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Abstract

In this chapter, we present a mathematical theory of human movement vigor. At the

core of the theory is the concept of the cost of time. According to it, natural movement

cannot be too slow because the passage of time entails a cost which makes slow moves

undesirable. Within this framework, an inverse methodology is available to reliably and

robustly characterize how the brain penalizes time from experimental motion data. Yet,

a general theory of human movement pace should not only account for the self-selected

speed but should also include situations where slow or fast speed instructions are given by

an experimenter or required by a task. In particular, the limit case of a “maximal speed”

instruction is linked to Fitts’s law, i.e. the speed/accuracy trade-off.

This chapter first summarizes the cost of time theory and the procedure used for its

accurate identification. Then, the case of slow/fast movements is investigated but changing

the duration of goal-directed movements can be done in various ways in this framework. Here

we show that only one strategy seems plausible to account for both slow/fast and self-paced

reaching movements. By relying upon a free-time optimal control formulation of the motor

planning problem, this chapter provides a comprehensive treatment of the linear-quadratic
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case for single degree of freedom arm movements but the principles are easily extendable to

multijoint and/or artificial systems.
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1 Introduction

Everyday actions are usually performed at a pace that people would commonly qualify of “com-

fortable”, which is neither too fast nor too slow. Movement duration or average speed are

inherent characteristics of biological and artificial sensorimotor control, a process that takes

place both in space and time. Understanding the underpinnings of movement pace formation is

of crucial importance not only in motor neuroscience (as many disorders lead to bradykinesia,

[2, 35]) but also in fields where humans are brought to interact with artificial systems, such

as humanoid robotics, robot-assisted rehabilitation, neuroprosthetics or computer animation.

The presence of temporal discrepancies may considerably affect the way humans perceive and

collaborate with such entities. More generally, to improve the human-likeness of artificial sen-

sorimotor systems, high-level computational principles leading to appropriate movement pace

must be developed. In human motor control, most research efforts on the topic have been turned

toward specific paradigms such as the speed/accuracy trade-off [22, 48, 23] where movements are

assumed to be performed as fast as possible for a given level of accuracy [see 40, 14, for reviews].

This empirical observation has been formalized as Fitts’s law [16] and successfully implemented

in human-computer interaction to model movement time [33]. An interesting observation is

that any system assuming an exponential decay of the distance left to the center of the target

will trivially yield Fitts’s law [9, 11]. Actually, robotic studies often exploit this property to

drive reliably a robot to some desired spatial target in an adjustable amount of time (e.g. [34]).

This is typically achieved by tuning a parameter that the modeler must set by hand. A similar

tuning of parameters is required to vary movement time when using PID controllers and even

more involved feedback schemes (e.g. [39]). Therefore, task duration is often hard coded by

fixing a desired movement time at the planning stage or merely results from the application of

a (possibly finely tuned) feedback gain at the execution stage. The approach undertaken in this

chapter lies in-between.

A recent hypothesis advanced the idea that the duration of biological movement could be driven
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by a “cost of time” [43, 45, Chapter 11]. In this view, slow movements are undesirable because

the passage of time incurs a cost: it is “better” to achieve a task soon than later. This would

be a property of the neural controller for reasons that may relate to the functioning of the

reward system (i.e. temporal discounting of reward [46, 43]) via the cortico-basal ganglia loop.

Movement vigor may indeed originate from the basal ganglia [44, 53] and its interaction with

cortical areas encoding movement speed [27, 10]. In [3], we developed an inverse approach

allowing to automatically infer, from experimental data, what would be the cost of time for

reaching movements. The time cost then proved to allow elaborating and predicting the duration

of upcoming reaching movements of various amplitudes and directions performed at a self-

selected speed: motion time was thus an emergent property of the motor preparation stage.

Here, we further analyze how this framework can embrace task instructions such as “move

slow” or “move fast”. We also give an account of Fitts’s law in this context. This work was

conducted within the optimal control framework and, more precisely, the free-time optimal

control formalism. Optimal control theory relies upon the choice of cost functions that define

what is optimal behavior for a given system [49, 50]. One great feature of optimal control is

the high-level of abstraction that it enables, allowing to easily port findings from biological

to artificial systems and vice-versa. For our purpose, we shall distinguish between subjective

and objective cost functions throughout the chapter. An objective cost function is specified

or imposed by the task itself. Typical examples are the specification of a target location (e.g.

endpoint error) or a reference trajectory to track (e.g. draw an ellipse). In contrast, a subjective

cost function is specified by the sensorimotor system itself and crucially serves to resolve the

remaining degrees of freedom that are left free by the (redundant) task. It may measure energy

expenditure, effort, jerk or any other quantity such as the cost of time which is at the core of

the present work.

This chapter is organized as follows. First, we briefly review how the cost of time can be

characterized unequivocally from real data in the proposed framework. We then analyze quite

extensively the linear quadratic case and explain how the theory can account for speed changes
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resulting from explicit constraints given by an experimenter such as Fitts’s like instructions.

Throughout the chapter, we give a theoretical treatment of the problem together with illus-

trations in the context of a single degree of freedom arm performing reaching movements in a

horizontal plane. The concepts are however easily transferable to more complex systems and

tasks.

