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1. Introduction

The case of a cylinder oscillating in a fluid otherwise at rest is of fundamental importance since it provides a simplified
model of wave–structure interactions in offshore (e.g. riser tubes and pipes subjected to currents in deep water) or nuclear
engineering (e.g. stream generators, heat exchangers or fuel assemblies subjected to seismic excitations in reactor cores
with pressurized water or sodium). This paper presents results of a two-dimensional numerical investigation of a rigid
circular cylinder undergoing rectilinear sinusoidal oscillations transversely to its long axis in a quiescent viscous fluid. The
system can be described by two dimensionless numbers, the Keulegan–Carpenter number, KC¼U0T=D, and the Reynolds
number, Re¼U0D=n, where U0 is the maximum cylinder velocity, T the cylinder oscillation period, D the cylinder diameter
, EMSI, F-91191 Gif-sur-Yvette, France. Fax: +33 1 6908 8331.
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and n the kinematic viscosity of the fluid. The ratio b¼ Re=KC¼D2=ðnTÞ, named frequency parameter or Stokes number
(see Sarpkaya, 2005), can also be used instead of Re.

Most of the analyses regarding the in-line force F x exerted by the fluid on the cylinder relate to the determination of
the inertia and drag coefficients Cm and Cd defined by the decomposition of Morison et al. (1950).

FMorison
x ðtÞ ¼ Cm

rpD2

4

dUcyl

dt
ðtÞþCd

1

2
rDjUcylðtÞjUcylðtÞ, ð1Þ

where r is the fluid density, UcylðtÞ ¼U0sinð2pt=TÞ the x-component of the cylinder velocity, and Cm and Cd must be
determined empirically, for example from a Fourier series decomposition. However, at sufficiently low KC, such that the
flow remains laminar, attached and two-dimensional, it is possible to obtain analytical solutions. A theoretical analysis
by Wang (1968) showed that under those hypotheses, Cm and Cd can be expressed in terms of KC and b. The classical
approach to describe the force in the general case consists in determining Cm and Cd versus KC and b or Re (e.g. Obasaju
et al., 1988; Justesen, 1991; Smith and Stansby, 1991; Lin et al., 1996; Sun and Dalton, 1996; Zhang and Zhang, 1997;
Dütsch et al., 1998; Iliadis and Anagnostopoulos, 1998; Uzunoǧlu et al., 2001; Sarpkaya, 2005). However, significant
discrepancies appear for higher KC. Eq. (1) is not efficient anymore as soon as vortex shedding occurs, since force signals
are not sinusoidal anymore. Then researches also directed toward flow analysis.

From experiments for 0 oKCo32 at b=730 or 255, Williamson (1985) defined different flow regimes whose
boundaries only depend on KC. For KCo7, pairing of attached vortices occurs, symmetrical then asymmetrical. For
6oKCo13 a one-sided transverse street appears with a jet of vortices moving away roughly perpendicular to the
oscillation direction. For 13oKCo15 (single-pair regime), a one-sided street is still observable but it is inclined at 451. The
range 15oKCo24 is referred to as double pair regime, since two pairs of vortices are formed in each cycle and convected
away in opposite directions and from opposite quadrants. From KC=24 flows consist of three pairs, then four pairs of
vortices. Later, through experimental or numerical studies, Obasaju et al. (1988), Justesen (1991), Lin et al. (1996), Lam and
Dai (2002) and Lam et al. (2010) confirmed the results of Williamson (1985) for high b and identified mechanisms
governing the development of vortices and their interactions (Lam et al., 2010).

Meanwhile, Tatsuno and Bearman (1990) visualized flow structure for 5obo160 and 1:6oKCo15. Three-dimen-
sional features were also examined. Eight regimes A to G were identified. Their boundaries were drawn in the plane
(b, KC). This figure is reproduced here in Fig. 1, but in the plane (KC, Re). Regimes A� and A correspond to the symmetrical
regime of Williamson (1985). Regime B is similar but presents a three-dimensional structure in the axial direction. Regime
C is comparable to a von Kármán vortex street but with vortices of opposite senses of rotation. Regime D presents a
V-pattern symmetrical about the transverse axis. Flow in regime E is identical but the V-pattern intermittently changes its
direction from one side to the other. Regime F corresponds to the double pair regime of Williamson (1985). Regime G is
similar to the transverse street observed by Williamson (1985). Thus the investigations of Tatsuno and Bearman (1990),
focused on lower b than Williamson (1985), revealed that flow regimes cannot be defined anymore from KC only, because
Re (or b) becomes also decisive if smaller. The present paper shall highlight the importance of Re since we consider a fixed
value of KC=10 and study the influence of increasing Re up to 500. Many authors such as Iliadis and Anagnostopoulos
(1998), Dütsch et al. (1998), Uzunoǧlu et al. (2001), Guilmineau and Queutey (2002) or Nehari et al. (2004) selected a few
points in the map established by Tatsuno and Bearman (1990) to detail descriptions of the corresponding regimes. They
obtained a good agreement with the main results of Tatsuno and Bearman (1990).
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Fig. 1. Flow regimes A to G (see text) defined by Tatsuno and Bearman (1990). Dots show the numerical simulations of the present study.
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However, if every author reported identical descriptions of the flow patterns, some discrepancies appear regarding their
stability, for instance in regime D. More recently, Elston et al. (2004, 2006) effected two- and three-dimensional Floquet
analyses to study symmetry breaking transitions for KCo10 and bo100. From symmetrical regime A they obtained a
single curve of two-dimensional marginal stability, but bifurcations on it fell into two distinct regimes. The first transition
for low b and high KC yields synchronous modes, which is actually regime D. The second one for higher b leads to quasi-
periodic modes since a secondary period arises. This corresponds to the transition from regimes A to C. In both cases, flows
in regimes C and D rapidly saturate then are unstable to three-dimensional secondary instabilities. At b450, the primary
instability is three-dimensional, producing regime B. Besides, using two- and three-dimensional models, Nehari et al.
(2004) showed that two-dimensional features of the flows in regimes D and F were not qualitatively affected by three-
dimensional effects. Hence, it is meaningful to perform two-dimensional computations in that range of (KC, Re).

