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STATE-CONSTRAINED STOCHASTIC OPTIMAL CONTROL
PROBLEMS VIA REACHABILITY APPROACH∗

OLIVIER BOKANOWSKI† , ATHENA PICARELLI‡ , AND HASNAA ZIDANI§

May 27, 2015

Abstract. This paper deals with a class of stochastic optimal control problems (SOCP) in
presence of state-constraints. It is well-known that for such problems the value function is, in
general, discontinuous and its characterization by a Hamilton-Jacobi equation requires additional
assumptions involving an interplay between the boundary of the set of constraints and the dynamics
of the controlled system. Here, we give a characterization of the epigraph of the value function
without assuming the usual controllability assumptions. For this end, the SOCP is first translated
into a state-constrained stochastic target problem. Then a level-set approach is used to describe the
backward reachable sets of the new target problem. It turns out that these backward-reachable sets
describe the value function. The main advantage of our approach is that it allows to handle easily
the state constraints by an exact penalization. However, the target problem involves a new state
variable and a new control variable that is unbounded.

Keywords: Hamilton-Jacobi equations, state-constraints, stochastic optimal control,
viscosity notion, stochastic target problems.

AMS subject classifications: 49L20, 49L25, 93E20, 35K55.

1. Introduction. Consider a filtered probability space (Ω,F,Ft,P). Let B(·)
be a Rp-Brownian motion, and U be a set of control processes. For any u ∈ U
the following system of controlled stochastic differential equations (SDE) in Rd is
considered{

dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s) s ∈ [t, T ]
X(t) = x.

(1.1)

Under standard assumptions on b and σ, the SDE (1.1) admits a strong solution
Xu
t,x(·) associated to the control u. Let K be a given non empty closed set of Rd, and

consider the value function ϑ associated to the following optimal control problem

ϑ(t, x) := inf
u∈U

{
E

[
ψ(Xu

t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s))ds

]
, such that

Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
(1.2)

where the functions ψ and ` represent respectively the final and distributed costs (the
precise assumptions are given in Section 2).

In the unconstrained case (i.e. K = Rd), the function ϑ can be characterized as the
unique viscosity solution of a second order Hamilton-Jacobi-Bellman (HJB) equation,
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see [38, 39] and the references therein. However in many practical applications, the
state variable is constrained to remain in a given closed set K ( Rd, where K takes
into account the presence of an obstacle or economical/physical constraints ... etc. In
this context, the characterization of the value function ϑ as a viscosity solution of a
HJB equation becomes more complicated and involves a delicate interplay between the
dynamics of state variable and the boundary of K. Furthermore, the value function ϑ
can take infinite values in the regions where there is no viable trajectory that stays in
K on the entire time interval [t, T ]. A rich literature has been developed for dealing
with state constrained optimal control problems and the associated HJB equations. In
the deterministic setting, we refer to [34, 35, 19, 22, 14, 21] where the HJB equation
for the value function is discussed and several conditions are investigated in order
to guarantee the characterization of ϑ. In the stochastic case, the problem has also
attracted a great attention, see for example [24, 26, 23, 10]. It is by now clear, that the
continuity of the value function and its characterization require additional properties
on the drift b and the diffusion σ at the boundary of the set K.

The aim of the present work is to provide an alternative way for characterizing, in
a very general setting, the value function associated with a state constrained optimal
control problem, without assuming the classical controllability assumptions. This goal
is achieved at the price of increasing the state variable by one additional component
and introducing a new control variable that lies in an unbounded set. The main
feature of the approach presented in this paper is to bypass the regularity issues often
presented by the value function of a constrained control problem. By using the HJB
characterization in a continuous setting, it opens a way to compute the value function
by various existing numerical methods.

Our approach relies essentially on two ideas. First, we reformulate (1.2) as a
state constrained stochastic target problem. Then, this auxiliary target problem is
described by a level set approach where the state constraints are handled by using
an exact penalization technique. More precisely, a straightforward adaption of some
arguments in [9] lead to the following statement:

ϑ(t, x) = inf

{
z ∈ R : ∃(u, α) ∈ U ×A s.t. (1.3)(

Zα,ut,x,z(T ) ≥ ψ(Xu
t,x(T )), Xu

t,x(s) ∈ K,∀s ∈ [t, T ]

)
a.s.

}
where A is the set of square-integrable predictable processes with values in Rp and
Zα,ut,x,z is a new state process whose existence is guaranteed by the Martingale repre-
sentation theorem and that satisfies:

Zα,ut,x,z(θ) = z −
∫ θ

t

`(s,Xu
t,x(s), u(s)) ds+

∫ θ

t

αT
sB(s), θ ≥ t.

From the above formulation of ϑ, it appears that the epigraph of ϑ(t, ·) is related
to a state constrained reachability set (here, the target set is the epigraph of the final
cost ψ). This result is very well known in the deterministic setting, see [15, 16, 3].
Its generalization to the stochastic setting is not very surprising, however it should
be noticed that in contrary to the deterministic case, the motion of the new state
component Zα,ut,x,z involves a new control variable that is unbounded (see [1] for the
deterministic case).

Stochastic target problems have been extensively studied, in the case when K =
Rd , in [37] and [36]. In the present work, we propose to use a level-set approach to
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describe the backward reachable sets. This approach has the great advantage to char-
acterize the backward-reachable sets by mean of an auxiliary control problem where
the state constraints are taken into account in a simple way. Furthermore, the value
function of the auxiliary control problem can be shown to be continuous (even when
ϑ is discontinuous), which is a good property in view of numerical approximations.
Let us recall that the level-set approach has been introduced by Osher and Sethian
in [30] to model some front propagation phenomena. Later, the idea has been used in
[18] to describe the reachable sets for a deterministic problem. The level-set appraoch
has been used in many application related to nonlinear controlled systems. Quite
recently, the level set approach has been extended to the case of state-constrained
controlled systems, see [28, 7, 8, 2]. In all the above mentioned literature on level-set
approach, the control variables lie in a bounded set. The extension to the unbounded
control setting is not a trivial task and is also a contribution of the present paper.

The paper is organized as follows. The setting of the problem and the assump-
tions are introduced in Section 2. In Section 3 we establish the link between the state
constrained SOCP (1.2) and a suitable stochastic target problem. Section 3.2 focuses
on the reachability problem and the level set method. This will lead to a characteri-
zation of the reachable set by a generalized HJB equation in Section 4. A comparison
principle for the associated boundary value problem is proved in Section 5. Finally,
Appendix A presents an existence result of optimal controls (when the set of controls
is not compact).

Notation. In all the sequel, (Ω,F,P) denotes a probability space with a filtration
{Ft}t≥0, P-augmentation of the filtration generated by a p-dimensional Brownian
motion B(·) (p ≥ 1). The notation L2(Ω,FT ;R) denotes the set of the R-valued
FT -measurable random variables η such that E[|η|2] <∞.

For any n ≥ 1, Sn denotes the space of n× n symmetric matrices.

As usual, the abbreviations “s.t.”, “a.e”, “a.s.”, “w.r.t.” stand respectively for
“such that”, “almost everywhere”, “almost surely”, “with respect to”.

2. Setting and main assumptions. Given T > 0 and 0 ≤ t ≤ T , consider the
following system of controlled SDE in Rd{

dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s) s ∈ [t, T ]
X(t) = x,

(2.1)

where the control input u belongs to a set U of progressively measurable processes
with values in a compact set U ⊂ Rm (m ≥ 1). The following classical assumption
will be considered on the coefficients b and σ:

(H1) b : [0, T ] × Rd × U → Rd and σ : [0, T ] × Rd × U → Rd×p are continuous
functions. Moreover, there exist Lb, Lσ ≥ 0 such that for every x, y ∈ Rd, t ∈
[0, T ], u ∈ U :

|b(t, x, u)− b(t, y, u)| ≤ Lb|x− y|, |σ(t, x, u)− σ(t, y, u)| ≤ Lσ|x− y|.

We recall some classical results on (2.1) whose proof can be found in [38, Theorem
2.4].