2 Theory and results

2.1 Theory of the cost of time

The present theory is derived within the framework of optimal control (OC) theory, which

assumes that the signature of human movement is optimality (with respect to a certain cost

function) [49]. It implicitly supposes that the trajectories triggered by the central nervous

system can be accounted for by a certain infinitesimal cost h(x,u, t), which depends on the

system state x ∈ Rn, the motor command u ∈ Rm and the time t ∈ I ⊂ R, respectively. In

a sense, biological trajectories would adhere to a principle of least action where the “action”

would be the time integral of h. In seminal studies assuming this framework [37, 17, 54], the

time window of integration was set a priori by the modeler: movement time was simply fixed in

accordance with experimental measurements. However, since movement time or average speed

are motor decision variables, then a free-time formulation of the problem should rather be used

[41, 29]. In this way, the duration of movement would emerge implicitly from the optimality of

behavior, as already proposed by [24] who assumed to penalize the total motion duration itself.

In the same vein, at the core of the present theory aiming to account for the vigor of movement

is the idea of the “cost of time” (CoT) [43, 3]. The theory assumes that h can be separated into

a term that penalizes time only, g(t) (the infinitesimal CoT), plus a term that depends on the

state/control variables, l(x,u), which allows to shape the trajectories followed by the system.

Thus, if h(x,u, t) = g(t) + l(x,u), a mathematical analysis shows that it is actually possible

to compute the value g(t) by resolving an OC problem in fixed time t with known initial/final
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states (denoted by x0 and xf respectively), given a system dynamics dx
dt = ẋ = f(x,u) and a

trajectory cost l(x,u). We briefly recall how this is achieved but the reader is referred to [3] for

more details.

Given an input u(·) defined on an interval [0, tu], we denote by xu(·) the trajectory of ẋ(t) =

f
(
x(t),u(t)

)
satisfying xu(tu) = xf . As explained above, we consider the following cost function:

C(u, tu) =
ˆ tu

0

(
g(t) + l

(
xu(t),u(t)

))
dt, (1)

where the functions g and l are non-negative. The function l has been the subject of extensive

investigations in motor control (e.g. [17, 54, 6]) and may capture both subjective (related to an

individual’s decision) and objective (task related) goals. The trajectory cost l(x,u) is assumed to

be known or identifiable (in fixed time OC formulations). The function g is the infinitesimal (i.e.

instantaneous) CoT we can identify and whose antiderivative is the actual CoT, G(t) =
´ t

0 g(s)ds

(we assume G(0) = 0 for simplicity).

We consider the following free-time OC problems:

Given an initial state x0, minimize the cost C(u, tu) among all inputs u(·) and all times tu such

that xu(0) = x0 and xu(tu) = xf (by definition of xu).

We will assume the existence of minimal solutions u(·) with a finite time tu, which may be

guaranteed under some technical conditions on the dynamics and on the cost [30].

Next, let Vxf (t,x0) be the value function1 of the OC problem joining x0 to xf in fixed-time t,

that is

Vxf (t,x0) = inf
ˆ t

0
l
(
xu(s),u(s)

)
ds, (2)

where the infimum is taken among all inputs u(·) such that xu(0) = x0 and xu(t) = xf . It is

the optimal cost of a motion in time t between x0 and xf .
1Note that we did not use the standard way to define the value function: for a movement duration equal to

t, this is usually Ṽxf (w, x0(w)) = inf
´ t

w
l
(
xu(s), u(s)

)
ds. Here we set Vxf (t − w, x0(w)) = Ṽxf (w, x0(w)), hence

∂Vxf

∂t
= − ∂Ṽxf

∂t
.
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Then the movement time τ , that is the time tu of an optimal solution u(·) of the free-time OC

problem, satisfies

τ ∈ argmint≥0

(ˆ t

0
g(s)ds+ Vxf (t,x0)

)
, (3)

and, assuming that Vxf is differentiable with respect to t, we get:

g(τ) = −∂Vxf

∂t
(τ,x0). (4)

It is well-known from the Hamilton-Jacobi-Bellman theory that ∂Vxf

∂t (τ,x0) = H?0
(
x(τ),p(τ)

)
,

with H?0(x,p) = maxvH0(x,p,v) where H0 = p>f(x,v) + l(x,v) is the Hamiltonian associated

with the fixed-time OC problem2, x(t) is an optimal solution, and p(t) ∈ Rn is the co-state

vector [41]. Since it is obvious that the corresponding optimal control u(·) is also a minimal

solution of the OC problem in fixed time τ we then have H?0
(
x(τ),p(τ)

)
= H0

(
x(τ),p(τ),u(τ)

)
,

we get in this way g(τ) = −H0
(
x(τ),p(τ),u(τ)

)
.

Interestingly, the above analysis shows that the derivation extends to stochastic settings [47, 50].

In particular in the linear quadratic Gaussian (LQG) case, the infinitesimal CoT can be easily

computed because the value function has a parametric form whose parameters can be evaluated

via the resolution of decoupled ordinary differential equations [28].

In summary, it suffices to solve a stochastic or deterministic OC problem in fixed time t to

recover the value of g(t). This will be exemplified in the linear quadratic (LQ) case in the next

section, before the problem of tuning movement time (around the optimal one) will be addressed.

To test the above methodology, we asked subjects to perform 1-dof arm movements in the hor-

izontal plane. These reaching movements were of different amplitudes and, for each amplitude,

the duration was estimated from motion capture data. In Figure 1, we depict the main re-

sults. Overall, an affine relationship between movement extent and time can be drawn from

the experimental data. When identifying g(t) for several movement times t, one can charac-
2We assume here that there are no abnormal extremals (an hypothesis which is satisfied in particular by

controllable linear systems). As a consequence, it is not necessary to put a Lagrange multiplier in front of l in
H0.
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terize the shape of g on the interval of actual movement durations. For the depicted subjects,

movement times varied between about 600 ms (for an amplitude of 5 degrees) to about 1400

ms (for an amplitude of 95 degrees). Therefore, we were able to identify the CoT in a robust

and reliable manner on the interval 600-1400 ms. Outside of this interval, extrapolation was

required. However, it must be noticed that the shape of g on the range of empirical movement

times was sufficient to conclude that the CoT was neither linear nor purely convex or concave.

