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Abstract

A 2D numerical simulation of the flow around a circular cylinder is investi-
gated during the onset of unsteadiness within the range of Reynolds numbers
between 50 and 400. Using the recent formulation of Wu, Lu and Zhuang [J.
Fluid Mech. 576, (2007)], the fluid force is successfully approximated by a
volume integral of a force density over a small flow domain surrounding the
cylinder. The domain does contain neither the detached vortices in the wake
nor the vortex formation region. Using the vorticity laplacian, the domain
is dynamically divided into two regions: the external flow region containing
the two separated vortex layers and the back-flow region between these two
vortex layers. The integration of the force density on either the separated
vortex layers or the back-flow region gives two instantaneous contributions
to the total force. For the mean drag it is found that the back-flow con-
tribution increases from almost 0% of the total drag at Re = 50 to 20%
of the total drag at Re = 400. The separated vortex layers contribution is
found to decrease as (a + bRe−1/2). Concerning the force fluctuations, both
regions contribute similarly to the lift oscillations, while only the back-flow
region is responsible for the drag oscillations. This alternative comprehen-
sion of the fluid force origin is discussed and compared to that of the classical
pressure/viscous formulation.

Keywords: Mathematical formula, Vortex dynamics, Separated flows, Drag

∗Corresponding author: lionel.fiabane@ensta.org

Preprint submitted to European Journal of Mechanics B September 21, 2010



reduction

1. Introduction

The precise origin of the force in the flow, i.e. the exact phenomena or
structures in the vicinity of a body that create the force is a subject of great
importance, as well as from a fundamental point of view and for very practical
applications. Although it is understood and agreed that what happens near
a body directly creates the force, those are generally estimated through a
pressure-viscous stress integration over the body surface as:

F(t) =

∮

Bbody

(−pI + τ ) · n dS, (1)

where F(t) is the instantaneous aerodynamic force vector, p is the pressure, I
the identity matrix, τ is the viscous stress tensor and n is the normal vector
to the body surface. The projection of equation (1) on the flow direction ex

separates the drag into two contributions:

Dp =

∮

Bbody

(−pI · n) · ex dS, Df =

∮

Bbody

(τ · n) · ex dS, (2)

with the corresponding force coefficient:

CDp =
Dp

1
2
ρU2dl

, CDf =
Df

1
2
ρU2dl

, (3)

where U is the upstream uniform velocity, d is the cylinder’s diameter, l
its span (set equal to 1 in two dimensions) and ρ the fluid density. Dp

depends on the pressure and takes into account the form drag and the induced
drag. The friction drag Df depends on the viscous stress tensor and is
known to evolve with the Reynolds number as Re−1/2 [1] (defined as Re =
Ud
ν

where ν = µ
ρ

is the kinematic viscosity). The role of flow structures
surrounding the cylinder could be investigated by studying their fingerprint
at the body surface, however the non-locality of the pressure renders this
approach difficult. In the case of bluff bodies, it can be shown [2] that the
high drag is due to a strong base pressure induced by flow separation and
vortex formation. These ingredients cannot be separated using equation (1).

The present study propose therefore to investigate these origins through
a spatial decomposition of the flow made possible by the pioneering work of
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Wu et al. [3] (see also [4]), who introduced an alternative calculation free of
pressure. This formulation of the aerodynamic force is established from a
momentum budget equation and vectorial transformations. The expression
reads in two dimensions:

F(t) = − µ

∫

F
∇2ω x⊥ dV

+ µ

∮

B

([
(n̂ · ∇)ω

]
x⊥ + ω n̂⊥

)
dS, (4)

where µ is the dynamic viscosity, ω the vorticity, x = xex + yey the po-
sition vector, x⊥ = yex − xey, F the integration domain (or field), B the
external boundary of this domain, n̂ = n̂xex + n̂yey the normal vector to
this boundary pointing outside the domain and n̂⊥ = n̂yex − n̂xey. In the
case of a circular cylinder at large Re = 9500, Wu et al. [3] showed that the
boundary integral (second term on the right handside of equation (4)) decays
quickly as the integration domain F increases. Hence for a sufficiently large
domain, the force can be expressed as a field expression only which allows a
decomposition into different areas corresponding to flow structures. This is
an advantage compared to other formulations that are also free of pressure
but for which the boundary terms cannot be neglected (see for instance [5, 6]
and the references therein). Wu et al. also showed that the integrand in the
field integral is prominent in the vicinity of the cylinder. This means that
the vortices, once shed, do not contribute to the fluid force. In addition to
Wu et al.’s work, the present paper provides a spatial decomposition of the
flow around the cylinder (back-flow region and external flow) and a charac-
terization of their instantaneous contributions to the fluid force.