Proposition 2.1. Under assumption (H1) there exists a unique Ft-adapted pro-
cess, denoted by Xu

t,x(·), strong solution of (2.1). Moreover there exists a constant
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C0 > 0, such that for any u ∈ U , 0 ≤ t ≤ t′ ≤ T and x, x′ ∈ Rd

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t,x′(θ)
∣∣2] ≤ C2

0 |x− x′|2, (2.2a)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t′,x(θ)
∣∣2] ≤ C2

0 (1 + |x|2) |t− t′|, (2.2b)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)− x

∣∣2] ≤ C2
0 (1 + |x|2) |t− t′|. (2.2c)

Consider two functions ψ and `, namely the terminal and running cost, such that:
(H2) (i) ψ : Rd → R, ` : [0, T ]× Rd × U → R are continuous functions,

(ii) ψ, ` are non-negative functions:

ψ, ` ≥ 0,

(iii) there exist Lψ, L` ≥ 0 such that for every x, y ∈ Rd, u ∈ U, t ∈ [0, T ]:

|ψ(x)− ψ(y)| ≤ Lψ|x− y|, |`(t, x, u)− `(t, y, u)| ≤ L`|x− y|.

Remark 2.2. The assumption (H2)(ii) can be replaced by: ψ, ` ≥ −M for some
M ≥ 0.

Let K ⊆ Rd be a given nonempty and closed set of state constraints. In this paper
we deal with optimal control problems where the cost is given by:

J(t, x, u) := E

[
ψ
(
Xu
t,x(T )

)
+

∫ T

t

`(s,Xu
t,x(s), u(s))ds

]
, (2.3)

while the state Xu
t,x is required to satisfy the condition:

Xu
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

More precisely, the optimal control problem and its value function are defined as:

ϑ(t, x) := inf
u∈U

{
J(t, x, u) : Xu

t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
(2.4)

(observe that by assumption (H2)(ii), J(t, x, u) ≥ 0 for all (t, x, u) ∈ [0, T ]×Rd ×U).
It is well known that in general ϑ is merely discontinuous and satifsfies the fol-

lowing constrained HJB equation: F (t, x, ∂tv,Dv,D
2v) = 0 t ∈ [0, T ), x ∈ int(K)

F (t, x, ∂tv,Dv,D
2v) ≥ 0 t ∈ [0, T ), x ∈ ∂K

ϑ(T, x) = ψ(x) x ∈ K.

with

F (t, x, r, q,Q) := −r + sup
u∈U

{
− 〈q, b(t, x, u)〉 − 1

2
Tr[σσT (t, x, u)Q]− `(t, x, u)

}
.

Moreover, a uniqueness result for the above HJB equation can be guaranteed under
some additional compatibility conditions. The first condition that has been introduced
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in the literature, in the context of deterministic control systems, is the so-called inward
pointing condition, originally stated by Soner in [34] and [35].

In the stochastic setting (i.e., when σ 6≡ 0), state constrained problems were for
instance introduced in [26], where the diffusion is the identity matrix. In that case,
the presence of state constraints requires to consider unbounded controls so that the
trajectories with the action of the drift can still be maintained inside the desired
domain. This results in an HJB equation with singular boundary conditions. On
the contrary, in our framework, the set of possible controls is given. In this context,
the value function may take infinite values in the regions where there is no feasible
trajectories remaining in the set K. Actually, the question whether the set K is viable
or not is by itself an important issue. This question has been addressed in many
papers. In [4], a condition for the viability of K is the following

∀x ∈ ∂K, ∃u ∈ U such that:
1

2
Tr[σσT (x, u)D2dK(x)] + 〈b(x, u), DdK(x)〉 ≤ 0,

and (DdK(x))TσσT (x, u)DdK(x) = 0,

where dK denotes the signed distance function to ∂K. However, the viability of K
is not sufficient for the characterization of the value function as the unique viscosity
solution of the constrained HJB equation, and stronger degeneracy assumptions may
be required, see [24, 5, 23] and [12].

Our purpose in this paper is to provide an alternative way for dealing with state
constrained optimal control problems (2.4). Ongoing works concern the use of this
new formulation for the computation of the value function ϑ, even though ϑ can be
discontinuous, and no degeneracy condition is assumed.

3. Formulation as a target control problem and level set approach.

3.1. Target problem. The first result of this section concerns the link between
(2.4) and a stochastic target control problem under state constraints (see the definition
given in [37]).

Let A = L2
F (0, T ;Rp) denotes the set of square-integrable Rp-valued predictable

processes, and for a given control pair (u, α) ∈ U × A, let Zu,αt,x,z(·) be the one-
dimensional process defined by

Zu,αt,x,z(·) = z −
∫ ·
t

`(s,Xu
t,x(s), u(s))ds+

∫ ·
t

αTs dB(s). (3.1)

Proposition 3.1. Let assumptions (H1) and (H2) be satisfied. Then

ϑ(t, x) = inf

{
z ≥ 0 : ∃(u, α) ∈ U ×A such that(

Zu,αt,x,z(T ) ≥ ψ(Xu
t,x(T )) and Xu

t,x(s) ∈ K,∀s ∈ [t, T ]

)
a.s.

}
Proof. The argument, that will be reported here for completeness, is an adaptation

of the one presented in [11] and [9]. It is straightforward to check that:

ϑ(t, x) = inf

{
z ≥ 0 : ∃u ∈ U s.t.

E
[
ψ(Xu

t,x(T ))+

∫ T

t

`(s,Xu
t,x(s), u(s)) ds

]
≤ z and Xu

t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
.
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Therefore, it suffices to prove that, for any z ≥ 0, the two following statements are
equivalent:

(i) ∃u ∈ U s.t. E
[
ψ(Xu

t,x(T ))+

∫ T

t

`(s,Xu
t,x(s), u(s)) ds

]
≤ z

and Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

(ii) ∃(u, α) ∈ U ×A s.t.

(
Zu,αt,x,z(T ) ≥ ψ(Xu

t,x(T )) and Xu
t,x(s) ∈ K,∀s ∈ [t, T ]

)
a.s.

where Zu,αt,x,z is the process defined by (3.1).
The implication (ii) =⇒ (i) follows by taking the expectation in (ii) and recalling

that if α ∈ A then
∫ ·
t
αT (s)dB(s) is a martingale.

Furthermore, under (H1)-(H2), we have:

ψ(Xu
t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s))ds ∈ L2(Ω,FT ;R)

for any u ∈ U . By consequence, the Martingale representation theorem applies (see
[39, Theorem 5.7, Chapter I] for instance). Then there exists a process α̂ ∈ A such
that

z ≥ J(t, x, u) = ψ(Xu
t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s))ds−

∫ T

t

α̂Ts dB(s).

Hence, by defining

Zu,α̂t,x,z(θ) := z −
∫ θ

t

`(s,Xu
t,x(s), u(s))ds+

∫ θ

t

α̂Ts dB(s),

the implication (i) =⇒ (ii) is proved and the statement of the proposition follows.

Next, we give some useful properties of the process Zu,at,x,z defined in (3.1).
Lemma 3.2. Assume that (H1)-(H2) are satisfied. Let (u, α) be in A× U .

(i) There exists C1 > 0 (depending only on C0, T, Lψ, L`) s.t. for any t ∈ [0, T ], for
any x, x′ ∈ Rd and every z, z′ ∈ R,

E
[∣∣Zu,αt,x,z(T )− Zu,αt,x′,z′(T )

∣∣] ≤ C1(|x− x′|+ |z − z′|) (3.2)

(ii) For any t, x, z ∈ [0, T ]× Rd × R, we have

lim
t′→t, t′∈[0,T ]

E
[∣∣Zu,αt′,x,z(T )− Zu,αt,x,z(T )

∣∣] = 0, (3.3)

the limit being furthermore locally uniform w.r.t. the variables (x, z).
Proof. (i) is a consequence of the Lipschitz continuity of ` and the linear growth

estimate of Xu
t,x given in Proposition 2.1. On other hand, for every h ≥ 0, classical

estimates lead to

E
[∣∣Zu,αt+h,x,z(T )− Zu,αt,x,z(T )

∣∣] ≤ C√h+ E
∣∣ ∫ t+h

t

αTs dB(s)
∣∣.
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Then, by using the fact that α ∈ A, we get:(
E
∣∣ ∫ t+h

t

αTs dB(s)
∣∣)2

≤ E
[∣∣ ∫ t+h

t

αTs dB(s)
∣∣2] =

∫ t+h

t

E|αTs |2 ds
h→0→ 0.

Similar estimates can be obtained for h ≤ 0, and hence (3.3) is proved.

Remark 3.3. It could be noticed that the new set of controls A that appears
in Proposition 3.1 can be restricted to the set of squared integrable Rp-valued process
satisfying a specific bound in the L2

F-norm. Indeed, for x ∈ Rd, consider the control
α ∈ L2

F such that∫ T

t

αT (s)dBs = ψ(Xu
t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s))ds

−E
[
ψ(Xu

t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s))ds

]
.

