIAM Review 47:99–131.

Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements. ii.

systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130.

Gottlieb GL, Corcos DM, Agarwal GC (1989) Strategies for the control of voluntary movements

with one mechanical degree of freedom. Behavioral and Brain Sciences 12:189–250.

Guigon E, Baraduc P, Desmurget M (2007) Computational motor control: redundancy and invari-

ance. J Neurophysiol 97:331–347.

Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan RJ (2012) Action controls

dopaminergic enhancement of reward representations. Proc Natl Acad Sci U S A 109:7511–7516.

Haith AM, Reppert TR, Shadmehr R (2012) Evidence for hyperbolic temporal discounting of reward

in control of movements. J Neurosci 32:11727–11736.

Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Na-

ture 394:780–784.

Harris CM, Wolpert DM (2006) The main sequence of saccades optimizes speed-accuracy trade-off.

Biol Cybern 95:21–29.

Hoff B (1994) A model of duration in normal and perturbed reaching movement. Biological Cyber-

netics pp. 481–488.

31



Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754.

Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the

neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232.

Huang HJ, Ahmed AA (2012) Is there a reaching speed that minimizes metabolic cost? In

Proceedings of the Translational and Computational Motor Control 2012, New Orleans, LA.

Hudson TE, Maloney LT, Landy MS (2008) Optimal compensation for temporal uncertainty in

movement planning. PLoS Comput Biol 4:e1000130.

Huh D, Todorov E, Sejnowski TJ (2010) Infinite horizon optimal control framework for goal directed

movements In Society for Neuroscience Annual Meeting, Online: Program No. 492.411.

Inase M, Buford JA, Anderson ME (1996) Changes in the control of arm position, movement, and

thalamic discharge during local inactivation in the globus pallidus of the monkey. J Neurophys-

iol 75:1087–1104.

Kappen HJ (2011) Optimal control theory and the linear bellman equation In Barber D, Cemgil

AT, Chiappa S, editors, Bayesian Time Series Models, pp. 363–387. Cambridge University Press

Cambridge Books Online.

Kardamakis AA, Moschovakis AK (2009) Optimal control of gaze shifts. J Neurosci 29:7723–7730.

Kirk DE (1970) Optimal control theory: An Introduction. Prentice-Hall, New Jersey.

Klein-Flügge MC, Kennerley SW, Saraiva AC, Penny WD, Bestmann S (2015) Behavioral model-

ing of human choices reveals dissociable effects of physical effort and temporal delay on reward

devaluation. PLoS Comput Biol 11:e1004116.

Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J

Neurosci 28:7837–7846.

Krampe RT, Doumas M, Lavrysen A, Rapp M (2010) The costs of taking it slowly: fast and slow

movement timing in older age. Psychol Aging 25:980–990.

Kushmerick MJ (1983) Energetics of muscle contraction. Comprehensive Physiology .

32



Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information.

Curr Opin Neurobiol 11:475–480.

Lee EB, Markus L (1967) Foundations of Optimal Control Theory. John Wiley.

Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497.

Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal

feedback control. J Neurosci 27:9354–9368.

Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? parkinson’s disease,

movement vigor, and implicit motivation. J Neurosci 27:7105–7116.

Mink JW, Thach WT (1991) Basal ganglia motor control. iii. pallidal ablation: normal reaction

time, muscle cocontraction, and slow movement. J Neurophysiol 65:330–351.

Mombaur K, Truong A, Laumond JP (2009) From human to humanoid locomotion - an inverse

optimal control approach. Autonomous Robots .

Myerson J, Green L (1995) Discounting of delayed rewards: Models of individual choice. J Exp

Anal Behav 64:263–276.

Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative ex-

aminations of internal representations for arm trajectory planning: minimum commanded torque

change model. J Neurophysiol 81:2140–2155.

Nelson WL (1983) Physical principles for economies of skilled movements. Biol Cybern 46:135–147.

Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of

response vigor. Psychopharmacology (Berl) 191:507–520.

Nori F, Frezza R (2004) Linear optimal control problems and quadratic cost functions estimation In

12th Mediterranean Conference on Control and Automation, MED’04. Kusadasi, Aydin, Turkey.

Papaxanthis C, Pozzo T, Popov KE, McIntyre J (1998) Hand trajectories of vertical arm movements

in one-g and zero-g environments. evidence for a central representation of gravitational force. Exp

Brain Res 120:496–502.