2. Numerical simulation

We choose to investigate equation (4) in the case of the solution of the
2D Navier-Stokes equations for the problem of a circular cylinder (shown
in figure 1) in a uniform flow at moderate Reynolds numbers. In order to
constitute a database for different Reynolds numbers ranging from 50 to 400
the numerical simulation is performed using a computational code based on
a non-dimensional vorticity-streamfunction formulation. This kind of solver
has been chosen for the accuracy of both the vorticity and its spatial deriva-
tives which is crucial in the resolution of equation (4). Briefly, a coordinate
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transformation is used in order to treat the problem in a regular rectangular
domain which enables the use of finite differences for all the spatial deriva-
tives with a good accuracy. This is done thanks to a conformal mapping of
the physical domain with a polar coordinate system (r, θ) into a rectangular
domain (X, Y ) combined with an exponential spatial elongation function to
make it regular. In this study the axes (X,Y ) of the rectangular compu-
tation domain represent in the physical domain the radius r and the angle
θ respectively. All the equations are solved in this calculation domain; its
resolution is 500× 500, the step in θ is 2π

500
and the radius goes from 0.5d to

25d. The numerical method is the same as the one used and described in
details in [7] except for the use of a physical domain of circular shape in the
conformal mapping instead of a NACA shape. The same kind of study has
been made using a commercial code based on finite volumes solving veloc-
ity and pressure. The results are equally good but the solver needs a more
refined grid to obtain reliable spatial derivatives of the velocity.

3. Results

3.1. Volume formulation of the fluid force

The mean drag coefficient computed using equation (4) with a circular
domain of diameter 5d is shown in figure 3(a) as a function of Re. This
mean drag coefficient is taken as a reference and simply refered as CD in
the rest of the paper. In this figure we can see a very good agreement with
Henderson’s fit [8] also based on numerical simulations. We minimize the
size of the domain F in order to obtain a value with an instantaneous error
below 1% of the value of the reference force obtained from equation (4) with
the 5d circular domain. We choose rectangle domains, bounded vertically in
y by ±0.95d (fixed boundaries) and in x by a fixed upstream limit at −0.75d
and by a varying boundary downstream at 1d to 0.75d for Re from 50 to
400. The integration domain F for Re = 300 is displayed in figure 1(a). For
this Reynolds number the integrals due to the gradient of vorticity (second
term on the right handside in equation (4)) calculated over each side of
the F domain are much smaller than the total force, by an order of 10−4.
The integrals over the fixed boundaries of the normal vorticity on the right
handside in equation (4) are also smaller than the total force by the same
order, and there is only one significant remaining term : the integral of the
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Figure 1: Instantaneous fields at Re = 300, contributions to the drag force density of
the external flow ‘E’ and the back-flow region ‘B’ defined in the integration domain F
of external boundary B displayed by the dashed line ; (a) Drag force density field fV · ex

as defined in equation (5) ; (b) Sign of ∇2ω (black : −1, white : +1) with the different
areas associated to the external flow ‘E’ or the back-flow region ‘B’ ; (c) Vorticity field,
the continuous line shows the boundaries of the external flow ‘E’ and the back-flow region
‘B’ ; (d) Drag force density fV · ex for the external flow ‘E’ ; (e) Drag force density fV · ex

for the back-flow region ‘B’. The scale in figure (e) is multiplied by a factor 5 compared
to that of figure (d).

normal vorticity on the right handside in equation (4) calculated over the
downstream boundary of the F domain. This last integral accounts for less
than 1% of the total force and is therefore neglected, which is consistent
with [3]. So, the force can thus be estimated instantaneously only by the
field contribution only (right handside in equation (4)):

F(t) ≈
∫

F
fV(x, t) dV = −µ

∫

F
∇2ω x⊥ dV. (5)

3.2. Flow decomposition

It is worth noticing that the domain F does cover neither the wake (as
mentioned previously and found in [3]) nor the vortex formation region. In
figure 1(a), we can also see that the drag force density is concentrated in
high positive (red) and high negative (blue) areas. From equation (5), these
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areas are intimately related to the vorticity distribution around the cylin-
der that is displayed for the same instant in figure 1(c). We can distinguish
three different sources of vorticity production on the cylinder. The first two
sources are created at the surface by both developments of boundary layers
due to the oncoming flow on the front of the cylinder. Both boundary layers
then separate from the wall and produce two shear layers of opposite signs.
We will refer to these two structures as the vortex layers. The third source
of vorticity appears at the rear of the cylinder and will be refered later as
the back-flow region (in blue in figure 1(c)). This vorticity results from the
interaction between the cylinder, the shear layers and the vortex roll-up that
occurs downstream (see the yellow vortex in figure 1(c)).