The objective of this paper is to provide a better description and understanding of the system behavior for low Re
values. The analysis is carried out for long durations compared to the cylinder oscillation period. Indeed some flow
patterns seem aperiodic, yielding force fluctuations as indicated by Dütsch et al. (1998), Uzunoǧlu et al. (2001) and Elston
et al. (2006). We study here those fluctuations and their links with flow dynamics. In complement to most of the previous
researches focused on the influence of KC, we concentrate here on the role of Re. Numerical simulations are carried out at
KC=10 and Re values from 40 to 500. The KC value is chosen as 10 because it enables encountering a great number of
regimes (A, D, F and G according to Fig. 1) whose flow structure is two-dimensional. In what follows, Section 2 gives
precisions about numerical method. Then Section 3 presents forces and flows when Re increases. Successive ranges of Re
appear corresponding to different behaviors of the system. Transitions between regimes are characterized, and amplitude
fluctuations of the forces are highlighted then discussed in Section 4.

2. Numerical method

The mathematical model consists in the two-dimensional incompressible Navier–Stokes equations in the primitive
variables formulation:

divðuÞ ¼ 0

@u

@t
þKCu:=u¼�KC=pþ

KC

Re
Du,

8<
: ð2Þ

where u and p are the velocity and pressure fields in the fluid nondimensionalized by U0 and 0:5rU2
0 , respectively. Times

are nondimensionalized by the oscillation period T and lengths by the cylinder diameter D.
A finite element method is used to solve Eq. (2) for the configuration of a cylinder horizontally oscillating in the center

of a rectangular fluid domain (Fig. 2(a)). Absolute velocity is computed for a mesh following the cylinder motion: for any
time level, the mesh velocity at every node is the cylinder velocity. Moreover outer boundaries are considered to be far
enough from the cylinder, so that the fluid remains still. Thus we obtain an arbitrary Lagrangian–Eulerian formulation
without mesh deformation given by

divðuÞ ¼ 0 in Of

@u

@t
þKCðu�UcylÞ �=u¼�KC=pþ

KC

Re
Du in Of

u¼Ucyl on Gcyl

u¼ 0 on Gout

u¼ 0 at t¼ 0 in Of ,

8>>>>>>>><
>>>>>>>>:

ð3Þ

where u is now the absolute velocity expressed in the reference frame linked to the cylinder, Of is the fluid domain, Gout its
outer boundary and Gcyl the cylinder boundary. The cylinder dimensionless velocity is Ucyl ¼ sinð2pt=TÞex where ex and ey

are the unit vectors of the reference frame.
Spatial discretization is effected with Crouzeix–Raviart quadrilateral elements; velocity is quadratic and pressure is

linear per element but discontinuous on element boundaries (Vuik and Segal, 2006). Eq. (3) is integrated using a DNS
algorithm with a second-order finite-difference temporal scheme for accurate prediction of the flow. The problem is solved
Fig. 2. (a) Geometry and mesh of the computational domain, zooms on (b) the cylinder and (c) the bottom left-hand corner of the fluid domain.
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by a projection method with internal iterations inside each time level to compute the non-linear convective term with a
fixed point method. Then forces on the cylinder are directly deduced from the variational formulation. This method is
more accurate than the classical one using pressure and velocity on the cylinder surface.

The mesh consists of squares progressively curved in the vicinity of the cylinder (Fig. 2). The grid refinement around the
cylinder (Fig. 2(b)) is guided by the boundary layer thickness around an oscillating flat plate d=D¼ ð4=

ffiffiffiffiffiffi
2p
p
Þ � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KC=Re

p
Þ

where d is the distance from the plate at which u=U0 is 6% (Iliadis and Anagnostopoulos, 1998). Besides the point at the
bottom left-hand corner of the mesh (Fig. 2(c)) is moved of udepl given by

1

D
udepl ¼ 0:1exþ0:05ey ¼ dxð0:6exþ0:3eyÞ, ð4Þ

where dx is the dimensionless grid refinement. The local mesh deformation is used to break the symmetry of the geometry
and fasten the growing of flow instabilities in the cases of asymmetrical patterns mentioned in the literature. It has also
been verified that such a geometric disturbance did not affect symmetrical flow patterns.