By using the estimates in Proposition 2.1 along with assumptions (H2), we get the
existence of a constant C2 ≥ 0 (depending only on C0, T, Lψ, L`) s.t. for any t ∈ [0, T ]
and x ∈ Rd we have:

‖α‖L2
F
≤ C2(1 + |x|). (3.4)

Now, let the backward reachable set be defined as:

RKt :=

{
(x, z) ∈ Rd × R : ∃(u, α) ∈ U ×A s.t. (3.5)(

(Xu
t,x(T ), Zu,αt,x,y(T )) ∈ Epi(ψ) and Xu

t,x(s) ∈ K ∀s ∈ [t, T ]

)
a.s.

}
,

where Epi(ψ) := {(x, z) ∈ Rd+1 : z ≥ ψ(x)} denotes the epigraph of the function ψ.
By Proposition 3.1, we get the following result.

Lemma 3.4. Assume (H1)-(H2). Then, for every t ∈ [0, T ], x ∈ Rd:

ϑ(t, x) = inf

{
z ≥ 0 : (x, z) ∈ RKt

}
. (3.6)

The above Lemma establishes a clear connection between the value function and the
backward reachable sets of the augmented differential system. From now on, we will
focus on the characterization of the sets RKt .

3.2. Auxiliary control problem and level set approach. By the “level-
set approach” we aim at describing the backward reachable set as the zero-level set
of a suitable function. The idea was first introduced by Osher and Sethian [30] in
the context of front propagation, and then extended to reachability problems, see
[25, 18, 7, 2, 8] and the references therein.

Let us consider a function gK : Rd → R+ such that:
(H3) gK is a Lipschitz continuous function (with Lipschitz constant LK) such that

gK(x) = 0⇔ x ∈ K. (3.7)

7



Remark 3.5. Notice that if K is a nonempty and closed set, a function gK

satisfying (H3) always exists. It is for instance sufficient to consider

gK(x) := d+
K

(x)

where d+
K

denotes the Euclidean distance function to K.
We consider the following unconstrained optimal control problem

w(t, x, z) := inf
u∈U
α∈A

E
[

max(ψ(Xu
t,x(T ))− Zu,αt,x,z(T ), 0) +

∫ T

t

gK(Xu
t,x(s))ds

]
. (3.8)

The following assumption will be also considered:
(H4) For any (t, x, z) ∈ [0, T ]× Rd × R, the problem (3.8) admits an optimal pair

of controls (ū, ᾱ) ∈ U ×A.

Remark 3.6. When the set of control values U is compact, and if the set
(b, σσT , `)(t, x, U) is convex for every (t, x) ∈ [0, T ]×Rd, then a problem of the form
(2.4) admits an optimal control (see [39, Theorem 5.3, Chapter II] for instance). In
the context of unbounded control problems, the existence of optimal control laws holds
whenever the cost function satisfies some coercivity conditions w.r.t. the control vari-
able, see [27] and [20].

In this paper, the question of existence of optimal controls will not be fully in-
vestigated. However, we give in Appendix A an existence result in the case when b, `
and σ are linear functions w.r.t. the space and the control variables and under some
convexity assumptions on gK and ψ.

Theorem 3.1. Assume that (H1)-(H4) are satisfied. Then

(i) For every t ∈ [0, T ], we have RKt =

{
(x, z) ∈ Rd+1 : w(t, x, z) = 0

}
(ii) For every t ∈ [0, T ] and every x ∈ Rd, ϑ(t, x) = inf

{
z ≥ 0 : w(t, x, z) = 0

}
.

Proof. Statement (ii) clearly follows by (i) and by (3.6). Therefore, we need just
to check the claim (i). If (x, z) ∈ RKt , by definition of the backward reachable set,
there exists a pair (ū, ᾱ) ∈ U ×A such that(

max(ψ(X ū
t,x(T ))−Z ū,ᾱt,x,z(T ), 0) = 0 and gK(X ū

t,x(s)) = 0, ∀s ∈ [t, T ]

)
a.s.,

which means that w(t, x, z) = 0. Therefore the “⊆” inclusion is proved.
Let us now assume that w(t, x, z) = 0. Thanks to assumption (H4), there exists

(ū, ᾱ) ∈ U ×A such that

E
[

max(ψ(X ū
t,x(T ))− Z ū,ᾱt,x,z(T ), 0) +

∫ T

t

gK(X ū
t,x(s))ds

]
= 0.

Since gK is a positive function, it follows that:

max(ψ(X ū
t,x(T ))− Z ū,ᾱt,x,z(T ), 0) +

∫ T

t

gK(X ū
t,x(s))ds = 0 a.s.

Hence,

(
(X ū

t,x(T ), Zᾱ,ūt,x,z(T )) ∈ Epi(ψ) and X ū
t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.,

which concludes that (x, z) belongs to RKt , and the proof is completed.
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In Proposition 3.7, it will be shown that, under the hypotheses (H1)-(H3), the
function w is continuous. If one further assumes (H4), so the equality (i) of The-
orem 3.1 implies that set RKt is closed. We believe that assumption (H4) may be
replaced by an assumption on the closeness of RKt . This claim will be investigated in
ongoing work while in the next sections we will focus on the characterization of the
function w.

3.3. Properties of the auxiliary value function w.
Proposition 3.7. Assume that (H1), (H2) and (H3) are satisfied. Then

(i) w is continuous w.r.t. the variable t and Lipschitz continuous w.r.t. the variables
(x, z).
(ii) Moreover, w satisfies the following growth condition on [0, T ]× Rd × [0,+∞):

0 ≤ w(t, x, z) ≤ C(1 + |x|),

for some constant C > 0.
Proof. (i) First, we prove the Lipschitz continuity w.r.t. the space variables x

and z. By straightforward calculations, we get:

|w(t, x, z)− w(t, x′, z′)|

≤ sup
(u,α)∈U×A

{
E
[∣∣ψ(Xu

t,x(T ))− ψ(Xu
t,x′(T ))

∣∣+
∣∣Zu,αt,x,z(T )− Zu,αt,x′,z′(T )

∣∣]
+E
[ ∫ T

t

∣∣gK(Xu
t,x(s))− gK(Xu

t,x′(s))
∣∣ds]}

≤ C sup
(u,α)∈U×A

{
E
[∣∣Xu

t,x(T )−Xu
t,x′(T )

∣∣+
∣∣Zu,αt,x,z(T )− Zu,αt,x′,z′(T )

∣∣+

+E
[ ∫ T

t

∣∣Xu
t,x(s)−Xu

t,x′(s)
∣∣ds]}

where the constant C ≥ 0 depends on Lψ and LK. By using the estimates of Propo-
sition 2.1 and those of Lemma 3.2, we finaly obtain

|w(t, x, z)− w(t, x′, z′)| ≤ C(|x− x′|+ |z − z′|),

for some constant C ≥ 0 that depends on C0, C1, T, Lψ, LK.
Let us now prove the continuity in time. Let 0 ≤ t ≤ t+ h ≤ T . By the standard

argument | infuAu − infuBu| ≤ supu |Au −Bu|, it follows that:

|w(t+ h, x, z)− w(t, x, z)|

≤ sup
(u,α)∈U×A

E
[∣∣ψ(Xu

t+h,x(T ))− ψ(Xu
t,x(T ))|+ |Zu,αt+h,x,z(T )− Zu,αt,x,z(T )

∣∣
+
∣∣ ∫ T

t+h

gK(Xu
t+h,x(s))ds−

∫ T

t

gK(Xu
t,x(s))ds

∣∣]
≤ sup

(u,α)∈U×A
CE
[∣∣Xu

t+h,x(T )−Xu
t,x(T )|+ |Zu,αt+h,x,z(T )− Zu,αt,x,z(T )

∣∣
+

∫ t+h

t

(1 + |Xu
t,x(s)|)ds+

∫ T

t+h

|Xu
t+h,x(s)−Xu

t,x(s)|ds
∣∣]

≤ C(
√
h+ sup

(u,α)∈U×A
E
[∣∣Zu,αt+h,x,z(T )− Zu,αt,x,z(T )

∣∣]), (3.9)
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where the constant C depends on C0, C1, T, Lψ, LK. Taking into account Remark 3.3,
the supremum term in (3.9) can be restricted to controls α satisfying the bound (3.4).
Then for any ε > 0, we can find (uε, αε) ∈ U ×A such that

|w(t+ h, x, z)− w(t, x, z)| ≤ C
√
h+ CE

[∣∣Zuε,αεt+h,x,z(T )− Zuε,αεt,x,z (T )
∣∣]+ ε.