33



Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1964) The Mathematical Theory

of Optimal Processes. Pergamon Press.

Ralston HJ (1958) Energy-speed relation and optimal speed during level walking. Int Z Angew

Physiol 17:277–283.

Rao AV, Benson DA, Darby CL, Patterson MA, Francolin C, Sanders I, Huntington GT (2010)

Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems

using the gauss pseudospectral method. ACM Transactions on Mathematical Software 37:1–39.

Richardson MJE, Flash T (2002) Comparing smooth arm movements with the two-thirds power

law and the related segmented-control hypothesis. J Neurosci 22:8201–8211.

Rigoux L, Guigon E (2012) A model of reward- and effort-based optimal decision making and motor

control. PLoS Comput Biol 8:e1002716.

Schmidt L, d’Arc BF, Lafargue G, Galanaud D, Czernecki V, Grabli D, Schüpbach M, Hartmann

A, Lévy R, Dubois B, Pessiglione M (2008) Disconnecting force from money: effects of basal

ganglia damage on incentive motivation. Brain 131:1303–1310.

Schouppe N, Demanet J, Boehler CN, Ridderinkhof KR, Notebaert W (2014) The role of the

striatum in effort-based decision-making in the absence of reward. J Neurosci 34:2148–2154.

Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev

Neurosci 5:532–546.

Shadmehr R (2010) Control of movements and temporal discounting of reward. Curr Opin Neuro-

biol 20:726–730.

Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain

Res 185:359–381.

Shadmehr R, Mussa-Ivaldi S (2012) Biological Learning and Control MIT Press.

Shadmehr R, Orban de Xivry JJ, Xu-Wilson M, Shih TY (2010) Temporal discounting of reward

and the cost of time in motor control. J Neurosci 30:10507–10516.

34



Stengel R (1986) Optimal Control and Estimation Dover books on advanced mathematics. Dover

Publications.

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction MIT Press.

Tanaka H, Krakauer JW, Qian N (2006) An optimization principle for determining movement

duration. J Neurophysiol 95:3875–3886.

Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915.

Todorov E (2006) Optimal control theory, chapter 12, pp. 269–298 Bayesian Brain: Probabilistic

Approaches to Neural Coding, Doya K (ed).

Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat

Neurosci 5:1226–1235.

Turner RS, Desmurget M (2010) Basal ganglia contributions to motor control: a vigorous tutor.

Curr Opin Neurobiol 20:704–716.

Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint

arm movement. minimum torque-change model. Biol Cybern 61:89–101.

van Beers RJ (2008) Saccadic eye movements minimize the consequences of motor noise. PLoS

One 3:e2070.

van Beers RJ, Haggard P, Wolpert DM (2004) The role of execution noise in movement variability.

J Neurophysiol 91:1050–1063.

Van der Helm FCT, Rozendaal LA (2000) Musculoskeletal systems with intrinsic and proprioceptive

feedback In Winters JM, (Eds.) PC, editors, Biomechanics and neural control of posture and

movement, pp. 164–174. New York: Springer.

Winter D (1990) Biomechanics and Motor Control of Human Movement. New York: John Wiley

& Sons.

Wolpert DM, Landy MS (2012) Motor control is decision-making. Curr Opin Neurobiol 22:996–1003.

Young SJ, Pratt J, Chau T (2009) Target-directed movements at a comfortable pace: movement

duration and fitts’s law. J Mot Behav 41:339–346.

35



Tables, Legends, Figures

lin
ea

r

qu
ad

rat
ic

hyperb
olicex

ponen
tia

l
C

oT
a b

C
oT

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

15

20

25

(sec)

MT

(sec)

total cost 

trajectory cost 

CoT

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

15

20

25

30

35

40

Figure 1: Illustration of the CoT theory. a. Previously proposed shapes of the CoT. Linear:
G(t) = αt (Hoff, 1994; Liu and Todorov, 2007); Hyperbolic: G(t) = α(1− 1

1 + βt
) (Shadmehr, 2010;

Shadmehr et al., 2010; Shadmehr and Mussa-Ivaldi, 2012); Exponential: G(t) = α(1 − exp(−βt))
(Rigoux and Guigon, 2012); Quadratic: G(t) = αt2 (Shadmehr et al., 2010). b. The CoT G(t) =´ t

0 g(s)ds (assumed to be linear here for simplicity) sums with the trajectory cost
´ t

0 l(x(s),u(s))ds
yielding a total cost

´ t
0 h(x(s),u(s), s)ds that exhibits a “U” shape, the minimum being the optimal

MT. It is noteworthy that, without the CoT, infinitely slow movements would be optimal for similar
trajectory costs (which includes most of the costs proposed in the literature).