A sensitivity analysis of the computational parameters has been carried out to fix the time level dt, the grid refinement
dx, the length L and the height H of the fluid domain, and the number of internal iterations Ni inside each time level.
Following the same method as Anagnostopoulos and Minear (2004), we investigated the influence of the parameters on
the variance of the in-line force coefficient /FxðtÞ

2S where FxðtÞ ¼F xðtÞ=ðrDU2
0Þ is the dimensionless in-line force

coefficient and / �S the time-averaging operator over the steady state. Finally all the following computations are
performed for dt=5�10�3, dx=0.157, L=20, H=10 and Ni=4.

3. Results

This section presents the results of simulations effected for KC=10 and 40rRer500 (see Fig. 1). The transient state at
the beginning of each run is not considered, since the investigation deals with steady state. Unlike most of the previous
studies where regimes were defined from the flow structure, we propose here to identify regimes from force signals first.

3.1. Identification of regimes for increasing Re

3.1.1. Temporal analysis of the forces

Different types of time series of forces successively appear as Re increases. For each identified range of Re, an example is
provided in Figs. 3 and 4 for the in-line and transverse forces, respectively, with the same axes scales for every sub-figure.
For 40rRer70, the in-line force is perfectly periodic and almost sinusoidal (Fig. 3(a)). The transverse force is negligible
(Fig. 4(a)). For 80rRer100, the amplitude of the in-line force fluctuates (Fig. 3(b)). The transverse force presents four
extrema per period (Fig. 4(f)). Its amplitude also fluctuates and its mean value is not zero anymore (Fig. 4(b)). Fluctuations
are regular for Re=80, stronger for Re=90, then irregular for Re=100. For 110rRer140, the in-line force is again perfectly
periodic (Fig. 3(c)), but contrary to the range 40rRer70, its amplitude is reduced and curves are sharper (Fig. 3(f)). The
transverse force is also periodic (Fig. 4(c)) with six extrema per period (Fig. 4(f)). For 150rRer280, the in-line and
transverse forces present the same characteristics as previously but their amplitudes fluctuate (Figs. 3(d) and 4(d)). For
320rRer500, forces are chaotic and strong peaks appear (Figs. 3(e) and 4(e)). There are generally 4–7 extrema per cycle
for the transverse force.

Fig. 5 shows the variance versus Re of the in-line and transverse forces /FxðtÞ
2STn

and /FyðtÞ
2STn

computed at each nth
period of the run, and their minimal, mean, and maximal values over the complete run. This representation highlights
intrinsic features of the different regimes and transitions between them. The figure also indicates regime boundaries for
KC=10 supplied by experiments of Tatsuno and Bearman (1990) between regimes A, D, F and G, and by the stability
analysis of Elston et al. (2006) for the transition A–D. Our findings coincide with their critical Re values. On one hand, mean
values /FxðtÞ

2S and /FyðtÞ
2S show the global influence of increasing Re on force amplitudes; the in-line force decreases

while the transverse force increases. A sudden change appears around Re=110. The end of the amplitude fluctuations
induces higher values of the in-line force and lower values of the transverse force. For ReZ320, the transverse force
sometimes reaches the same order of magnitude as the in-line force. On the other hand, the display of the points
/FxðtÞ

2STn
and /FyðtÞ

2STn
for each simulated period shows if forces are periodic or not. Regimes for 40rRer70 and

110rRer140 are periodic because the points are superimposed. On the contrary aperiodic regimes are made visible by
the scatter of the points. Those amplitude fluctuations of the force time signals are characterized in the next section from a
spectral analysis, which is a natural approach for studying phenomena of long duration.

3.1.2. Spectral analysis of the forces

Figs. 6 and 7 present the influence of increasing Re on power spectral densities of the in-line and transverse forces Hx(f)

and Hy(f) defined by

Hkðf Þ ¼
1

100T

Z tiþ100T

ti

e�i2pftFkðtÞ dt

����
����
2

, k¼ x,y, ð5Þ

where [ti, tiþ100T] is a time interval in the steady state.
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Fig. 3. (a)–(e) Time signals in steady state of the in-line force for KC=10 and different Re values between 40 and 500 representative of each regime.