To conclude, using the result of Lemma 3.2(ii), we get

lim sup
h→0

|w(t+ h, x, z)− w(t, x, z)| ≤ ε.

Since this ε > 0 is arbitrary, the desired result is obtained. (Furthermore, notice that
by the same arguments, the continuity in t is locally uniform in (x, z).)

(ii) By definition of w, we have

w(t, x, z) ≤ inf
(u,α)∈U×{0}

E
[

max
(
ψ(Xu

t,x(T ))− Z0,u
t,x,z(T ), 0

)
(3.10)

+

∫ T

t

gK(Xu
t,x(s))ds

]
.

If z ≥ 0, the positivity of ` and ψ leads to

w(t, x, z) ≤ inf
u∈U

E
[
ψ(Xu

t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s)) + gK(Xu

t,x(s))ds

]
and the desired result is obtained by using also the linear growth of ψ, ` and gK and
classical estimates for the process Xu

t,x(·) (see Proposition 2.1).

Another information that will be useful later on concerns the value of w for z ≤ 0.
Let us consider the following optimal control problem free of state constraints:

w0(t, x) := inf
u∈U

E
[
ψ(Xu

t,x(T )) +

∫ T

t

`(s,Xu
t,x(s), u(s)) + gK(Xu

t,x(s))ds

]
.

Lemma 3.8. Under assumptions (H1)-(H3), for any t ∈ [0, T ], x ∈ Rd and z ∈ R,

z ≤ 0 ⇒ w(t, x, z) = w0(t, x)− z.

Proof. By definition of the function w, for any (t, x, z) ∈ [0, T ]× Rd × R

w(t, x, z) = inf
(u,α)∈U×A

E
[

max
(
ψ(Xu

t,x(T ))− Zu,αt,x,z(T ), 0
)

+

∫ T

t

gK(Xu
t,x(s))ds

]
≥ inf

(u,α)∈U×A
E
[
ψ(Xu

t,x(T ))− z +

∫ T

t

αT (s)dBs

+

∫ T

t

`(s,Xu
t,x(s), u(s)) + gK(Xu

t,x(s))ds

]
= w0(t, x)− z,

using that
∫ T
t
αT (s)dBs is a martingale. Hence the “≥” inequality is satisfied for any

z ∈ R. On the other hand, thanks to the positivity of ` and ψ, for z ≤ 0,

max
(
ψ(Xu

t,x(T ))− Z0,u
t,x,z(T ), 0

)
= ψ(Xu

t,x(T ))− z +

∫ T

t

`(s,Xu
t,x(s), u(s)).
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Therefore, by inequality (3.10) we have w(t, x, z) ≤ w0(t, x)− z, whenever z ≤ 0.

We conclude this section by giving a dynamic programming principle associated
to the value function w (see [38]).

Lemma 3.9. Assume (H1), (H2), (H3). For every 0 ≤ t ≤ T , (x, z) ∈ Rd+1 and
any [t, T ]-valued stopping time θ, we have:

w(t, x, z) = inf
(u,α)∈U×A

E
[
w(θ,Xu

t,x(θ), Zα,ut,x,z(θ)
]
.

4. The HJB equation. In order to simplify the notations, we shall use in the
sequel the functions b̃ : [0, T ]×Rd×U → Rd+1 and σ̃ : [0, T ]×Rd×U×Rp → R(d+1)×p

defined by:

b̃(s, x, u) :=

(
b(s, x, u)
−`(s, x, u)

)
and σ̃(s, x, u, α) :=

(
σ(s, x, u)

αT

)
.

In this section we aim to characterize the auxiliary value function w as the unique
solution, in the viscosity sense, of a suitable partial differential equation. As we will
see, the main difficulties come from the unboundedness of the control α. Formally,
the HJB equation associated to the extended optimal control problem (3.8) is:

−∂tw(t, x, z) +H(t, x,Dw(t, x, z), D2w(t, x, z)) = 0,

where the notations Dw(t, x, z), D2w(t, x, z) stand respectively for the gradient and
the Hessian of w w.r.t. the variables (x, z), and where the Hamiltonian H is defined
from [0, T ]× Rd × Rd+1 × Sd+1 into R ∪ {+∞} by:

H(t, x, q,Q) := sup
(u,α)∈U×Rp

{
− 〈b̃(t, x, u), q〉 − 1

2
Tr[σ̃σ̃T (t, x, u, α)Q]

}
− gK(x).

Recalling the definition of σ̃, we have

σ̃σ̃T (t, x, u, α) =

(
σσT (t, x, u) σ(t, x, u)α
αTσT (t, x, u) αTα

)
.

Denoting Q =

(
Q11 Q12

Q21 Q22

)
the blocks of the symmetric matrix Q (with Q11 ∈ Rd×d,

Q12 = QT21 ∈ Rd×1 and Q22 ∈ R), the Hamiltonian H can be re-written as:

H(t, x, q,Q) = sup
(u,α)
∈U×Rp

{
− 〈b̃, q〉 − 1

2
Tr[σσTQ11]− αTσTQ12 −

1

2
‖α‖2Q22

}
− gK(x).

Hence the following algebraic reformulation, for any r ∈ R:

−r +H(t, x, q,Q) = (4.1)

sup
(u,α)
∈U×Rp

{
− r − 〈b̃, q〉 − 1

2
Tr[σσTQ11]− gK(x) − αTσTQ12 −

1

2
‖α‖2Q22

}
.

Because of the unbounded control α, the Hamiltonian function H can take +∞
values. Therefore, to give a precise meaning to the HJB equation satisfied by w, we
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will use an approach based on some ideas presented in [13] and exploited also in [6].
We point out that similar ideas have been introduced in [32, 33] for deterministic
control systems and in [29] for stochastic problems where the unbounded control acts
only on the drift.

Let us first introduce some useful notations. For any t ∈ (0, T ), x ∈ Rd, q ∈
Rd+1, r ∈ R and Q ∈ Sd+1, define a, c ∈ R and B ∈ Rp as follows:

a := −r − 〈b̃(t, x, u), q〉 − 1

2
Tr[σσT (t, x, u)Q11]− gK(x),

B := −1

2
σT (t, x, u)Q12, and c := −1

2
Q22.

Let us furthermore denote by B = (B1, . . . , Bp)
T the components of the vector B.

Let Lu ∈ Sp+1 be the matrix defined as follows:

Lu(t, x, r, q,Q) :=

(
a BT

B cIp

)
≡



a B1 B2 . . . Bp
B1 c 0 . . . 0

B2 0
. . .

. . .
...

...
...

. . .
. . . 0

Bp 0 . . . 0 c

 . (4.2)

Finally, let Λ+(A) be the largest eigenvalue of a given matrix A.
Lemma 4.1. For any t ∈ (0, T ), (x, z) ∈ Rd+1, q ∈ Rd+1, r ∈ R and Q ∈ Sd+1,

The following assertion holds:

−r +H(t, x, q,Q) ≤ 0 ⇔ sup
u∈U

Λ+(Lu(t, x, r, q,Q)) ≤ 0.

Proof of Lemma 4.1. Straightforward calculations yield to:

−r +H(t, x, q,Q) ≤ 0⇔ sup
(u,α)∈U×Rp

{
a+ 2〈α, B〉+ c‖α‖2

}
≤ 0

⇔ sup
(u,β)∈U×Rp+1,

β1 6=0

{
a+ 2

p∑
i=1

Bi
βi+1

β1
+ c

p∑
i=1

β2
i+1

β2
1

}
≤ 0

⇔ sup
(u,β)∈U×Rp+1,

‖β‖=1

{
aβ2

1 + 2

p∑
i=1

Biβi+1β1 + c

p∑
i=1

β2
i+1

}
≤ 0

⇔ sup
u∈U

sup
β∈Rp+1

‖β‖=1

βTLu(t, x, r, q,Q)β ≤ 0

⇔ sup
u∈U

Λ+(Lu(t, x, r, q,Q)) ≤ 0

which proves the desired result. �
Remark 4.2. Notice also that, with the notations of equation (4.2),

Λ+(Lu(t, x, r, q,Q)) = 0 ⇔ max(a, c, ‖B‖2 − ac) = 0. (4.3)

Indeed, straightforward calculations give that maxα∈Rp(a + 2〈α,B〉 + c‖α‖2) =
max‖α‖,α∈Rp(a+ 2‖B‖‖α‖+ c‖α‖2), from which we deduce (4.3).
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For convenience of the reader we report below the explicit definition of Lu, for
t ∈ [0, T ], x ∈ Rd, r ∈ R, q = (qx, qz) ∈ Rd+1, and Q ∈ Sd+1:

Lu(t, x, r, q,Q)

=

(
−r − 〈b(t, x, u), qx〉+ `(t, x, u)qz − 1

2Tr[σσ
T (t, x, u)Q11]− gK(x) − 1

2 (σT (t, x, u)Q12)T

− 1
2σ

T (t, x, u)Q12 − 1
2Q22Ip

)
.