Actually, its shape tended to be sigmoidal. The present shapes were obtained when assuming

the torque change [54] as trajectory cost l. Assuming the angle jerk [17] as trajectory cost would

not change the sigmoidal shape. For a more thorough analysis with additional assessments, the

reader is referred to [3]. The biomechanical model of the arm is described in Sect. A.2. It must

also be noted that the free-time optimal control model predicts smooth and bell-shaped velocity

profiles, which agrees with classical observations for such planar arm movements.

2.2 Linear quadratic models

2.2.1 General settings and solutions

Let us focus on deterministic LQ models for 1 degree-of-freedom (dof) motions. This framework

is relevant to model simple arm reaching movements. The state of such systems can be described

by x = (θ, . . . , θ(n−1)) ∈ Rn and then the dynamics has the form

θ(n) + cn−1θ
(n−1) + · · ·+ c0θ = u, (5)

which is a single-input linear system ẋ = Ax + Bu, u ∈ R. Typically n = 2 or 3 for dynamical

models of the arm (see below). The single-input LQ case is also interesting from a theoretical

point of view as strong results of well-posedness of the inverse problem exist. In particular (see

[3]), the uniqueness and robustness to perturbations of experimental data can be proven for g(t).
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Indeed, the underlying quadratic cost can be identified unequivocally [38] from the empirical

and presumably optimal trajectories and in a continuous way (roughly speaking, the mapping

between the optimal trajectories and the quadratic cost is continuous, so that small changes

in experimental trajectories result in small changes in the quadratic cost). This remarkable

theoretical result motivates a deeper investigation of the LQ scenario.

A quadratic cost for the system given in Eq. (5) is a function αu2 + xTQx + 2xTSu, with α > 0,

which is a positive semidefinite quadratic form in (x, u). Up to a normalization we can assume

α = 1 and then consider a cost of the form l(x, u) = u2 + xTQx + 2xTSu.

The associated OC problem in fixed time τ > 0 is the following: given terminal conditions

x0,xf ∈ Rn, minimize the cost

Cτ (u) =
ˆ τ

0

(
u(t)2 + xu(t)TQxu(t) + 2xu(t)TSu(t)

)
dt,

among all controls u such that the solution xu of ẋ = Ax+Bu, xu(0) = x0, satisfies xu(τ) = xf .

Initial and final points x0 and xf are always chosen as equilibrium states of the system, that

is, x0 = (θ0, 0, . . . , 0) and xf = (θf , 0, . . . , 0). We also make the technical assumption that the

pair (A,Q1/2) is observable (this assumption is necessary for Eq. (6) below to hold). Ferrante

et al. [15] showed that the optimal trajectory xu of this problem is given by

xu(t) = etA+p1 + etA−p2, (6)

where the vectors p1,p2 ∈ Rn are the unique solution of


x0 = p1 + p2,

xf = eτA+p1 + eτA−p2.

(7)

The matrices A−, A+ are respectively anti-stable and stable (the eigenvalues of A+ are actually

the opposite of the ones of A−). These matrices are determined through a Riccati equation and
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do not depend on x0,xf , and τ , but only on the parameters (A,B) of the dynamic and (Q,S)

of the cost.

Remark 1. When xf = 0, the vectors p1 and p2 depend linearly on x0 and so do xu(t) for every

t. This is also true for u(t) since its expression has a form similar to Eq. 6 (see [15]).

Remark 2. Note that the corresponding OC problem in infinite time is the following: given an

initial condition x0 ∈ Rn, minimize the cost

C∞(u) =
ˆ ∞

0

(
u(t)2 + xu(t)TQxu(t) + 2xu(t)TSu(t)

)
dt,

among all controls u, where xu is the solution of ẋ = Ax + Bu, xu(0) = x0. The solution of

this problem is given again by Eq. (6), with the same matrices A−, A+, but with parameters

p1 = x0 and p2 = 0.

2.2.2 Computation of the infinitesimal CoT

Up to a translation in θ (position variable), we can always assume xf = 0. We then choose a

family of initial conditions x0(a) = (a, 0, . . . , 0), parameterized by the movement extent a > 0

(i.e. the amplitude of the motion). For every amplitude a > 0 we denote by t∗(a) the duration

(which can be estimated experimentally) of the motion between x0(a) and xf , and by ua(·)

a control minimizing the integral cost Ct∗(a)(u) in fixed time t∗(a) between xu(0) = x0(a)

and xu(t∗(a)) = xf = 0. By standard computations (see [3]) we obtain ∂Vxf

∂t (t∗(a),x0(a)) =

−ua(t∗(a))2, and so from Eq. 4,

g
(
t∗(a)

)
= ua(t∗(a))2. (8)

Moreover, the value ua(t∗(a)) can be seen to depend linearly on xu(0) in the LQ case (see

Remark 1), and so it depends linearly on a since xu(0) = x0(a) = ax0(1). In other words,

ua(t∗(a)) = aϕ(t∗(a)), where the function ϕ(·) is defined as follows: for every τ > 0, ϕ(τ) is

the value u1(τ) of the control minimizing the integral cost Cτ (u) =
´ τ

0 (u2 + xTQx + 2xTSu)dt
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Figure 2. The universal function ϕ for the minimum torque change and minimum jerk
optimality criteria, for a 1-dof arm moving in the horizontal plane. The function was found to
be quasi identical for these two costs. From this function, the infinitesimal CoT can be
recovered as g(t) = ϕ(t)2a(t)2 where a(t) is the amplitude corresponding to a movement in
time t (which can be determined experimentally).

in fixed time τ between xu(0) = x0(1) and xu(τ) = 0. Note that ϕ(·) is a universal function of

time that depends only on the system dynamics (A, B) and the trajectory cost and not on the

specific behavior of an individual. This universal function of time can be computed explicitly

thanks to the equations given in [15]. We finally obtain g
(
t∗(a)

)
= ϕ

(
t∗(a)

)2
a2.