(f) Zoom of the five cases on two periods. (a) Re=60 representative of 40pRep70 (regime A), (b) Re=90 representative of 80pRep100 (regime D),

(c) Re=140 representative of 110pRep140 (regime F), (d) Re=170 representative of 150pRep280 (regime F), (e) Re=360 representative of 320pRep500

(regime G) and (f) Zoom over two oscillation periods.
Firstly the spectral analysis confirms the existence of the dominant frequencies given by Williamson (1985). For Hx(f)

the main peak is always at the cylinder oscillation frequency f0=1/T. For Hy(f) it occurs at frequency 2f0 then 3f0 in regime D
then F. Furthermore, Figs. 6 and 7 reveal different spectral traductions of the force fluctuations observed in Figs. 3 and 4. A
significant feature of the range 80rRer100 is the broadening of every harmonic of the frequency f0 for both forces. For
ReZ110 even harmonics disappear and the remaining peaks at odd harmonics are again narrow. For ReZ150 (Figs. 6(c)
and 7(c)), additional peaks appear at frequencies which are not multiples of the oscillation frequency. They correspond to
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Fig. 4. (a)–(e) Time signals in steady state of the transverse force for KC=10 and different Re values between 40 and 500 representative of each regime.

(f) Zoom of the five cases on two periods. (a) Re=60 representative of 40pRep70 (regime A), (b) Re=90 representative of 80pRep100 (regime D), (c)

Re=140 representative of 110pRep140 (regime F), (d) Re=170 representative of 150pRep280 (regime F), (e) Re=360 representative of 320pRe-

p500(regime G) and (f) Zoom over two oscillation periods.
the force fluctuations in Figs. 3(d) and 4(d). Finally for ReZ320 the strong fluctuations observed in Figs. 3(e) and 4(e) yield
quasi-continuous spectra in Figs. 6(d) and 7(d).
3.1.3. Flow analysis

In Sections 3.1.1 and 3.1.2, different force behaviors have been detected as Re increases. Here they are interpreted from
flow dynamics using vorticity field (Fig. 8), as currently found in the literature. We suggest to distinguish the notions of
6
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and (d) Re=360 representative of 320pRep500(regime G).
mode and regime. A mode refers to a specific flow pattern defined over a cylinder oscillation period. A regime is a system
behavior observed over long durations in a certain region of the plane (KC, Re). This distinction introduces the question of
the mode stability in the different regimes. In the range 40rRer500 for KC=10, four dominant modes are identified:
symmetric, V-shaped, diagonal and chaotic. They appear in regimes A, D, F and G, respectively. In order to better analyze
mode features and their links with force signals, we propose to use spatio-temporal diagrams of vorticity on the cylinder
7



0 1 2 3 4 5 6 7

10–13

10–8

10–3

f / f0 f / f0

f / f0f / f0

H
y (

f)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

10–13

10–8

10–3

10–13

10–8

10–3

10–13

10–8

10–3

H
y (

f)

H
y (

f)
H

y (
f)
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Fig. 8. Vorticity field around the cylinder at two consecutive half-cycles for the four dominant modes observed for KC=10 and 40rRer500. The color

bar is between �4 and +4 for every sub-figure. (a) Re=60 at t=109.45T representative of 40pRep70 (regime A), (b) Re=60 at t=109.95T representative of

40pRep70 (regime A), (c) Re=90 at t=149.45T representative of 80pRep100 (regime D), (c) Re=90 at t=149.45T representative of 80pRep100 (regime

D), e) Re=170 at t=99.45T representative of 110pRep280 (regime F), (f) Re=170 at t=99.95T representative of 110pRep280 (regime F), (g) Re=360 at

t=34.45T representative of 320pRep500 (regime G) and (h) Re=360 at t=34.95T representative of 320pRep500 (regime G). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
surface (Fig. 9). The horizontal axis is the dimensionless time t/T. The vertical axis is the curvilinear abscissa s on the
cylinder defined by s 2 ½0,1� clockwise, where s=0 at the point (x=0, y=�D/2) under the cylinder. Vorticity versus t and s is
displayed with the same color bar for every sub-figure: anticlockwise (positive) vorticity is red, clockwise (negative)
vorticity is blue, and null vorticity is green. It is nondimensionalized by dividing by U0/D. The points of null vorticity are
added in black. In Fig. 9, we focus on modes characterization, whereas their stability and force fluctuations on long
characteristic times are specifically studied in Section 3.2.

Symmetric mode is encountered for 40rRer70. Regarding the whole fluid domain (Figs. 8(a) and (b)), two weak
symmetrical vortices are shed downstream the cylinder at each stroke. This is the pattern of regime A described
by Tatsuno and Bearman (1990). The corresponding spatio-temporal diagram of vorticity on the cylinder (Fig. 9(a))
8



Fig. 9. Spatio-temporal diagrams of vorticity on the cylinder surface during four periods for the four dominant modes observed for KC=10 and

40rRer500. The color bar is between �40 and +40 for every sub-figure. (a) Re=40 representative of 40pRep70 (regime A), (b) Re=80 representative of