Theorem 4.1. Assume that (H1),(H2) and (H3) hold. Then, w is a continuous
viscosity solution of the following equation:

sup
u∈U

Λ+(Lu(t, x, ∂tw,Dw,D
2w)) = 0 in [0, T )× Rd × (0,+∞) (4.4a)

w(t, x, 0) = w0(t, x) in [0, T )× Rd, (4.4b)

w(T, x, z) = max(ψ(x)− z, 0) in Rd × [0,+∞). (4.4c)

Proof. The boundary condition (4.4b) and (4.4c) are satisfied thanks to the
definition of w and Lemma 3.8. Let ϕ ∈ C1,2([0, T ]×Rd+1) and let (t̄, x̄, z̄) ∈ [0, T )×
Rd × (0,+∞) be such that

(w − ϕ)(t̄, x̄, z̄) = max
[0,T )×Rd×(0,+∞)

(w − ϕ)(t, x, z).

By using the dynamic programming principle, we obtain that w(t, x, z) ≤ w(t +
h,Xu

t,x(t+ h), Zu,αt,x (t+ h)) for any constant controls u(·) ≡ u ∈ U and α(·) ≡ α ∈ Rp.
This leads easily to

ϕ(t̄, x̄, z̄)−
(
ϕ(t+ h,Xu

t,x(t+ h), Zu,αt,x (t+ h))

)
≤ 0,

and therefore, for any (u, α) ∈ U × Rp, by using Itô’s calculus,

−∂tϕ− 〈b̃, q〉 −
1

2
Tr[σσTD2

11ϕ]− gK(x) − αTσTD2
12ϕ −

1

2
‖α‖2D2

22ϕ ≤ 0

(where (D2
ijϕ) denotes the block of the matrix D2ϕ). By taking the supremum on

(u, α) this implies in particular the following

−∂tϕ(t̄, x̄, z̄) +H(t̄, x̄, Dϕ,D2ϕ) ≤ 0.

Also, by Lemma 4.1, it holds

sup
u∈U

Λ+(Lu(t̄, x̄, ∂tϕ,Dϕ,D
2ϕ)) ≤ 0

and the sub-solution property is proved.
To prove the super-solution property, consider the test function ϕ ∈ C1,2([0, T ]×

Rd+1) and (t̄, x̄, z̄) ∈ [0, T )× Rd × (0,+∞) s.t.:

(w − ϕ)(t̄, x̄, z̄) = min
[0,T )×Rd×[0,+∞)

(w − ϕ)(t, x, z).

Without loss of generality, we can consider that (t̄, x̄, z̄) is a strict minimizer. Define
the set

M(ϕ) :=

{
(t, x, z) ∈ [0, T )× Rd × (0,+∞), sup

u∈U
Λ+(Lu(t, x, ∂tϕ,Dϕ,D

2ϕ)) < 0

}
,
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and assume that (t̄, x̄, z̄) ∈M(ϕ). SinceM(ϕ) is an open set in [0, T )×Rd × (0,∞),
there exists η > 0 such that Sη(t̄, x̄, z̄) := [0 ∨ (t̄ − η), t̄ + η] × B((x̄, z̄), η) ⊂ M(ϕ).
Applying the same techniques exploited in [31, Lemma 3.1], it is possible to prove
that

min
∂P (Sη(t̄,x̄,z̄))

(w − ϕ) = min
Sη(t̄,x̄,z̄)

(w − ϕ)

where ∂P (Sη(t̄, x̄, z̄)) :=
(
[0 ∨ t̄ − η, t̄ + η] × ∂B((x̄, z̄), η)

)
∪
(
{t̄ + η} × B((x̄, z̄), η)

)
is the forward parabolic boundary of Sη. But since (t̄, x̄, z̄) is a strict minimizer, for
η small enough the contradiction is obtained since (t̄, x̄, z̄) /∈ ∂p(Sη(t̄, x̄, z̄)). We can
conclude that (t̄, x̄, z̄) /∈M(ϕ) and w is a viscosity super-solution of (4.4).

Remark 4.3. We point out that problem (4.4) is equivalent to
sup

u∈U,ξ∈Rp+1

‖ξ‖=1

{
ξTLu(t, x, ∂tw,Dw,D

2w)ξ

}
= 0 [0, T )× Rd × (0,+∞),

w(t, x, 0) = w0(t, x) [0, T )× Rd,
w(T, x, z) = max(ψ(x)− z, 0) Rd × [0,+∞).

(4.5)

Remark 4.4. We notice that, for any η > 0,

Λ+

(
a BT

B cIp

)
≤ 0 ⇐⇒ Λ+

(
a ηBT

ηB η2cIp

)
≤ 0. (4.6)

Hence, for any given continuous function λ : (0,+∞)→ (0,+∞), defining the opera-
tor Luλ by:

Luλ(t, x, r, q,Q) :=

(
−r − 〈b, qx〉+ ` qz − 1

2Tr[σσ
TQ11]− gK(x) − 1

2λ(z)(σTQ12)T

− 1
2λ(z)σTQ12 − 1

2λ
2(z)Q22Ip

)
(where the dependence of the function `, b, σ on (t, x, u) is omitted for clarity of pre-
sentation), the equation (4.4) is equivalent to:

sup
u∈U

(
Λ+(Luλ(t, x, ∂tw,Dw,D

2w))
)

= 0 in [0, T )× Rd × (0,+∞), (4.7a)

w(t, x, 0) = w0(t, x) in [0, T )× Rd, (4.7b)

w(T, x, z) = max(ψ(x)− z, 0) in Rd × [0,+∞), (4.7c)

Theorem 4.2. Assume that (H1), (H2) and (H3) are satisfied. Let w ∈ USC([0, T ]×
Rd× [0,+∞)) and w ∈ LSC([0, T ]×Rd× [0,+∞)) be respectively a viscosity sub- and
super-solution of (4.4a). Assume that w and w satisfy the following growth condition

w(t, x, z) ≤ C(1 + |x|) w(t, x, z) ≥ C(1 + |x|)

and the inequalities

w(T, x, z) ≤ max(ψ(x)− z, 0) ≤ w(T, x, z) (4.8)

w(t, x, 0) ≤ w0(t, x) ≤ w(t, x, 0). (4.9)

Then

w(t, x, z) ≤ w(t, x, z), for all (t, x, z) ∈ [0, T ]× Rd × [0,+∞).

The proof of this theorem is given in the next section.
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Comments and conclusion. Theorems 4.1 and 4.2 lead to the characterization
of the auxiliary function w as the unique continuous viscosity solution of the HJB
equation (4.4) (or equivalently (4.5)). This result is obtained under the assumptions
(H1), (H2) and (H3).

On the other hand, under the additional assumption (H4), Theorem 3.1 charac-
terizes the original value function ϑ by the region where the continuous function w
vanishes. Here, no particular degeneracy assumption is needed and the function ϑ
may take infinite values.

5. Proof of the comparison Principle. This section is devoted to the proof of
the comparison principle between upper semi-continuous (USC) viscosity sub-solution
and lower semi-continuous (LSC) super-solution of equation (4.4).

The proof will follow the main lines of the proof presented in [13] where an optimal
control problem with a one-dimensional unbounded control α appeared. We will have
furthermore to deal with some technical difficulties coming here from the extention
of the result to higher dimensions for the unbounded control α.

Proof. In the proof we shall in particular consider the following non-negative,
Lipschitz continuous function

λ(z) := max(1, z), z ≥ 0, (5.1)

and use the fact that the HJB equation (4.4) is equivalent to (4.7) by Remark 4.4.
(Other non negative and Lipschitz continuous functions could be used).

We start by proving that there exists a strict viscosity sub-solution of (4.7a). Let
us introduce the function ζ defined by

ζ(t, z) := −(T − t)− ln(1 + z).

One has that ζ ∈ C∞([0, T ]× [0,+∞)) for all (t, z) ∈ [0, T ]× [0,+∞),

ζ(t, z) ≤ 0

and, by elementary computations using block matrix notations,

Luλ(t, x, ∂tζ,Dζ,D
2ζ) =

(
−1− `(t, x, u) 1

1+z 0

0 − 1
2λ

2(z) 1
(1+z)2 Ip

)
.