Empirical observations show that the time t∗(a) is typically an increasing function of the am-

plitude, so that its inverse a∗(t) exists. We can then determine the function g(·) by g(t) =

ϕ(t)2a∗(t)2. In particular, if it appears from experiments that the function t∗ is approximately

affine of the form t∗(a) = αa+β, then the infinitesimal CoT can be written g(t) = ϕ(t)2( 1
α t−

β
α)2.

Hence, it suffices to compute ϕ(t), which can be done explicitly, to recover the actual infinitesi-

mal CoT from the experimental duration/amplitude mapping. For illustration, the function ϕ

is plotted in the Figure 2 for the two main trajectory costs considered here, namely the angle

jerk and torque change optimality criteria.
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3 Accounting for other motion speeds

A general theory of human movement vigor should also be able to account for movement times

departing from the self-chosen ones. It is clear that motion duration can vary in function of the

task, in particular verbal instructions given by an experimenter such as go quickly/slowly to the

target. How can the CoT theory take account of this variation? Remind that, from Eq. (3), the

duration of a motion satisfies

τ ∈ argmint≥0

(ˆ t

0
g(s)ds+ inf

u

ˆ t

0
l
(
xu(s),u(s)

)
ds

)
. (9)

Hence variations of the motion duration can be explained by changes either of g(t) or of l(x,u).

The first question is: is it possible to explain changes of motion duration by playing on the CoT

g(t)?

3.1 The sole modification of the cost of time cannot explain slower/faster

movements

Let us assume first that the cost of the trajectory is independent of the task and hence that

changes in motion duration only result from changes of the CoT. Typically, it is clear from

Eq. (9) that any increase of the values of G(t) =
´ t

0 g(s)ds implies a decrease of the duration τ .

The effect of instructions such as “go quickly to the target” could then simply correspond to an

increase of the CoTG(t). Conversely, instructions such as “go slowly to the target” could produce

a decrease of the CoT, which implies in turn an increase of the motion duration. Let us examine

the consequence of this hypothesis for the model described in Sect. 2.2, that is, in the context

of linear quadratic (LQ) models. In this case, motions are always solutions of a LQ optimal

control problem in fixed finite time, with always the same cost l(x, u) = u2 + xTQx + 2xTSu
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but with a time τ that depends on the term G(t).

Rescaling of g. An intuitive idea would be to rescale g by multiplying it by some posi-

tive parameter κ. A simple investigation however proves that such an approach is falsified

by experimental findings (see for instance [8, 57]). Indeed, such a rescaling would induce a

new amplitude
√
κa∗(t) for a movement in time t (we use the notations of Sect. 2.2.2, i.e.

κg
(
t
)

= ϕ
(
t
)2(√

κa∗(t)
)2). Therefore, the rescaled CoT would yield the affine amplitude-

duration relationship t∗(a) = α a√
κ

+β. It can be concluded that just rescaling the CoT does not

allow to change both the slope and the intercept of the amplitude/duration relationship. Hence,

since both the intercept and slope are found to change experimentally when the instructed speed

is varied, this observation cannot be attributed to a global rescaling of the CoT g. Typically,

when a subject is asked to move faster, not only α is reduced significantly but also β.

Arbitrary change of g. We now consider that g can be changed both in shape and magnitude.

Consider first the case of an overall decrease of the CoT, which produces a longer duration τ ,

i.e. slower movements. The asymptotic analysis of Sect. A.1.1 shows that, for a large duration

τ , the solution in time τ of the LQ problem associated with the cost l(x, u) looks alike the

solution of the same LQ problem in infinite time (see Lemma 4). The latter solutions have an

exponential decay to the final state and, moreover, a single peak of velocity whose magnitude

is independent of the time τ . These characteristics are not compatible with what is known of

slow reaching movements where velocity traces are gradually more multipeaked [26, 55], which

moreover seems to be a preplanned property not simply due to sensory feedback processing [13].

Consider now the case of an increase of the CoT, which induces a shorter duration τ and hence

faster movements. The asymptotic analysis when τ → 0 shows that, for small enough durations,

the solutions of the LQ problem are almost identical, up to a change of time-parameterization,

and are of polynomial form (see Lemma 5). More precisely, the theory would predict that

for faster and faster movements the velocity profiles are dilatations of each other and have a
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symmetric shape (see Remark 6). Such a strict scaling law of symmetric speed profiles is falsified

by experimental observations. Indeed, it was shown that movements become more asymmetric as

speed increases, where the relative duration of the deceleration phase increases during extremely

fast reaches (from ~50% of total motion duration for rapid reaches to ~70% for maximally fast

reaches) [32, 31]. This is moreover incompatible with the exponential decay of the distance left

to the target observed in Fitts’s like studies.

In summary, the sole modification of the CoT cannot explain slower/faster movements in the

LQ framework. Of course we could consider different models than the linear-quadratic ones.