The aim is now to segregate the flow into different parts. We therefore
consider the vorticity laplacian ∇2ω which appears in equation (5). Areas
of different signs of vorticity laplacian are separated using the sign function.
The result is displayed in figure 1(b). In the F domain we thus obtain seven
areas which are combined to divide the flow into two parts. The first part
constituted by areas denoted with letters ‘B’ is localized on the back-flow
region (see figure 1(c)) ; the second part associating ‘E’ areas is called the
external flow and encompasses the vortex layers (see figure 1(c)). The two
instantaneous regions ‘E’ and ‘B’ enclose totally the area of the integration
domain F where the force density displayed in figure 1(a) is non zero. Fig-
ure 1(d) shows the drag force density field for the external flow only, whereas
figure 1(e) shows the drag force density field for the back-flow region only.
The same approach is used for the lift. Next we will analyse the contributions
to the total drag CD of the regions ‘E’ and ‘B’.

3.3. Drag and lift contributions

Instantaneous contributions to the fluid force are obtained by integrating
the force density over the corresponding regions ‘E’ and ‘B’. They are shown
at Re = 300 in figure 2. In the case of the drag coefficient (figure 2(a)) it
is found that 90% of the total mean drag originates from the vortex layers
in region ‘E’ while almost all the fluctuations are imposed by the back-flow
region ‘B’. For the lift coefficient (figure 2(b)), we find that both the external
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Figure 2: Instantaneous force as function of non-dimensional time for Re = 300. Plain line
is the sum of the contributions, dashed line is the external flow contribution, and dotted
line is the back-flow contribution. (a) Drag coefficients. (b) Lift coefficients.
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Figure 3: (a) Mean drag coefficient of the cylinder estimated from the density force in the
reference domain 5d (◦), in F domain (∗), the dashed line is the fit from [8]. CDE (4) is
the external flow contribution. CDB

(×) is the back-flow region contribution ; (b) Drag
oscillation amplitudes as function of the Reynolds number for the external flow (4), the
back-flow region (×) and the total force (∗) ; (c) Lift oscillation amplitudes (left axis) as
function of the Reynolds number for the external flow (4), the back-flow region (×) and
the total force (∗). (¨) denotes the phase shift φ between the external and the back- flow
lift (right axis).
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flow and the back-flow region contribute similarly. We also observe that the
back-flow region lift is phase advanced compared to that of the external flow
lift.

The flow separation into the external flow and the back-flow regions is
successfully performed for 50 ≤ Re ≤ 400. For each Reynolds number, we
compute the mean drag coefficients (the mean lift is zero due to the symmetry
of the flow around the cylinder) as well as the lift and drag oscillation ampli-
tudes. The mean drag coefficients are plotted as a function of the Reynolds
number in figure 3(a), with triangles (4) for the external flow drag CDE

and
with crosses (×) for the back-flow drag CDB

. As observed previously, most
of the drag is due to the vortex layers in the external flow. At Re = 50 their
contribution is almost equal to the total drag CD; then it decreases con-
tinuously as the Reynolds number increases. Simultaneously the back-flow
drag rises. Figure 3(b) shows that the drag oscillation amplitudes are only
due to the back-flow region in the considered range of Reynolds numbers,
while the lift oscillation amplitudes for both the external and the back-flow
remain equivalent (figure 3(c)). The phase shift φ between the external flow
lift and the back-flow lift remains fairly constant (φ ≈ π

4
) for Re ≥ 100.

For Reynolds number larger than 400, the flow becomes too complex in the
back-flow region, making the association of the flow areas given by the sign
of the vorticity laplacian into regions ‘E’ and ‘B’ impossible.