Using the positivity assumption of the function `, it follows that −1− `(t, x, u)/(1 +
z) ≤ −1. Moreover using the fact that

1

4
≤ max(1, z2)

(1 + z)2
≤ 1

2

we can conclude that

sup
u∈U

Λ+(Luλ(t, x, z, ∂tζ,Dζ,D
2ζ)) ≤ −1

4
. (5.2)

Next, let wη be defined by

wη(t, x, z) := w(t, x, z) + ηζ(t, z).

We are going to prove that for any η > 0, wη is a strict viscosity sub-solution of
(4.7a) in [0, T ]× R× [0,+∞) with a controlled gap, in the following sense:

sup
u∈U

Λ+(Luλ(t, x, ∂twη, Dwη, D
2wη)) ≤ −η

4
, (5.3)
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in the viscosity sense. Indeed, the boundary conditions are satisfied for wη, thanks
to the non positivity of ζ, and we have

wη(T, x, z) ≤ ψ(x)− z, wη(t, x, 0) ≤ w0(t, x).

Furthermore, let us consider a test function ϕ ∈ C1,2([0, T ]×Rd× [0,+∞)) such that

(wη − ϕ)(t, x, z) = max(wη − ϕ)(·)

for a given (t, x, z) ∈ [0, T )× Rd × (0,+∞). From the definition of wη, we have(
w − (−ηζ + ϕ)

)
(t, x, z) = max

(
w − (−ηζ + ϕ)

)
.

Therefore we can consider that the following function

ϕ := −ηζ + ϕ

is a test function for w at the point (t, x, z). By using the sub-linearity property of
the operator Λ+, the sub-solution property for ϕ, and (5.2), the following inequalities
hold:

sup
u∈U

Λ+(Luλ(t, x, ∂tϕ,Dϕ,D
2ϕ))

≤ sup
u∈U

Λ+(Luλ(t, x, ϕ
t
, Dϕ,D2ϕ)) + η sup

u∈U
Λ+(Luλ(t, x, ∂tζ,Dζ,D

2ζ))

≤ −η
4
,

hence the desired result.

Now, let us define for δ > 0, η > 0 and ρ > 0:

Φδ,η,ρ(t, x, z) := wη(t, x, z)− w(t, x, z)− 2δe−ρt(1 + |x|2 + z).

For a given ρ > 0 (that will be made precise later on), for δ, η small enough, we aim
to prove that

Φδ,η,ρ(t, x, z) ≤ 0, ∀(t, x, z). (5.4)

Letting δ → 0 and η → 0, this will give the desired inequality w ≤ w.
Let us assume that (5.4) is false. Let (t̂, x̂, ẑ) ≡ (t̂

δ,η,ρ
, x̂

δ,η,ρ
, ẑ
δ,η,ρ

) be a maximum
point for Φδ,η,ρ (this maximum point exists because of the linear growth condition
satisfied by wη − w):

Φδ,η,ρ(t̂, x̂, ẑ) > 0. (5.5)

We aim to show a contradiction.
Notice that we have t̂ < T , as well as ẑ > 0, because of the boundary conditions

(4.9) and (4.9) which would otherwise contradicts (5.5).
The next passage is a doubling of variable argument in order to prove the com-

parison principle. Let Φε be defined by

Φε(t, x, x
′, z, z′) :=

wη(t, x, z)− w(t, x′, z′)− δe−ρt(1 + |x|2 + z)− δe−ρt(1 + |x′|2 + z′)

− 1

2ε
(|x− x′|2 + |z − z′|2)− 1

2
|t− t̂|2 − 1

4
(|x− x̂|4 + |z − ẑ|4).
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Let (t̄, x̄, x̄′, z̄, z̄′) := (t̄
ε
, x̄

ε
, x̄′

ε
, z̄
ε
, z̄′
ε
) be a maximum point for Φε. By standard argu-

ments (see [17, Proposition 3.7] for instance) we can prove that, in the limit ε → 0,
one has

|x̄− x̄′| → 0, |z̄ − z̄′| → 0

and

t̄→ t̂, x̄, x̄′ → x̂, z̄, z̄′ → ẑ,
|x̄− x̄′|2

ε
→ 0,

|z̄ − z̄′|2

ε
→ 0. (5.6)

Let us define f
δ,ρ

, f̂
δ,ρ

, and ϕ as follows:

f
δ,ρ

(t, x, z) := δe−ρt(1 + |x|2 + z) +
1

2
|t− t̂|2 +

1

4
(|x− x̂|4 + |z − ẑ|4),

f̂
δ,ρ

(t, x, z) := δe−ρt(1 + |x|2 + z)

ϕ(x, x′, z, z′) :=
1

2ε
(|x− x′|2 + |z − z′|2),

so that we can write Φε in the following way:

Φε(t, x, x
′, z, z′)

:=
(
wη(t, x, z)− f

δ,ρ
(t, x, z)

)
−
(
w(t, x′, z′) + f̂

δ,ρ
(t, x′, z′)

)
− ϕ(x, x′, z, z′).

Applying the Crandall-Ishii Lemma (see [17, Theorem 8.3] as well as section 3 of
the same reference), we can find r, r′ ∈ R and two symmetric matrices X and X ′

(depending of ε), such that

r + r′ = ∂tϕ(x̄, x̄′, z̄, z̄′) ≡ 0 (5.7a)

(r + ∂tfδ,ρ , D(x,z)
(ϕ+ f

δ,ρ
), X +D2

(x,z)
f
δ,ρ

) ∈ P1,2,+
wη(t̄, x̄, z̄) (5.7b)

(−r′ − ∂tf̂δ,ρ ,−D(x′,z′)(ϕ+ f̂
δ,ρ

),−X ′ −D2
(x′,z′)

f̂
δ,ρ

) ∈ P1,2,−
w(t̄, x̄′, z̄′) (5.7c)

and

− 3

ε

(
I 0
0 I

)
≤
(
X 0
0 X ′

)
≤ 3

ε

(
I −I
−I I

)
(5.8)

where P1,2,±
denote the closures of the parabolic semijets (see [17]). These definitions

are recalled in Appendix B.
From the definition of viscosity sub- and super-solution, using (5.7b) and (5.7c)

we have:

sup
u∈U

Λ+(Luλ(t̄, x̄, r + ∂tfδ,ρ , D(x,z)
(ϕ+ f

δ,ρ
), X +D2

(x,z)
f
δ,ρ

)) ≤ −η
4

(5.9)

and

sup
u∈U

Λ+(Luλ(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−D(x′,z′)(ϕ+ f̂δ),−X ′ −D2
(x′,z′)

f̂δ)) ≥ 0. (5.10)

Let q, q′ and Q,Q′ be vectors and matrices defined by

q ≡
(
q1

q2

)
:= D

(x,z)
(ϕ+ f

δ,ρ
), Q := D2

(x,z)
f
δ,ρ

q′ ≡
(
q′1
q′2

)
:= D

(x′,z′)(ϕ+ f̂
δ,ρ

), Q′ := D2
(x′,z′)

f̂
δ,ρ
.
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Then from (5.9) and (5.10) we deduce that

η

4
≤ sup
u∈U

Λ+(Luλ(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−q′,−X ′ −Q′)) (5.11)

− sup
u∈U

Λ+(Luλ(t̄, x̄, r + ∂tfδ,ρ , q,X +Q))

≤ sup
u∈U

(
Λ+(Luλ(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−q′,−X ′ −Q′))− Λ+(Luλ(t̄, x̄, r + ∂tfδ,ρ , q,X +Q))

)
.