Indeed, in the latter models we make several hypotheses: first, the evolution of the state is

given by linear differential equations; second, the state and the control are unbounded; third,

we restrict ourselves to the class of costs function which are quadratic function of both state

and control. The first assumption is not questionable as soon as we do not finely model the

dynamics of muscles or do not consider multijoint systems, which is consistent at the present

level of investigation. The third one seems to be reasonable since the class of quadratic costs

is sufficient to reproduce accurately simple arm motions at least [37, 25, 17]. Moreover, the

conclusions above should be very similar for a slightly larger class of costs functions (for instance

a class including the absolute work as in [4]), even if the asymptotic study would be much more

difficult in that case. The most critical hypothesis actually is the second one. Indeed it is evident

that the state and the control, being physical quantities, are bounded. In a LQ model, this fact

is taken into account implicitly since high values are penalized in the cost. This approach is

valid as long as the values of the state and the control in the optimal solutions do not exceed the

bounds. This condition is not easy to check since most of the bounds are not really known, it is

however clearly satisfied when the duration of the motion is not too small. Another approach

would be to take into account explicitly these bounds. In that case, it exists a minimum

time to go from one given state to another one. When the CoT G(t) increases (for instance

because of instructions such as “go quickly to the target”), the time τ of the motion converges

to the minimum time and, under standard convexity hypotheses on the cost [18], the optimal
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solutions converge to the minimum time solutions. This scenario is not really plausible for

different reasons. First, minimum time solutions present, in general time-intervals, saturations

of the control’s bounds. Since such characteristic saturations have never been observed in fast

motions for quantities such as velocity, acceleration and jerk, the control would necessarily be a

higher-order quantity. Even if they existed, such saturations would hardly be compatible with

trajectories satisfying Fitts’s law (exponential decay of the end-effector position to the goal).

Conceivably, saturation may occur at the level of motoneurons activity but experimental data

of surface electromyography (EMG), the main non-invasive approach to estimate the overall

activity of motor units, indicate that EMG activity is relatively far from maximal during rapid

reaching [1]. Moreover, no plateau is visible on any sensible time window and the so-called

triphasic pattern, with well-distinguished EMG bursts, is known to govern ballistic movements

[21, 7]. Secondly, the hypothesis of minimum time trajectories has already been studied in [48]

and contradicted in [57]. Intuitively, the reason is that humans do not always move as fast as

possible for a given level of accuracy: in most daily activities, we could move faster without

degrading task performance. At last, one may mention that even when instructed to move as

fast as possible, the actual maximal speed of a subject is not attained. It has been proven that

subjects can move faster without altering accuracy when explicitly asked to co-contract muscles,

an energy consuming strategy [36].

In summary, we presented strong arguments supporting that the sole modification of the CoT

cannot be put forward to explain neither slower nor faster movements. Then, it seems necessary

to assume that task-induced changes of motion duration are due to changes of the cost of the

trajectory, i.e. l(x, u).
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3.2 From self-paced motion to slower/faster movements

How do changes of the cost l(x, u) affect the duration? Consider the example of the linear

quadratic models. For our purpose, we propose to interpret the total infinitesimal cost

g(t) + l(x, u) = g(t) + u2 + xTQx [+eventually mixed terms xTSu].

by distinguishing three types of terms:

• g(t) is the cost of the time, it penalizes slow motion by accumulating infinitesimal values

during the passage of time;

• u2 is a subjective cost that evaluates the “effort” associated with a movement. It can reflect

mechanical energy expenditure, amount of joint torques, smoothness etc., depending on

the modeling; we can also include the mixed terms in the subjective cost, and possibly

some part xTQ′x of the quadratic terms in x. In essence, the subjective part of the

trajectory cost reflects an individual’s motor decision (often useful to resolve all residual

task redundancy).

• xTQx = (x−xf )TQ(x−xf ) is an objective cost, also part of the trajectory cost. Here, it

penalizes the fact of being away from the goal xf (recall that xf = 0 here without loss of

generality) and can be modulated by the requirements of the task. It is objective in the

sense that it is directly related to the task’s demand.

Hence we postulate that a change in the description of the task (e.g. go quickly/slowly to the

target) will affect only the objective cost, not the two other ones. Let us explain how it could

work. To simplify, we assume that the matrix Q is diagonal (i.e. cost function with separate

variables), xTQx = rθ2+s1θ̇
2+· · ·+sn−1(θ(n−1))2. Since the term rθ2 = r(θ−θf )2 penalizes the

fact of being away from the goal, the instruction “go quickly to the goal” translates as “increase

r”. In the same way, since the term s1θ̇
2 penalizes high velocities, the instruction “go slower”
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translates as “increase s1” (it can also increase the other parameters si). And it appears actually

that the duration of a trajectory minimizing the cost

ˆ tu

0

(
g(t) + u2 + rθ2 + s1θ̇

2 + · · ·+ sn−1(θ(n−1))2
)
dt, (10)

decreases with r and increases with s1, as expected. This fact was checked through numerical

simulations and the dependence of motion duration on r and s1 is reported in Figure 3. Tuning

the objective cost provides a means to modify the motion duration around the reference value

corresponding to a self-selected movement pace. Verbal instructions such as “produce a quick

movement” or “produce a slow movement” can thus be accounted for in this way. It should

be noted that increasing r or s1 breaks the affine relationship between movement amplitude

and time. If linearity is preserved for relatively small enough values of r and s1, the correlation

coefficients nevertheless go down as these weights increase. The next section actually shows that

there is a gradual distortion of the amplitude/time relationship such that Fitts’s law is actually

recovered for very large values of r.