80pRep100 (regime D), (c) Re=200 representative of 110pRep280 (regime F) and (d) Re=360 representative of 320pRep500 (regime G). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
exhibits three kinds of symmetries (Elston et al., 2006). Firstly, we observe reflection symmetries about s=0.25 and 0.75,
(Eq. (6)) which corresponds to the symmetry about the axis of the cylinder oscillation y=0 in the global flow:

oð0:25þs,tÞ ¼ �oð0:25�s,tÞ and oð0:75þs,tÞ ¼ �oð0:75�s,tÞ, ð6Þ

where o is the z-component of the vorticity. Then we have a spatio-temporal symmetry corresponding to the reflection
symmetry about the transverse axis x=0 with a phase shift of an half period

oð1�s,tþ0:5TÞ ¼�oðs,tÞ: ð7Þ

Thirdly, a spatio-temporal symmetry is associated to the central symmetry about the cylinder center with a phase shift of
an half period

oðsþ0:5,tþ0:5TÞ ¼oðs,tÞ: ð8Þ

Fig. 9(a) also presents two horizontal straight lines of points of null vorticity at s=0.25 and 0.75. They are the front and rear
stagnation points laying on the oscillation axis all cycle long. At each t=0.15T and 0.65T, two lines of zeros of vorticity
appear from each side of the rear stagnation point, then diverge from it; it is the boundary layer separation then the
growth of the recirculation zone. The two zeros of vorticity migrate over and under the cylinder until they reach the front
stagnation point where they merge at each t=0.45T and 0.95T. Thus the lower and upper boundary layers are detached to
constitute two vortices symmetrically shed from each side of the cylinder (Figs. 8(a) and (b)). Flow symmetries in Fig. 9(a)
yield a large in-line force and a null transverse force as observed in Figs. 3(a) and 4(a). Indeed, according to Eq. (6), vorticity
patterns are opposite under and over the oscillation axis. As a result their contributions cancel each other out for the
transverse component and are added for the in-line component.
9



The V-mode appears in Fig. 9(b) for the next range 80rRer100 (regime D). In comparison with Fig. 9(a) presenting
three symmetries given by Eqs. (6)–(8), only the relation Eq. (7) remains in Fig. 9(b). This symmetry is also present in
global flow as shown in Figs. 8(c) and (d). Thus local symmetry properties on the cylinder surface are directly linked to
symmetries of the global flow. They also enable to predict the parity of the transverse force. Indeed, according to Eq. (7), an
element of vorticity in a given quadrant at t reappears with opposite sign in the quadrant at the other side of the oscillation
axis at t+T/2. Thus its contribution to the transverse force is identical at t and t+T/2. As a result, time series of the
transverse force presents four extrema per cycle (Fig. 4(f)) and the main peak of its spectrum is at frequency 2f0 (Fig. 7(b)).
Besides vortex shedding can be identified from spatio-temporal diagram in Fig. 9(b) by merging of two lines of null
vorticity. This is the detachment of a vorticity layer from the cylinder surface into a vortex. In Fig. 9(a), two symmetrical
boundary layers were shed simultaneously at t=0.45T and 0.95T for s=0.25 and 0.75, respectively. Here in Fig. 9(b), the
merging of two lines of null vorticity occurs at t=0.42T and 0.92T for s=0.14 and 0.86. That produces the shedding of an
anticlockwise (red) and a clockwise (blue) vortex, respectively, visualized in Figs. 8(c) and (d). They belong to the lower
quadrants, like their shedding points s=0.14 and 0.86.

A third mode, the diagonal mode (Figs. 8(e) and (f)), appears in the range 110rRer280. It corresponds to regime D
of Tatsuno and Bearman (1990) or double pair pattern of Williamson (1985). In the spatio-temporal diagram of vorticity
(Fig. 9(c)) only the symmetry formulated by Eq. (8) is preserved. Like for the first two modes, symmetries are the same for
the global flow and the cylinder surface. Besides, according to Eq. (8), an element of vorticity in a given quadrant at t

reappears with the same sign in the quadrant diametrically opposed at t+T/2. Thus its contribution to the transverse force
is opposite at t and t+T/2, yielding odd harmonics in the transverse force spectra (Fig. 7(c)). Again vortex shedding
corresponds to the merging of two lines of null vorticity, at each t=0.45T and 0.95T, at s=0.02 and 0.52, respectively. Those
points are in opposite quadrants and define the direction of the diagonal pattern.

A last type of spatio-temporal diagram of vorticity occurs for ReZ320 (Fig. 9(d)). Every symmetry and periodicity
property has disappeared. We call it the chaotic mode. Vorticity levels are high and reveal chaotic histories of vortices
grown up from the boundary layers on the cylinder. In the same way, periodicity of flow dynamics in the whole domain
disappears (Figs. 8(g) and (h)). Some patterns can be identified intermittently but they are not persistent. The lifetime of
vortices is longer. They sometimes split and merge. Therefore interactions between vortices become more complex and
unstable (Lam et al., 2010). The disordered spatio-temporal diagram of vorticity is also due to impacts of vortices on the
cylinder, which interfere with the natural mechanism of vorticity creation.