Now we aim to estimate from above the right hand side. Let A,A′, X,X ′ and Q,Q′

be defined in Sp+1 as follows (we use block matrix notations)

A :=

(
−r − ∂tfδ,ρ − b(t̄, x̄, u)q1 + `(t̄, x̄, u)q2 − gK(x̄) 0

0 0

)
A′ :=

(
r′ + ∂tf̂δ,ρ + b(t̄, x̄′, u)q′1 − `(t̄, x̄′, u)q′2 − gK(x̄′) 0

0 0

)
,

and

X̃ :=

(
1
2Tr[σσ

T (t̄, x̄, u)X11] 1
2λ(z̄)XT

12σ(t̄, x̄, u)
1
2λ(z̄)σT (t̄, x̄, u)X12

1
2λ

2(z̄)X22Ip

)
X̃ ′ :=

(
1
2Tr[σσ

T (t̄, x̄′, u)X ′11] 1
2λ(z̄′)(X ′12)Tσ(t̄, x̄′, u)

1
2λ(z̄′)σT (t̄, x̄′, u)X ′12

1
2λ

2(z̄′)X ′22Ip

)
,

and

Q̃ :=

(
−∂tfδ,ρ + 1

2Tr[σσ
T (t̄, x̄, u)Q11] 1

2λ(z̄)QT12σ(t̄, x̄, u)
1
2λ(z̄)σT (t̄, x̄, u)Q12

1
2λ

2(z̄)Q22Ip

)
Q̃′ :=

(
∂tf̂δ,ρ + 1

2Tr[σσ
T (t̄, x̄, u)Q′11] 1

2λ(z̄)(Q′12)Tσ(t̄, x̄, u)
1
2λ(z̄)σT (t̄, x̄, u)Q′12

1
2λ

2(z̄)Q′22Ip

)
.

We have

Luλ(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−q′,−X ′ −Q′) = A′ + X̃ ′ + Q̃′

and

Luλ(t̄, x̄, r + ∂tfδ,ρ , q,X +Q) = A− X̃ − Q̃.

Therefore, using the sub-linearity of the operator Λ+, we obtain

η

4
≤ sup

u∈U

(
Λ+(A′ + X̃ ′ + Q̃′)− Λ+(A− X̃ − Q̃)

)
≤ sup

u∈U

(
Λ+(A′ −A) + Λ+(X̃ + X̃ ′) + Λ+(Q̃+ Q̃′)

)
≤ sup

u∈U
(Λ+(A′ −A))︸ ︷︷ ︸

(I)

+ sup
u∈U

(Λ+(X̃ + X̃ ′))︸ ︷︷ ︸
(II)

+ sup
u∈U

(Λ+(Q̃+ Q̃′))︸ ︷︷ ︸
(III)

. (5.12)

The next step is to estimate separately the three terms (I), (II) and (III) of the right
hand side of (5.12) and to show that they become negative in the limit ε→ 0.
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Estimate for (I): Direct computations give

∂tfδ,ρ = (t̄− t̂)− δρe−ρt̄(1 + |x̄|2 + z̄) (5.13)

∂tf̂δ,ρ = −δρe−ρt̄(1 + |x̄′|2 + z̄′) (5.14)

and

q ≡
(
q1

q2

)
=

(
2δe−ρt̄x̄+ (x̄− x̂)|x̄− x̂|2 + 1

ε (x̄− x̄′)
δe−ρt̄ + (z̄ − ẑ)3 + 1

ε (z̄ − z̄′)

)
(5.15)

q′ ≡
(
q′1
q′2

)
=

(
2δe−ρt̄x̄′ − 1

ε (x̄− x̄′)
δe−ρt̄ − 1

ε (z̄ − z̄′)

)
. (5.16)

Using (5.7a) one gets

Λ+(A′ −A) = max

(
∂tfδ,ρ + ∂tf̂δ,ρ + 〈b(t̄, x̄′, u), q′1〉+ 〈b(t̄, x̄, u), q1〉

−`(t̄, x̄′, u)q′2 − `(t̄, x̄, u)q2 + gK(x̄)− gK(x̄′), 0

)
.

In the limit when ε→ 0, using properties (5.6), we obtain a first bound of the form

lim sup
ε→0

sup
u∈U

(
∂tfδ,ρ + ∂tf̂δ,ρ

)
(5.17)

≤ lim sup
ε→0

(
(t̄− t̂)− δρe−ρt̄(1 + |x̄|2 + z̄)− δρe−ρt̄(1 + |x̄′|2 + z̄′)

)
≤ −2δρe−ρt̄(1 + |x̂|2 + ẑ) (5.18)

Using the linear growth |b(t, x, u)| ≤ C(1 + |x|), we first have

〈b(t̄, x̄′, u), q′1〉+ 〈b(t̄, x̄, u), q1〉
≤ C(1 + |x̄|)(2δe−ρt̄|x̄|+ |x̄− x̂|3) + C(1 + |x̄′|)2δe−ρt̄|x̄′|

+〈b(t̄, x̄′, u)− b(t̄, x̄, u),
1

ε
(x̄− x̄′)〉

≤ C(1 + |x̄|)(2δe−ρt̄|x̄|+ |x̄− x̂|3) + C(1 + |x̄′|)2δe−ρt̄|x̄′|+ 1

ε
|x̄− x̄′|2

Therefore, in the limit when ε → 0, using properties (5.6), we obtain a bound of the
form

lim sup
ε→0

sup
u∈U

(
〈b(t̄, x̄′, u), q′1〉+ 〈b(t̄, x̄, u), q1〉

)
≤ C1(1 + |x̂|2)δe−ρt̂ (5.19)

for some constant C1 ≥ 0. In the same way, using the Lipschitz properpty of `(t, x, u)
w.r.t the variable x,

sup
u∈U

(
− `(t̄, x̄′, u)q′2 − `(t̄, x̄, u)q2

)
≤ C(1 + |x̄′|)(δe−ρt̄ + |z̄ − ẑ|3) + C(1 + |x̄|)δe−ρt̄ + |x̄′ − x̄|1

ε
(z̄′ − z̄)
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and, in the limit when ε → 0, using 2
ε |x̄ − x̄

′||z̄′ − z̄| ≤ 1
ε |x̄ − x̄

′|2 + 1
ε |z̄
′ − z̄|2, we

obtain a bound of the form

lim sup
ε→0

sup
u∈U

(
− `(t̄, x̄′, u)q′2 − `(t̄, x̄, u)q2

)
≤ C2(1 + |x̂|)δe−ρt̂

≤ 2C2(1 + |x̂|2)δe−ρt̂ (5.20)

for some constant C2 ≥ 0.

Summing up the bounds (5.18), (5.19) and (5.20), and using also gK(x̄)−gK(x̄′) ≤
LgK |x̄− x̄

′| → 0 as ε→ 0, we obtain a bound of the form

lim sup
ε→0

sup
u∈U

Λ+(A′ −A) ≤ max

(
− (ρ− C3)δe−ρt̂(1 + |x̂|2), 0

)
,

with the constant C3 := C1 + 2C2. Choosing ρ large enough (ρ ≥ C3) we obtain

lim sup
ε→0

sup
u∈U

Λ+(A′ −A) ≤ 0.

Estimate for (II): Let the block matrices Σ,Σ′ ∈ R(p+1)×(d+1) be as follows:

Σ :=

(
σT (t̄, x̄, u) 0

0 λ(z̄)

)
Σ′ :=

(
σT (t̄, x̄′, u) 0

0 λ(z̄′)

)
.

Let ξ be an arbitrary vector in Rp+1. Multiplying inequality (5.8) by ξT (Σ Σ′) on
the left side and by (Σ Σ′)T ξ on the right side we obtain

ξT (Σ Σ′)

(
X 0
0 X ′

)(
ΣT

Σ′T

)
ξ ≤ 3

ε
ξT (Σ Σ′)

(
I −I
−I I

)(
ΣT

Σ′T

)
ξ,

and therefore

ξT (Σ′X ′Σ′T + ΣXΣT )ξ ≤ 3

ε
ξT (Σ− Σ′)(ΣT − Σ′T )ξ ≤ 3

ε
‖Σ− ΣT ‖2

F
‖ξ‖2

(using Cauchy-Schwartz inequalities) where ‖·‖
F

denotes the Frobenius matrix norm.
In particular, for k ∈ {1, . . . , p}, choosing ξ of the form

ξ ≡ (0 . . . 0 β0︸︷︷︸
k-th

0 . . . 0 βk)

a straightforward calculation gives

β2
0

(
σTX11σ(t̄, x̄, u) + σTX ′11σ(t̄, x̄′, u)

)
kk

+ β2
k

(
λ2(z̄)X22 + λ2(z̄′)X ′22

)
+2β0βk

(
λ(z̄)σT (t̄, x̄, u)X12 + λ(z̄′)σT (t̄, x̄′, u)X ′12

)
k

≤ 3

ε
‖Σ− Σ′‖2

F
(β2

0 + β2
k), ∀k = 1, . . . , p.
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It follows that for any β ∈ Rp+1

βT (X̃ + X̃ ′)β

=

n∑
k=1

(
β2

0

(
σTX11σ(t̄, x̄, u) + σTX ′11σ(t̄, x̄′, u)

)
kk

+ β2
k

(
λ2(z̄)X22 + λ2(z̄′)X ′22

)
+2β0βk

(
λ(z̄)σT (t̄, x̄, u)X12 + λ(z̄′)σT (t̄, x̄′, u)X ′12

)
k

)
≤ 3

ε
‖Σ− Σ′‖2

F

∑
k=1,...,p

(β2
0 + β2

k)

≤ 3p

ε
‖Σ− Σ′‖2

F
‖β‖2

This implies in particular that

sup
u∈U

Λ+(X̃ + X̃ ′) ≤ 3p

ε
‖Σ− Σ′‖2

F
.