3.3 Towards Fitts’s law and the speed/accuracy trade-off

To take into account accuracy constraints, we propose to consider goal-directed movements such

as arm pointing as the superposition of an open-loop motion (the planned trajectory) and of a

feedback process whose role is to provide on-line corrections and in particular to stabilize the

hand around the target [12, 51]. We then distinguish two different motion times:

• the planning time, denoted by τp, which is the duration of the planned trajectory and

can be determined by solving a free time OC problem involving the CoT as described

previously;

19



0 5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

× 10
4

D
ur

at
io

n 
(s

)

D
ur

at
io

n 
(s

)

value value 
0 200 400 600 800 1000 1200

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 3. Slower and faster movements for the 1-dof planar arm movement under
consideration. Effects of varying r and s1 on the motion duration. These graphs were drawn
from the CoT of the individual presented in Fig. 1 and amplitude was set to a = 45°.
Increasing the positional weight r induces an decrease of movement duration, as predicted by
the free-time optimal solutions. The opposite effect can be observed when increasing the
velocity weight s1. Modifying the objective trajectory cost is a sensible way to tune movement
duration around the individual’s self-selected one.

• the execution time, denoted by τs, which is the actual duration of the motion; it may differ

from the planning time because of the feedback process.

In general planning and execution times may differ for two reasons: the presence of perturbations

and the fact that the point aimed at differs from the actual stopping point. The former situation

occurs because of the presence of sensorimotor noise in the nervous system and the latter may

occur in the case of accuracy requirements. For example, if the target has a width w, and if

the instruction is “as fast and as accurate as possible”, the subject will conceivably aim at a

point inside or near the center of the target to ensure target achievement (see [52]), whereas

the motion can actually be stopped once the trajectory meets the target via the activation of

terminal feedback processes.

Again, we will consider a 1-dof LQ model as in Sect. 2.2. Let x0 be the starting point, xf = 0 be

the center of a target of width w and x(·) be the planned trajectory between these points. On

the one hand, the planning time τp satisfies x(τp) = 0. In other words, the end-effector attains
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the center of the target exactly in time τp (no perturbations are assumed here). On the other

hand, the movement will be stopped as soon as θ(t) ≤ w/2, i.e. the stopping time τs satisfies

approximately θ(τs) = w/2.

Consider for instance the case of as fast as possible and as accurate as possible movements,

which is the standard scenario behind Fitts’s law [16]. As explained in the previous section, the

instruction “move fast” corresponds to a cost with a very large coefficient r (see Eq. (10)). It

can be shown (see Sect. A.1.2) that in that case the planning time τp is rather small and the

planned trajectory is of the form

θ(t) ≈ cθ0e−αrt, for t/τp large enough,

where c, αr are positive constants with αrτp large (i.e. αrτp →∞ as r →∞).

The stopping time is determined by the constraint θ(τs) = w/2. Therefore it satisfies

τs ≈
1
αr

log c+ 1
αr

log(2θ0/w),

which is of the same form than the original formulation of Fitts’s law, that is, t = α̃ log2(2a/w)+β̃

with t = τs and a = θ0 [16]. Hence Fitts’s law can be accounted for by our theory, although

developed in a deterministic context, without explicitly assuming a linear feedback control law

that would lead to an exponential decay of the distance left to the target as done in [11] or [42].

Remark 3. Note that the distinction between planning and stopping movement times allows

one to recover Fitts’s law as soon as the planned trajectory decreases exponentially. It is in

particular the case in all models with infinite horizon and quadratic costs (either deterministic,

i.e. LQR, or stochastic, i.e. LQG), and more generally in all linear models with a proportional

feedback u = Kx, even though in those cases there would be no planned movement time.

Hence, this is mainly the shape of the trajectory which explains Fitts’s law in such models: one

does not increase motion duration specifically because of a higher accuracy demand but rather
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motion duration increases as a consequence of the exponential decrease of the distance left to

the target during maximally fast reachings. It is likely that the planned motion duration could

also be increased on purpose if modeling signal-dependent noise and adding a terminal error

term in a stochastic context [22] but we did not consider stochastic formulations of the present

deterministic free-time OC problems.

To illustrate the convergence to Fitts’s law, we performed simulations for the same 1-dof arm

model with r = 108 and s1 = 0.05r in Eq. (10). The results are depicted in Figure 4 where the

switch from affine to logarithmic relationships between amplitude and duration is illustrated. In

accordance with experimental findings, velocity profiles also become more asymmetrical in the

sense that the relative duration of deceleration drastically increases for maximally fast reaches

[32, 31]. These graphs also explain why Fitts’s law does not hold for self-paced movements but

is mainly a limit case, which agrees with experimental observations (see [57]).

4 Conclusion

In this chapter, we have presented a theoretical view of the computational principles that may

underlie the control of movement vigor within the central nervous system. We tackled the issue

of how reach duration can be adjusted to speed instructions in this framework. At the core of

the theory is the hypothesis of the existence of a “cost of time” [43]. It assumes that the passage

of time has a cost per se, which explains why our movements are not slower. Using an inverse

optimal control approach, we showed that this hypothetical time cost can be reliably identified

from experimental data of movement extent and duration and without resorting to any paramet-

ric adjustment [3]. Yet, the cost of time aims at explaining the spontaneous/natural movement

vigor, i.e. self-chosen motion pace. When explicitly asked to move slower or faster, we argued

that humans do not seem to modify the cost of time itself but rather an objective trajectory

22



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
-400

-300

-200

-100

0

10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

1.2

1.4

1.6

Amplitude (deg) Index of difficulty (ID)

D
ur

at
io

n 
(s

)

D
ur

at
io

n 
(s

)

Time (s)

Time (s)

V
el

oc
ity

 (
de

g/
s)

P
os

iti
on

 (
de

g)

0.4

0.6

0.8

1

1.2

1.4

1.6
(fixed)

2 3 4 5

a b c

Figure 4. The case of Fitts’s law for 1-dof planar arm pointing movements. a. Relationship
between amplitude and duration. In gray, the original amplitude/duration of the example
individual is recalled (i.e. r = s1 = 0 for self-paced movements). When r becomes very large
(here r = 108 and s1 = 0.05r), movements become faster and the amplitude/duration
relationship departs from its linear shape (black traces, where a logarithmic profile is visible).
b. Relationship between index of difficulty (ID = log2(2a

w )) and duration. In gray, for
self-paced movements (r = s1 = 0). In black, for Fitts’s instructions (r = 108 and s1 = 0.05r).
Fitts’s law is recovered very accurately in the latter case in contrast to self-paced motions
where a convex, instead of linear, trend is observed. c. Position and velocity profiles
corresponding to Fitts’s law simulations in the free time OC formalism. The exponential
decrease of the distance left to the target is visible for the position variable and the asymmetry
of speed profiles can be compared to those of Fig. 1c.