3.2. Fluctuations characterization

Section 3.1 has pointed out that for some ranges of Re, forces fluctuate with characteristic times substantially larger
than the cylinder oscillation period. To the best of our knowledge, that phenomenon has not been deeply investigated. It is
studied here for regimes D, F and G successively.

3.2.1. Fluctuations in the range 80rRer100
As mentioned in Section 3.1.3 the V-mode is dominant for 80rRer100. But it intermittently appears the transverse

and single-pair patterns observed by Williamson (1985), as more frequently as Re increases. Instead of being convected
quasi-parallel to the oscillation axis as a V-pattern, vortices are shed with an angle of about 901 (transverse street) or 451
(oblique street).

The example of KC=10 and Re=80 is given in Figs. 10 and 11. Vorticity isolines in the whole fluid domain show that the
V-mode is present from t=60T (Figs. 10(a) and (b)). It is progressively transformed into a transverse street from about
t=66T (Figs. 10(c) and (d)). At t=70T, the transverse street is broken. During four cycles, vortices are shed in an oblique
direction (Figs. 10(e) and (f)), then the V-mode reappears as in Figs. 10(a) and (b). Although those modes seem quite
different regarding global flow, their signatures of vorticity on the cylinder are similar as exhibited by Fig. 11. It displays
the spatio-temporal diagram of the points of null vorticity on the cylinder surface and the in-line and transverse forces for
t=60T–78T. The different flow patterns in Fig. 10 are linked to oscillations of the stagnation points around s=0.25 and 0.75
(Fig. 11(a)). Their amplitude is correlated to the vortex shedding direction. Indeed, the same amount of vorticity is created
at each cycle, but its spatial distribution varies. When the amplitude of the stagnation points increases, vortices are more
compact and shed nearer from the bottom of the cylinder. Lateral vortex shedding of the V-shaped mode becomes
transverse shedding, and vorticity is evacuated from the vicinity of the cylinder. The in-line force is then reduced and the
transverse force increases (Fig. 11(b)) according to elementary hydrodynamics. It must be emphasized that characteristics
of the spatio-temporal diagram of vorticity remain identical over the time. In particular the local symmetry relation Eq. (7)
persists for the V-shaped, transverse and oblique modes. That means that they belong to the same spatio-temporal
symmetry group.

3.2.2. Fluctuations in the range 150rRer280
As shown in Figs. 3(d) and 4(d), amplitudes of the time signals of the forces fluctuate in the upper part of regime F for

ReZ150. This was not reported in the initial experiments of Tatsuno and Bearman (1990) but later indicated by some
authors such as Dütsch et al. (1998), Uzunoǧlu et al. (2001) and Elston et al. (2006). However, this was not analyzed more
precisely. Amplitude fluctuations also appear in our simulations. Tests have been carried out for increasing sizes of the
10
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Fig. 11. (a) Spatio-temporal diagram of the points of null vorticity on the cylinder and (b) forces versus time for KC=10 and Re=80.

Fig. 10. Vorticity isolines around the cylinder for KC=10 and Re=80 at different instants illustrating the V-pattern (a and b), the transverse street (c and d) and

the oblique street (e and f). Arrows indicate the directions in which vortices are convected. (a) t=60.5T, (b) t=61T, (c) t=68.5T, (d) t=69T, (e) t=71.75T and (f) t=72T.
computational fluid domain. They have shown that fluctuations systematically occur, except if the computational domain
is very small, which is not the case here. Therefore, fluctuations seem to result of a physical mechanism and not a
numerical artifact.

Fig. 12 compares histories of the points of null vorticity on the cylinder surface with force signals. The case Re=180 is
provided as example. Observation of the forces over a long duration in Fig. 12(b) lets appear amplitude fluctuations. From the
flow point of view (Fig. 12(a)), force fluctuations are correlated to oscillations of the front and rear stagnation points around
s=0.25 and 0.75. Here for Re=180, oscillation amplitudes of the stagnation point around s=0.25 (resp., 0.75) are the largest when
oscillations of the point around s=0.75 (resp., 0.25) are the smallest. Then force fluctuations appear as the sum of a signal at low
frequency (called carrier frequency) and a signal at the cylinder frequency. That will be referred to as a wavy fluctuation. For
higher Re values the phase shift between the two stagnation points is reduced. Then force fluctuations appear as a modulation.

Now we quantitatively describe fluctuations using temporal and spectral signals of the in-line force. For ReZ110 we
have seen in Section 3.1.2 that the main peaks of the in-line force spectrum were located at odd harmonics of the cylinder
frequency f0=1/T. Such a spectrum can be fitted by the force expression proposed by Morison et al. (1950) (see Eq. (1)). For
ReZ150 (Fig. 6(c)) additional peaks appear at frequencies which are not multiples of the cylinder frequency. They are of
the form fc, (2p)f0 7 fc and (2p+1)f0 7 fm, where fc o1 is the carrier frequency, fmo1 the modulation frequency and p 2N�.
Eq. (9) proposes an analytical expression of the in-line force to fit spectra obtained from simulations for 110rRer280:

Ffit
x ðtÞ ¼

p2

2KC
amcosð2pf0tÞþ

1

2
jsinð2pf0tÞj½adsinð2pf0tÞþbccosð2pfctÞþbmsinð2pf0tÞcosð2pfmtÞ�, ð9Þ

where the carrier coefficient bc and the modulation coefficient bm are determined empirically. Eq. (9) is based on the
expression provided by Morison et al. (1950) (Eq. (1)) which is actually the first two terms. The third term is a wavy
11
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Fig. 12. Spatio-temporal diagram of the points of null vorticity on the cylinder (a) and forces versus time (b) for KC=10 and Re=180.
fluctuation of the amplitude of the temporal signal at carrier frequency fc. In spectral representation it appears as peaks at
frequencies fc and (2p)f07 fc, p 2 N�. The last term of Eq. (9) describes an amplitude modulation of the temporal signal at
frequency fm, and peaks at frequencies (2p+1)f07 fm (p 2 N�) in the force spectrum. An example illustrating the use of
Eq. (9) is proposed in Fig. 13 for Re=170. Parameters have been determined to fit temporal and spectral signals resulting of
the numerical computation. Fig. 13 shows that main features of both temporal and spectral representations of the in-line
force can be reproduced by Eq. (9).

The carrier and modulation coefficients bc and bm measured for each run are reported in Fig. 14(b) as a function of Re.
For Reo150, both coefficients are null since there is no fluctuations. For 150rRer200, fluctuations appear rather as
wavy fluctuations, because peaks around even harmonics (2p)f0 7 fc are higher than those around odd harmonics (2p+1)f0

7 fm. For Re4200, the amplitude modulation becomes dominant over the wavy fluctuation. For Re4280 any
phenomenon can be identified anymore because more and more peaks arise.

The carrier and modulation frequencies fc and fm are plotted versus Re in Fig. 14(b). The frequency resolution is
Df ¼ 0:01f0 according to Eq. (5). The carrier frequency fc increases with Re from 0.11 to 0.19f0. A best fit of fc given by
fc/f0= fc0+a(Re�Rec) yields fc0

=0.11, a=8.5�10�4 and a critical Re number Rec=150. Since it depends on Re, the carrier
frequency seems to be linked to the natural response of the fluid and to the vortex formation time. On the contrary
the modulation frequency fm is almost constant. We notice that it is a fraction 1/4 of f0. Then fm seems to be linked to the
characteristic time of the structure. Appearance of coupling frequencies in force spectra was also observed by Morse and
Williamson (2009) for the case of a cylinder controlled to oscillate transversely to a free stream. Although the
configuration, and consequently flows and forces, are quite different from those considered here, the objectives and
12
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Fig. 14. (a) Carrier and modulation frequencies fc and fm and (b) carrier and modulation coefficients bc and bm versus Re from 150 to 280.
approach of Morse and Williamson (2009) were similar to ours. Coupling frequencies were also interpreted as
characteristic fluid times.

It must be precised that the transverse force also fluctuates in the same range 150rRer280 as the in-line force
(Fig. 4(d)). Peaks also appear in Fig. 7(c) at frequencies fc, (2p)f07 fc and (2p+1)f07 fm for p 2 N�, where the carrier and
modulation frequencies fc and fm take the same values as for the in-line force (Fig. 14(a)).
3.2.3. Fluctuations in the range 320rRer500
According to Tatsuno and Bearman (1990) the range 320rRer500 belongs to regime G (Fig. 1) characterized by a

transverse street. However, as mentioned in Section 3.1.3, no persistent vortex pattern is observed here, producing a
chaotic behavior. This is highlighted for the example of Re=360 in Fig. 15 showing the amplitudes Hyðf0,tÞ, Hyð2f0,tÞ and
Hyð3f0,tÞ of the power spectral density of the transverse force computed on running window of width 10T at frequencies f0,
2f0 and 3f0, where Hyðf ,tÞ is defined by

Hyðf ,tÞ ¼
1

10T

Z tþ5T

t�5T
e�i2pftFyðtÞ dt

����
����
2

: ð10Þ
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The dominant harmonic is 2f0 or 3f0 intermittently, revealing alternations between modes of the symmetry groups defined
by Eqs. (7) and (8). Moreover, Iliadis and Anagnostopoulos (1998) also numerically studied three cases in regime G. They
obtained different vortex patterns and concluded that the prominent characteristic of that regime was the switching of
modes at different cycles. The results of Iliadis and Anagnostopoulos (1998) and those of the present study lead to think
that regime G cannot be reduced to the transverse vortex street pattern as proposed first by Tatsuno and Bearman (1990),
but should be defined as an aperiodic regime with unstable vortex patterns.

4. Discussion

Low frequency amplitude fluctuations of the force exerted on the cylinder occur for 80rRer100 and 150rRer280.
The fluid force is a global quantity which reflects global flow dynamics, as can be seen in Figs. 11 and 12, where vorticity
dynamics is correlated to the force. The appearance of amplitude fluctuations is related to some global flow instabilities.
This provides new features to regime D whose V-pattern becomes the most persistent but not the only one observed, and
splits regime F into two sub-regimes, a first synchronous and a second with low frequency fluctuations. We propose to
discuss physical meanings of those fluctuations.