Thanks to the definition of Σ and Σ′ and the Lipschitz continuity of σ and λ:

lim sup
ε→0

sup
u∈U

Λ+(X̃ + X̃ ′) ≤ lim sup
ε→0

3p

ε
‖Σ− Σ′‖2

F

≤ 3p lim sup
ε→0

(
L2
σ

|x̄− x̄′|2

ε
+
|z̄ − z̄′|2

ε

)
= 0

which is the desired result.

Estimate for (III): Direct calculations show that

Q =

(
(2δe−ρt̄ + |x̄− x̂|2)Id + 2(x̄− x̂)(x̄− x̂)T 0

0 3|z̄ − ẑ|2
)

Q′ =

(
2δe−ρt̄Id 0

0 0

)
.

In particular,

Λ+(Q̃′ + Q̃)

= max

(
∂tfδ,ρ + ∂tf̂δ,ρ +

1

2
Tr[σσT (t̄, x̄, u)Q11] +

1

2
Tr[σσT (t̄, x̄′, z̄′)Q′11],

1

2
λ2(z̄)Q22 +

1

2
λ2(z̄′)Q′22

)
By the form of Q11 and Q′11, and the linear growth |σ(t, x, u)| ≤ C(1+ |x|), we obtain

lim sup
ε→0

sup
u∈U

(
1

2
Tr[σσT (t̄, x̄, u)Q11 +

1

2
Tr[σσT (t̄, x̄′, z̄′)Q′11]

)
≤ C4(1 + |x̂|2)δe−ρt̂.

for some constant C4 ≥ 0. Hence

lim sup
ε→0

sup
u∈U

Λ+(Q̃′ + Q̃)

≤ max

(
− 2δρe−ρt̂(1 + |x̂|2 + ẑ) + C4(1 + |x̂|2)δe−ρt̂, 0

)
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Therefore choosing ρ ≥ 1
2C4, we obtain

lim sup
ε→0

sup
u∈U

Λ+(Q̃′ + Q̃) ≤ 0. (5.21)

To conclude, we fix ρ = max(C3,
1
2C4). Using the previous estimates for the terms

(I), (II) and (III), and from inequality (5.11) we finally get

η

4
≤ 0,

leading to the desired contradiction. This concludes the proof of Theorem 4.2.

Appendix A. A result of existence of optimal controls. We aim to show
that assumption (H4), required in Section 3.2, is always valid for a particular class of
control problems. Recall that we are interested in the SOCP

w(t, x, z) = inf
(u,α)∈U×A

J(t, x, z, u, α) (A.1)

associated with the cost

J(t, x, z, u, α) := E
[
gT (Xu

t,x(T ), Zu,αt,x,z(T )) +

∫ T

t

gK(Xu
t,x(s))ds

]
, (A.2)

for given functions gT and gK and for the dynamics given by (2.1) and (3.1). As
pointed out in Remark 3.6, when dealing with existence results of an optimal control
law for (A.1), one difficulty encountered arises from the unboundedness of the control
α.

As in [39, Theorem 5.2, Chapter II]: we make the following linear/convexity as-
sumptions:

(B1) b : [0, T ]×Rd×U → Rd, σ : [0, T ]×Rd×U → Rd and ` : [0, T ]×Rd×U → R
are given by

b(t, x, u) ≡ A(t)x+B(t)u, σ(t, x, u) ≡ C(t)x+D(t)u, `(t, x, u) ≡ E(t)x+F (t)u,

where A,B,C,D,E and F are L∞ functions with values in matrix spaces of
suitable sizes;

(B2) U ⊂ Rm is a convex and closed set;
(B3) gT and gK are Lipschitz continuous and convex functions, bounded from be-

low.
Theorem A.1. Assume (B1)-(B3) are satisfied. Then for any t ∈ [0, T ], (x, z) ∈

Rd+1, there exists an optimal control (ū, ᾱ) ∈ U ×A for the problem (A.1)-(A.2).
Proof. The proof reported below is strongly based on the arguments in [39,

Theorem 5.2, Chapter II]. First, the boundednesss assumption (B3) easily gives the
existence of the value w(t, x, z). Then let (uj , αj)j≥1 ∈ U × A be a sequence of
minimizing controls, that is

lim
j→+∞

J(t, x, z, uj , αj) = w(t, x, z).

Thanks to the compactness of U and the uniform bound on the L2
F-norm that can be

obtained on the control α (see Remark 3.3) we can extract from (uj , αj) a subsequence
(still indexed with j) such that

(uj , αj)→ (ū, ᾱ) weakly in L2
F.
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Let ε > 0. There exists j1 such that ∀j ≥ j1,

J(t, x, z, uj , αj) ≤ w(t, x, z) + ε. (A.3)

By the convex structure of U × Rp and as a consequence of Mazur’s Lemma, there
exists a convex combination:

(ũj , α̃j) :=
∑
i≥1

λij(ui+j , αi+j), λij ≥ 0,
∑
i≥1

λij = 1,

which is strongly convergent to the same limit, that is

(ũj , α̃j)→ (ū, ᾱ) strongly in L2
F-norm.

One can observe that (ũj , α̃j) and (ū, ᾱ) are still elements of U × A thanks to the
convexity and closure of U .

Then, by assumption (A1), it is easy to verify that

X
ũj
t,x(·) =

∑
i≥1

λijX
ui+j
t,x (·), Z

ũj ,α̃j
t,x,z (·) =

∑
i≥1

λijZ
ui+j ,αi+j
t,x,z (·)

and (
X
ũj
t,x, Z

ũj ,α̃j
t,x,z

)
−→

(
X ū
t,x, Z

ū,ᾱ
t,x,z

)
strongly in L∞F -norm.

Hence there exists j2 such that for any j ≥ j2, J(t, x, z, ū, ᾱ) ≤ J(t, x, z, ũj , α̃j) + ε.
Now, for j ≥ max(j1, j2), using the convexity assumption (B3) and (A.3), it holds:

J(t, x, z, ū, ᾱ)

≤ E
[
gT (X

ũj
t,x(T ), Z

ũj ,α̃j
t,x,z (T )) +

∫ T

t

gK(Z
ũj
t,x(s))ds

]
+ ε

≤
∑
i≥1

λijE
[
gT (X

ui+j
t,x (T ), Z

ui+j ,αi+j
t,x,z (T )) +

∫ T

t

gK(Z
ui+j
t,x (s))ds

]
+ ε

≤ w(t, x, z) + 2ε. (A.4)

Letting ε ↓ 0, we obtain J(t, x, z, ū, ᾱ) ≤ w(t, x, z) and therefore (ū, ᾱ) is an optimal
control for (A.1).

Appendix B. Definitions of the parabolic semijets.
Definition B.1 (Parabolic semijets). Let v : [0, T ]×D → R an USC function.

The parabolic superjet of v at the point (t, x) is

P1,2,+v(t, x) :=
{

(a, p,X) ∈ R× Rd × Sd :

v(s, y) ≤ v(t, x) + a(s− t) + p · (y − x) +
1

2
X(y − x) · (y − x)

+ o(|s− t|+ ‖x− y‖2)
}
.

Let v : [0, T ] ×D → R a LSC function. The parabolic subjet of v at the point (t, x)
is

P1,2,−v(t, x) :=
{

(a, p,X) ∈ R× Rd × Sd :

v(s, y) ≥ v(t, x) + a(s− t) + p · (y − x) +
1

2
X(y − x) · (y − x)

+ o(|s− t|+ ‖x− y‖2)
}
.
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The closures P1,2,+
v(t, x),P1,2,−

v(t, x) of these sets are defined as follows:

P1,2,±
v(t, x) :=

{
(a, p,X) ∈ R× Rd × Sd,

∃(tn, xn)→ (t, x), ∃(an, pn, Xn) ∈ P1,2,±v(tn, xn) s.t. (an, pn, Xn)→ (a, p,X)

}
.

It is easy to observe that P1,2,+
v(t, x) = −P1,2,−

(−v)(t, x).
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