23



cost reflecting the specific task constraints. Whereas the time cost and the subjective trajectory

cost seem to be relatively invariant (at least on a short time scale), we provided evidence that

the introduction of an objective trajectory cost is crucial to capture speed instructions given by

an experimenter. In particular, Fitts’s law is recovered in our framework as a limit case.

A Appendix: Technical details

A.1 Asymptotic study

We describe in this asymptotic studies the behavior of the solutions of the linear quadratic model

introduced in Sect.. 2.2 when some parameters of the problem go to zero or infinity.

A.1.1 Asymptotic study for small/large time and fixed cost

Let us study the behavior of the optimal solutions when the final time τ varies, the quadratic

cost l(x, u) = u2 + xTQx + 2xTSu and the terminal conditions x0 = (θ0, 0, . . . , 0), xf = 0 being

fixed. For every τ > 0 we denote by xτ (t) =
(
θτ (t), . . . , θ(n−1)

τ (t)
)
, t ∈ [0, τ ], the solution of the

free-time OC problem in fixed time τ whose expression is given by Eq. (6). Consider first the

case of large times, that is the case where τ → ∞. Remind that in this case eτA+ and e−τA−

tend to zero.

Lemma 4. When τ →∞, there holds

xτ (t) = etA+x0 +O(‖eτA+x0‖).

As a consequence, there exists constants c, α > 0, and ε ∈ (0, 1), such that

θτ (t) = cθ0e−αt +O(e−ατ ), for any t ∈ [ετ, τ ].

We thus recover a somewhat intuitive result: the solution of a LQ problem in fixed time converges
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to the solution of the same LQ problem with infinite horizon when the time goes to infinity (see

Remark 2).

Proof. We deduce directly from the conditions of Eq. (7) the values of p1 = p1(τ) and p2 = p2(τ)

in function of x0. By putting these values into Eq. (6), we obtain

xτ (t) = etA+
(
I − e−τA−eτA+

)−1
x0 − e(t−τ)A−eτA+x0,

which is of the form etA+x0+O(‖eτA+x0‖) since A+ is stable and A− is anti-stable. Now, etA+x0

is a function of t which can be written as a sum of decreasing exponential terms. Denoting by

e−αt the less decreasing term in this sum, it appears that all other exponential terms in etA+x0

are negligible in front of e−ατ for t/τ not too small and we obtain the formula for θτ (note that

in general α = min {−<(λ) : λ eigenvalue of A+}).

Consider now the case of small times, i.e. the case where τ → 0. In that case we can prove the

following result.

Lemma 5. Let p(s) be the polynomial function of degree 2n−1 defined by
(
p(0), p′(0), . . . , p(n−1)(0)

)
=

x0 and
(
p(1), p′(1), . . . , p(n−1)(1)

)
= xf . Then

θτ (t) = p( t
τ

) +O(τ).

As a consequence, θτ (t) ≈ p( tτ ) for small times τ : a change of the final time induces approxi-

mately a temporal rescaling of the solutions.

Remark 6. Note that since the terminal conditions are equilibriums, the polynomial p(·) satisfies

ṗ(t) = ṗ(1− t), which implies that the velocity profiles of θτ have an almost symmetric shape for

small times τ . Indeed, the polynomial function p̃(t) = θ0− p(1− t) satisfies the same conditions

at t = 0 and t = 1 as p(t), which implies by unicity of the solution that p̃(t) = p(t), and so the

conclusion.
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Proof. Let us start with a preliminary remark on the optimal solution θτ . On one hand, it

follows from Eq. (6) that θτ (t) is an analytic function (i.e. it is equal to its Taylor series) which

depends linearly on the vectors p1 = p1(τ) and p2 = p2(τ). Hence, all derivatives of θτ at 0

depend linearly on the pair (p1,p2). On the other hand, due to the particular properties of

the matrices A−, A+ (see [15, Lemma 1]), there is a one-to-one correspondence between (p1,p2)

and the 2n first derivatives of θτ at 0, i.e. by θ(k)
τ (0), 0 ≤ k ≤ 2n − 1. As a consequence, all

derivatives of θτ at 0 depend linearly on the 2n first ones: for every integer k there exists a

constant Ck such that, for any τ, |θ(k)
τ (0)| ≤ CkΘτ , where

Θτ = max
{
|θ(k)
τ (0)|, 0 ≤ k ≤ 2n− 1

}
.

Set φτ (t) = θτ (t) − p( tτ ). We have to prove that φτ (t) = O(τ). The above remark and the

fact that
(
p(0), . . . , p(n−1)(0)

)
=
(
θτ (0), . . . , θ(n−1)

τ (0)
)

= (θ0, 0, . . . , 0) imply that the Taylor

expansion of φτ has the form,

φτ (t) =
2n−1∑
k=n

tk

k!