Experimental motion data

OC simulation in 
fixed-time

Plant model Trajectory cost

via Hamiltonian

Figure 2: Flowchart of the methodology. First of all, a model of the plant dynamics f and a
trajectory cost l replicating the experimental trajectories with known MT must be available (gray
boxes). From these experimental trajectories, the initial and final states of the system can be
estimated (x0 and xf ), as well as the movement duration t (black box). Finally, the corresponding
optimal control (OC) problem in fixed-time t must be resolved (central ellipse) in order to evaluate
the (constant) Hamiltonian H0 along the optimal trajectory; this precisely yields the value of the
infinitesimal CoT at time t. Note that the partial time derivative of the value function could be
used if preferred.
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Figure 3: Cost of time underlying saccades, as inferred from data reported in Collewijn et al.
(1988). a. Infinitesimal CoT g(t). To infer this cost we used either the linear regression or the
true data points exhibiting a growth larger than linear for amplitudes greater than 40 degrees (see
Collewijn et al., 1988). Dotted traces indicate extrapolated parts of the CoT whereas solid lines
are for values inferred using our inverse methodology. Note that our approach does not require
neither fitting parameters nor hypothesizing the shape of the time cost. b. Integral CoT G(t). The
concavity of the CoT is obvious and in particular linear/convex costs can be ruled out (Shadmehr
et al., 2010). c. Fitting of the infinitesimal CoT. We fitted g on the actual range of durations of
observed saccades, i.e. from 36.5 ms to 295 ms. We considered both exponential and hyperbolic
candidate functions. Best fitting parameters were: (α, β) = (1.3, 4.3) and (α, β) = (0.9, 5.5) for the
hyperbolic and exponential fits, respectively. d. Simulations in the stochastic case with different
levels of signal-dependent noise (from kSDN to nkSDN with n = 2, 3 and 4, denoted by ×n in the
figure). RMSE is reported for hyperbolic (hyp.) and exponential (exp.) functions, respectively.
With larger multiplicative noise, the CoT gets closer to the hyperbolic class of CoT. e. Verification
of the amplitude-duration relationship as obtained from free-time optimal control simulations with
the CoT depicted in panel b (black trace). White-filled circles indicate true data points (i.e. target
values for the model) and black crosses are for simulated data (i.e. reconstructed values from the
model). Both series of points matched perfectly since the methodology provides an exact solution to
the problem of identifying the CoT associated with the observed amplitude-duration relationship.
f. Velocity profiles of saccades of different amplitudes as predicted by the optimal control model.
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even though inter-trial variability was noticeable, a clear and significant (p < .001) affine trend was
observed in all cases, as revealed by the relatively large R2 values.
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Figure 5: Cost of time underlying single-joint arm reaching, as inferred from data reported in Fig. 4.
a. Infinitesimal CoT, g(t), for each of the four participants (P1-P4). Solid black traces are values of
g(t) inferred from linear regressions. Experimentally, MTs belonged to a certain interval [tmin, tmax]
(emphasized by black-filled circles) but it was possible to identify g(t) on a larger time interval by
using predictions from the regression equation (black solid line). Dotted lines represent extrapolated
values of g(t), i.e. values of g(t) not computed via our methodology. Light gray dots are values of
g(t) inferred from single trials: each gray dot corresponds to a dot displayed in Fig. 4. b. Integrated
CoT, G(t). These curves were obtained by trapezoidal integration of the infinitesimal CoTs for each
participant separately. Note that the cost G(t) is only identified up to a constant but in all cases
the CoT exhibited a sigmoid-like shape on the range of actual motion durations (approximately
between 500 ms to 1500 ms on the present data).
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Figure 6: Verification of the methodology via free-time OC simulations. a. Amplitude-duration
relationship recovered for participant P1 using the CoT identified in Fig. 5b (black trace). Since the
methodology is exact, the same regression equation than in Fig. 4 is obtained. Note that MT was left
free and emerged automatically for each amplitude in these simulations. b. Associated movement
kinematics. Velocity profiles remained bell-shaped in accordance with experimental observations
and scaled with MT.
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Figure 7: CoT consistency with respect to data fitting. a. Amplitude-duration relationship of
two participants (left and right panels, respectively) who were asked to perform fully-extended arm
movements in the horizontal plane, for amplitudes ranging from 1° to 95°. Besides linear functions,
concave ones were tested for regression analysis (gray traces). The first log-based fitting had a
zero-intercept constraint and was of the form t = α log2(βa + 1) + γa (dark gray). The second
log-based fitting (light gray) was chosen in the spirit of Fitts (1954) and the same than Young et al.
(2009), i.e. of the form t = α log2(a/w+ 1) +βa+γ where w denotes the actual width of the target
(0.3 cm, i.e. ~0.2 deg here). b. On the range of empirical times (approximately between 300 ms
and 1500 ms in these data), the CoT systematically exhibited a sigmoidal shape (filled circles on the
traces). For smaller and larger times, we had to rely on extrapolations because data were no longer
available (solid and dotted lines). Gray dots correspond to values of g(t) identified on a single-trial
basis and yield more noisy estimates.
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Figure 8: Cost of time consistency (for participant P1, with the affine fit of the amplitude-duration
relationship of Fig. 4). a. CoT when assuming various trajectory costs. In black, the CoT for the
torque change model, here scaled by a 0.05 factor for visualization purpose (infinitesimal CoT in left
panel, integrated CoT in right panel). In gray scale, the CoT identified from various trajectory costs
(jerk, acceleration, absolute work and torque). Although the specific values of the CoT necessarily
changed with respect to the trajectory cost, its sigmoidal shape was nevertheless very robust. b.
CoT when considering signal-dependent noise (kSDN) and a stochastic OC formulation. Increasing
multiplicative noise essentially induced an increase of the CoT but, again, the shape of the CoT
remained sigmoidal. c. CoT when modeling muscle dynamics as 2nd-order low-pass filters with
different time constants and optimizing a neural effort cost. Note that when still optimizing the
torque change, no effects of the muscle dynamics was observed (result not depicted). When opti-
mizing effort, the exact shape of the CoT depended on the underlying muscle dynamics. However,
the shape of the infinitesimal CoT still showed a stiff increase after some time until a peak and
followed by a slower decrease toward zero. Hence the systematic non-monotonicity of g(t) proves
that the CoT is neither concave nor convex but possesses a generalized logistic shape. Notably, this
conclusion can be drawn from the truly identified part of the curves, which is depicted via solid
lines with filled markers. Dotted lines still indicate extrapolated values of the CoT outside of the
range of actual measurements (using exponential functions here).43