4. Discussion

We have so far determined the force contributions of two parts of the
flow : the external flow and the back-flow region. The force density in the
external flow is produced by the vortex layers. The force density in the
back-flow region is related to the vorticity created at the rear of the cylinder
(figure 1(c)). We discuss now the evolution of these contributions.

The vortex layers contribution is found to evolve as CDE
= C0+2.75Re−1/2

(figure 4(a)). The vortex layers create locally a friction drag at the surface
of the cylinder before the separation. This is consistent with the observed
dependence with the Reynolds number [2]. Moreover the external drag CDE
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Figure 4: (a) External flow drag CDE and friction drag CDf dependence with Re ;
(b) Back-flow drag CDB

and form drag CDp dependence with (L/d).
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also contains a large constant contribution which must be ascribed to the
separation of the boundary layers from the cylinder.

We consider next the back-flow drag CDB
. It is found to increase with

the Reynolds number (figure 3(b)) to reach a contribution of about 20% of
the total drag CD at Re = 400. This evolution is due to an increase of
the force density in the back-flow region that is created by the interactions
between the shear layers, the vortex roll-up and the cylinder. This intensi-
fication of the vorticity interactions is also accompanied by the increase of
the drag fluctuations in the back-flow region (figure 3(b)) that are correlated
to the vortex roll-up dynamics: the larger the Reynolds number, the closer
to the base of the cylinder the roll-up [9] and the stronger the drag fluctua-
tions. The increase of the fluctuations with the Reynolds number can also be
observed in the case of the lift (figure 3(c)) for which the roll-up in the back-
flow region drives the whole process [10], as expressed by the phase advance
observed between the back-flow lift and the external lift (we have however
no explanation at the moment to why the phase-shift becomes constant for
Re ≥ 100). A way to estimate the distance between the cylinder base and
the vortex formation is to compute the recirculation bubble length L [11],
defined from the downstream stagnation point of the dividing streamline of
the mean flow (see sketch in figure 4(b)). The relationship between CDB

and
L is found to be almost linear with CDB

= 0.11(L/d)−1 (figure 4(b)). This
means that as the Reynolds number increases, the roll-up occurring closer to
the cylinder creates stronger interactions between the rear vorticity and the
shear layers, resulting in an increased back-flow drag.

It is interesting to relate the present results to what can be achieved in
terms of passive control of bluff body wakes. A splitter plate [12] or a small
control cylinder [13, 14, 15] in the wake are known to reduce drag and sup-
press force fluctuations. The largest drag reduction that can be achieved is
about 30% (with no reattachment and when the separation points are not
significantly affected). It has been shown [16] that this control technique
have the property to push further downstream the vortex roll-up and then
to increase the recirculation bubble length. In the light of the present study,
these techniques suppress the back-flow region drag CDB

and its fluctuations
as the vortex roll-up is too far away from the body to induce rear vorticity.

We can finally compare our present flow decomposition with the pressure
and the viscous stress contributions. We have computed the form drag CDp
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(since the flow is two-dimensional, the induced drag is zero) and the vis-
cous shear drag CDf (figure 4). Our fit for viscous shear drag in figure 4(a)
gives CDf = 2.54Re−0.44 (similar to that of [8]) which is very close to the
dependence in Re that we found for the external flow drag. Hence the vortex
layers capture the viscous drag. The fit for pressure drag in figure 4(b) gives
CDp = C0

′+0.12(L/d)−1, which is very close to the dependence in L we found
for the back-flow drag. The form drag is thus captured by two structures:
the vortex layers through a constant contribution C0 in CDE

that depends
on the separation of the shear layers from the cylinder, and the vorticity
contained in the back-flow region induced by the vortex roll-up dynamics.

In conclusion, we can say that we have studied a new way to charac-
terize some flow contributions to the fluid force. For the circular cylinder
under the laminar vortex shedding stage, the force density formulation of-
fers a quantitative decomposition of the mean drag origin. This promising
method offers an alternative comprehension of the force origin to the classical
pressure/viscous stress decomposition. In future work, we plan to apply this
method to complex flows around controlled 2D bluff bodies [15] and 3D bluff
bodies [17] to get new insights into force-flow structures relationship. The
challenge is then twofold: fundamentally it relies on a proper identification of
the structures, and numerically it requires to compute the vorticity laplacian
accurately.

The authors are gratefull to Olivier Le Mâıtre for providing the numerical
code and to Maurice Rossi and Romain Pennel for their critical readings of
the paper.
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