(
θ(k)
τ (0)− p(k)(0)

τk

)
+ ΘτO(t2n), (11)

where all O(·) are uniform with respect to τ. By definition of p(·) we have also φ(j)
τ (τ) = 0 for

j = 0, . . . , n− 1, and from Eq. (11) we get

2n−1∑
k=n

1
(k − j)!

(
τkθ(k)

τ (0)− p(k)(0)
)

= ΘτO(τ2n), j = 0, . . . , n− 1.

It follows that, for k = n, . . . , 2n− 1 there holds τkθ(k)
τ (0)− p(k)(0) = ΘτO(τ2n), and thus from

the definition of Θτ we obtain that Θττ
2n = O(τ). This and Eq. (11) give φτ (t) = O(τ), which

proves the lemma.
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A.1.2 Asymptotic study for fixed time

Let us try to understand now how the optimal solutions behave when some coefficients in the

cost function are modified. We fix an initial state x0 = (θ0, 0, . . . , 0), a final one xf = 0, and an

infinitesimal CoT g(t). We consider a family of costs lr(x, u) depending on a parameter r of the

form

lr(x, u) = u2 + rθ2 + xTQ0x + 2xTSu,

that is, with a matrix Q(r) = Q0 + re1e
T
1 (e1 = (1, 0, . . . , 0) denotes the first vector of the

canonical basis of Rn). We want to study the behavior when r tends to ∞ of the optimal

solutions of the following free-time OC problem: minimize the cost

Cr(u, tu) =
ˆ tu

0

(
g(t) + lr

(
xu(t), u(t)

))
dt,

among all inputs u(·) and all times tu such that xu(0) = x0 and xu(tu) = xf . As we have seen

previously, the time τ = τ(r) is determined by Eq. (9) and the optimal solutions are the one of

the OC problem min
´ τ

0 lr(x, u) in fixed time τ .

Lemma 7. For every r > 0 we denote by xr(t) =
(
θr(t), . . . , θr(n−1)(t)

)
, t ∈ [0, τ(r)], the

solution of the free-time OC problem associated with Cr. Assume that the infinitesimal cost of

time g(·) is a bounded function. Then there exists constants c, α > 0, and ε ∈ (0, 1), such that,

when r →∞, we have r1/2nτ(r)→∞ and

θr(t) = cθ0e−αr
1/2nt +O

(
e−αr

1/2nτ(r)
)
, for any t ∈ [ετ(r), τ(r)].

Note that the boundedness assumption on g is very natural and seems to be verified experimen-

tally since we obtain functions g(t) that are decreasing for large t.

Proof. To simplify the study, we give only the proof in the case where the matrices Q0 and

S are zero, and the dynamics (Eq. (5)) is of the form θ(n) = u. The proof of the complete
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result can be obtained by showing that this case actually gives the highest order terms with

respect to r. With the preceding hypothesis, θr(t) is the solution of the OC problem in fixed

time τ = τ(r) associated with the infinitesimal cost u2 + rθ2, or equivalently with 1
ru

2 + θ2. Set

θ̃r(t) = θr(tr−1/2n). Then θ̃r(t) is the solution of the OC problem in fixed time r1/2nτ associated

with the infinitesimal cost u2 + θ2. In the latter problem, nothing depends on r except the

duration r1/2nτ . It results from the analysis of Sect. 2.2.2 that there exists a universal function

of time ϕ(·) such that ũr(r1/2nτ) = θ0ϕ(r1/2nτ). Since we have ur(t) = r1/2ũr(r1/2nt), we obtain

ur(τ) = r1/2θ0ϕ(r1/2nτ).

Now remember (see Eq. (8)) that the time τ must satisfy g(τ) = (ur(τ))2, which gives g(τ) =

r
(
θ0ϕ(r1/2nτ)

)2
. Assume by contradiction that the quantity r1/2nτ(r) is bounded as r → ∞.

Then ϕ(r1/2nτ) is bounded away from zero (ϕ is positive and continuous on (0,+∞), and

converges to +∞ as t→ 0, see Fig. 2), and therefore g(τ(r))→∞ as r →∞, which contradicts

the boundedness of g. Thus we get r1/2nτ(r)→∞.

Since θ̃r(t) is the solution of an OC problem in fixed time with a very large time r1/2nτ(r), it

results from Lemma 4 that θ̃r(t) = cθ0e−αt + O
(
e−αr

1/2nτ(r)
)
for t larger than εr1/2nτ(r) for

some ε ∈ (0, 1). The conclusion follows from θr(t) = θ̃r(tr1/2n).

A.2 Model for arm reaching movements

Single degree-of-freedom (dof) limb. For a 1-dof arm moving in the horizontal plane, the basic

model used throughout the study was already described in numerous other studies (e.g. [25, 20,

48, 19, 3]) and is as follows: 
Iθ̈ = τ − bθ̇

τ̇ = u

(12)

where is θ the shoulder joint angle, τ is the muscle torque, b is the friction coefficient (b = 0.87

here), I is the moment of inertia of the arm with respect to the shoulder joint (value estimated
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based upon Winter’s table for each participant; [56]) and u is the single control variable.

For the trajectory cost we typically considered canonical quadratic costs of the form l(x, u) =

u2 + xTQx + 2xTSu, where x = (θ, θ̇, θ̈) ∈ R3 denotes the system state. The two most famous

examples are the minimum torque change corresponding to l(x, u) = u2 [54] and the minimum

jerk corresponding to l(x, u) =
...
θ

2 [17]. Other costs, possibly composite, may account for such

planar movements in fixed time but such an investigation is out of the scope of the present

chapter (but see [4, 5, 18, 6, 3] for studies related to the trajectory cost identification).
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