44



natural

quick

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6target

hand

elbow

shoulder

Medio-lateral axis (m)

A
nt

er
o-

po
st

er
io

r 
ax

is
 (

m
)

hand velocity

0 1 2 3 4
0

1

2

3

4

5

6

Target distance (m)

D
ur

at
io

n 
(s

)

Time (s)

C
os

t o
f 

ti
m

e

C
os

t o
f 

ti
m

e

Time (s)

a b

c d

e f
0 1 2 3 4

0

50

100

150

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400
0.6

0.7

0.8

0.9

1

1.1

1.2

Medio-lateral axis (m)

A
nt

er
o-

po
st

er
io

r 
ax

is
 (

m
)

Anisotropy of duration

Direction (deg)

M
ov

em
en

t T
im

e 
(s

)0°

90°

180°

270°

mobility ellipse

profiles

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5 direction

natural

quick

natural quick

Figure 9: Cost of time underlying multijoint reaching, as inferred from data reported in Young
et al. (2009) and van Beers et al. (2004). a. Illustration of the task and optimal trajectories as
predicted by the model. b. Affine amplitude-duration relationships reported in Young et al. (2009)
for natural and quick speeds. c. Infinitesimal CoT g(t) identified for natural speed for rightward
(dark gray) and leftward movements starting from different initial positions (black and light gray).
d. Infinitesimal CoT identified for quick speed for the central starting position (light gray). Black
dots represent pointwise evaluations of g(t) when considering the center-out reaching task (panel e)
and the corresponding MTs reported in van Beers et al. (2004). e. Center-out reaching task with
the hand mobility ellipse depicted. f. MTs predicted by the model when solving free-time OCPs
using the previously identified CoT (i.e. the light gray traces in panels c and d).45



46