Each flow regime can be characterized by spatio-temporal symmetry relations associated to one or several modes.
Regime A is the existence domain of the symmetric mode. It is stable and forces are periodic. At Re=70 flow bifurcates to
another periodic mode but with a two-dimensional symmetry breaking as expected by the two-dimensional Floquet
stability analysis conducted by Elston et al. (2004). As Re increases in regime D, force spectra exhibit a spectral broadening
(Figs. 6(b) and 7(b)) leading to a very low frequency modulation of the two-dimensional flow. This modulation instability
is due to the permutation of three modes (V-shaped, transverse and oblique, see Fig. 10). It is worth noticing that those
three modes belong to the symmetry group given by Eq. (7) which is a key feature of regime D. The history of vorticity
production on the cylinder surface shows that the regions that are sensitive to the modulation are the positions of both the
rear and front stagnation points. Our study only deals with two-dimensional flows while Elston et al. (2006) showed that
regime D was unstable to three-dimensional perturbations. Then one may ask whether the modulation instability
observed in the two-dimensional flow is relevant in the case of real three-dimensional flows. Nehari et al. (2004) reported
in a three-dimensional simulation the existence of mode switching to explain force fluctuations they observed in regime D,
which is consistent with our results. It is then possible that this modulation instability as described here be a new
ingredient that could be considered for further stability analyses of the three-dimensional flow.

Regime F is the existence domain of symmetry Eq. (8), which only comprises the diagonal mode. It is observed in the
global flow field at every investigated Re value of regime F and at every time. The transition from regime D to F
corresponds to a two-dimensional symmetry breaking, synchronous with the cylinder frequency. As Re increases, force
fluctuations appear for ReZ150 in the middle and upper part of regime F, as shown by the comparison of Figs. 3(c) and (d),
or 4(c) and (d). In spectral representation this is related to the appearance of two distinct low frequencies that non-linearly
interact with harmonics of the cylinder frequency. This global flow instability is not easily detectable from wake patterns
since only the diagonal mode is observed in regime F. We checked that the low frequencies are also present in velocity
measurements at points distant of few diameters from the cylinder. This flow instability is also intimately related to the
oscillations of the stagnation points on the cylinder surface (Fig. 12). Dütsch et al. (1998) and Nehari et al. (2004) also
reported low frequency fluctuations for three-dimensional flows in regime F. Once again the transition at Re=150 observed
for two-dimensional flows may be relevant in the case of three-dimensional flows.

5. Conclusion

A finite element method was applied to solve the two-dimensional Navier–Stokes equations in the case of a circular
cylinder oscillating in a fluid initially at rest. The objective was to investigate the influence of increasing Re from 40 to 500
at KC=10. Five ranges of Re appear from temporal and spectral analyses of the in-line and transverse forces. Transitions
between regimes mainly consist in changes between periodic and aperiodic behaviors, modifications of the distribution of
energy in force spectra, and changes in spatio-temporal symmetries. Two regimes are also characterized by amplitude
fluctuations of the forces with long typical times. Those phenomena had been indicated but not specifically studied in the
literature. Fluctuations appear here as instabilities of flow modes associated to symmetry relations. For future
investigations, computations for other KC values could be carried out in order to determine the extension of the domains
(KC,Re) where amplitude fluctuations of the forces appear. The present study is to be continued with three-dimensional
computations in order to determine if the present instabilities are still observed, or if they are the two-dimensional
equivalent of a three-dimensional instability. The transitions between regimes D, F and G could also be more precisely
investigated.
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Uzunoǧlu, B., Tan, M., Price, W., 2001. Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method.

International Journal for Numerical Methods in Engineering 50, 2317–2338.
Vuik, C., Segal, A., 2006. Finite element methods for the incompressible Navier–Stokes equations. Technical Report, Delft Institute of Applied

Mathematics.
Wang, C., 1968. On high frequency oscillatory viscous flows. Journal of Fluid Mechanics 32, 5–68.
Williamson, C., 1985. Sinusoidal flow relative to circular cylinders. Journal of Fluid Mechanics 155, 141–174.
Zhang, H., Zhang, X., 1997. Flow structure analysis around an oscillating circular cylinder at low KC number: a numerical study. Computers and Fluids

26, 83–106.
15


	Characterization of long time fluctuations of forces exerted on an oscillating circular cylinder at KCequal10
	Introduction
	Numerical method
	Results
	Identification of regimes for increasing Re
	Temporal analysis of the forces
	Spectral analysis of the forces
	Flow analysis

	Fluctuations characterization
	Fluctuations in the range 80leRele100
	Fluctuations in the range 150leRele280
	Fluctuations in the range 320leRele500


	Discussion
	Conclusion
	Acknowledgments
	References




